
Program Tailoring: Slicing by Sequential Criteria
(Artifact)
Tian Tan1, Yue Li2, Yifei Zhang3, and Jingling Xue4

1 School of Computer Science and Engineering, UNSW Australia
tiantan@cse.unsw.edu.au

2 School of Computer Science and Engineering, UNSW Australia
yueli@cse.unsw.edu.au

3 School of Computer Science and Engineering, UNSW Australia
yzhang@cse.unsw.edu.au

4 School of Computer Science and Engineering, UNSW Australia
jingling@cse.unsw.edu.au

Abstract
Protocol and typestate analyses often report some
sequences of statements ending at a program point
P that needs to be scrutinized, since P may be
erroneous or imprecisely analyzed. Program slicing
focuses only on the behavior at P by computing
a slice of the program affecting the values at P .
In our companion paper “Program Tailoring: Sli-
cing by Sequential Criteria”, we propose to focus
on the subset of that behavior at P affected by
one or several statement sequences, called a se-
quential criterion (SC). By leveraging the ordering
information in a SC, e.g., the temporal order in a
few valid/invalid API method invocation sequences,
we introduce a new technique, program tailoring,
to compute a tailored program that comprises the

statements in all possible execution paths passing
through at least one sequence in SC in the given
order.

This artifact is based on Tailor1, a prototyping
implementation of program tailoring, to evaluate
the usefulness of Tailor in practice. The provided
package is designed to support repeatability of all
the experiments of our companion paper. Specific-
ally, it allows users to reproduce the results for all
the three research questions addressed in the evalu-
ation section of our companion paper. In addition,
an extensive set of extra results, which are not de-
scribed in the companion paper, are also included,
in order to help users better understand this work.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages - Program Analysis, D.2.5
Testing and Debugging - Code inspections and Debugging aids
Keywords and phrases Program Slicing, Program Analysis, API Protocol Specification
Digital Object Identifier 10.4230/DARTS.2.1.8
Related Article Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue, “Program Tailoring: Slicing by
Sequential Criteria”, in Proceedings of the 30th European Conference on Object-Oriented Programming
(ECOOP 2016), LIPIcs, Vol. 56, pp. 15:1–15:27, 2016.
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.15
Related Conference 30th European Conference on Object-Oriented Programming (ECOOP 2016), July
18–22, 2016, Rome, Italy

1 Scope

This artifact is provided to enable the results for all three research questions (RQs 1 - 3) in our
companion paper to be reproduced. In the paper, we have conducted a thorough evaluation with
three sets of experiments, including two large cases studies for two different application scenarios

1 Tailor is available at http://www.cse.unsw.edu.au/~corg/tailor.

© Tian Tan, Yue Li, Yifei Zhang, and Jingling Xue;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 2, Issue 1, Artifact No. 8, pp. 8:1–8:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/DARTS.2.1.8
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.15
http://www.cse.unsw.edu.au/~corg/tailor
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de


8:2 Program Tailoring: Slicing by Sequential Criteria (Artifact)

in order to evaluate Tailor’s usefulness (RQ1 and RQ2) and one stress test in order to measure
Tailor’s scalability (RQ3). In RQ1, we show how Tailor can improve the precision of thin slicer
for program debugging and understanding. In RQ2, we show how Tailor can make program
analysis scale better with improved precision. In RQ3, we provide a stress test to investigate how
well Tailor scales, in practice.

Please note that this artifact is large and complex. It involves two clients (Clara [1] and
Solar [2]), two slicing tools (Thin slicer and Tailor), three static analysis frameworks (Doop [3],
Wala [4] and Soot [5]), with complicated interactions among these clients and tools. In addition,
sophisticated and memory-consuming whole-program pointer analyses will be performed on a set
of seven large real-world Java applications under a large library.

2 Content

The artifact package includes:
index.html: Detailed instructions about how to use this artifact.
artifactStructure.pdf: A figure describing the structure of this artifact.
run.py: A Python script for driving all the provided analyses.
executable: The folder containing all the tools used, together with JRE 1.6 and the ap-
plications analyzed in our evaluation. In particular, these tools are Tailor, the thin slicer
implemented in Wala, Clara (a tool that generates SCs for RQ1), and Solar (a tool that
generates SCs for RQ2).
SCs: The folder containing all SCs used in RQs 1 - 3.
screenshots: The folder containing the screenshots of the outputs of this artifact.
outputs(given): The folder containing all the detailed experimental results which are given
in advance for users to reference conveniently without running the artifact.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The latest version of the artifact and the
code of Tailor are available at: http://www.cse.unsw.edu.au/~corg/tailor.

4 Tested platforms

This artifact is known to work on Linux. It requires a Java 1.8 distribution and a Python
interpreter (between 2.7 and 3.0). As explained in Section 1, the artifact is large and complex.
Therefore, a machine with a large memory size (with ours being 64GB) is required in order to
reproduce all the results reported in our paper. We performed all the experiments described in
the companion paper on a Ubuntu 14.04 LTS machine with Xeon E5-2650 2GHz CPU that is
equipped with 64GB RAM. We used Java 1.8.0_25 and Python 2.7.6.

5 License

GPL v3 (http://www.gnu.org/licenses/gpl.html)

6 MD5 sum of the artifact

e6fccf02cf279d8a7a4c442919aca52f

http://www.cse.unsw.edu.au/~corg/tailor
 http://www.gnu.org/licenses/gpl.html


T. Tan, Y. Li, Y. Zhang, and J. Xue 8:3

7 Size of the artifact

569 MB

References
1 Clara. http://www.bodden.de/clara.
2 Solar. http://www.cse.unsw.edu.au/∼corg/solar.
3 Doop. http://doop.program-analysis.org.

4 Wala. http://wala.sf.net.

5 Soot. https://sable.github.io/soot.

DARTS

h
h
h
h
h

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

