
mRUBiS: An Exemplar for Model-Based
Architectural Self-Healing and Self-Optimization
(Artifact)
Thomas Vogel
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
thomas.vogel@cs.hu-berlin.de

0000-0002-7127-352X

Abstract
Self-adaptive software systems are often structured
into an adaptation engine that manages an adapt-
able software by operating on a runtime model that
represents the architecture of the software (model-
based architectural self-adaptation). Despite the
popularity of such approaches, existing exemplars
provide application programming interfaces but no
runtime model to develop adaptation engines. Con-
sequently, there does not exist any exemplar that
supports developing, evaluating, and comparing
model-based self-adaptation off the shelf. There-
fore, we present mRUBiS, an extensible exemplar
for model-based architectural self-healing and self-
optimization. mRUBiS simulates the adaptable

software and therefore provides and maintains an
architectural runtime model of the software, which
can be directly used by adaptation engines to realize
and perform self-adaptation. Particularly, mRU-
BiS supports injecting issues into the model, which
should be handled by self-adaptation, and validat-
ing the model to assess the self-adaptation. For this
purpose, the exemplar provides two case studies of
self-healing and self-optimization. Finally, mRUBiS
allows developers to explore variants of adaptation
engines (e.g., event-driven self-adaptation) and to
evaluate the effectiveness, efficiency, and scalability
of the engines.

2012 ACM Subject Classification Software and its engineering → Development frameworks and envir-
onments, Software and its engineering → Software development techniques
Keywords and phrases Self-adaptation, architecture, runtime models, simulator
Digital Object Identifier 10.4230/DARTS.4.1.1
Related Article Thomas Vogel, “mRUBiS: An Exemplar for Model-Based Architectural Self-Healing
and Self-Optimization”, in Proceedings of the 13th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 2018), ACM, 2018.
https://doi.org/10.1145/3194133.3194161
Related Conference 13th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2018), May 28-29, 2018, Gothenburg, Sweden

1 Scope

The mRUBiS artifact targets self-adaptive software that is split into an adaptation engine imple-
menting a feedback loop for self-adaptation and an adaptable software realizing the domain logic
while the engine manages the software. mRUBiS helps researchers in developing, evaluating, and
comparing adaptation engines that perform model-based architectural self-adaptation. Thus, the
engine uses an architectural runtime model of the adaptable software as a basis for self-adaptation.

Despite the popularity of model-based architectural self-adaptation, none of the existing
SEAMS artifacts particularly addresses this kind of self-adaptation by providing an architectural
runtime model of the adaptable software. In contrast, the existing artifacts provide application
programming interfaces (APIs) to manage the adaptable software. Consequently, using these
exemplars for model-based architectural self-adaptation requires from developers to implement
a runtime model and a causal connection between the model and the APIs. This is challenging

© Thomas Vogel;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 4, Issue 1, Artifact No. 1, pp. 1:1–1:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.vogel@cs.hu-berlin.de
http://orcid.org/0000-0002-7127-352X
http://dx.doi.org/10.4230/DARTS.4.1.1
https://doi.org/10.1145/3194133.3194161
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de


1:2 mRUBiS

since developers have to assure the synchronization and fidelity of the runtime model with the
running software. Thus, existing SEAMS exemplars do not support developing, evaluating, and
comparing model-based architectural self-adaptation off the shelf.

Therefore, we present mRUBiS, an extensible exemplar for model-based architectural self-
adaptation. It simulates the mRUBiS system as the adaptable software and provides as well as
maintains an architectural runtime model of the system. This model serves as the interface for
adaptation engines to realize and perform architectural adaptation of mRUBiS. Thus, model-based
architectural self-adaptation is supported off the shelf. Developers are relieved from implementing
a runtime model and a causal connection to the adaptable software as well as setting up a
corresponding runtime infrastructure. Instead, they can focus on designing, implementing, and
evaluating the adaptation logic on top of the provided runtime model.

The simulation performed by the exemplar consists of a predefined number of iterations over
the following three steps:
1. According to a scenario, the simulator injects issues into the runtime model and thus to the

mRUBiS architecture, which should be handled by self-adaptation.
2. The adaptation engine developed by the user of the exemplar is triggered to analyze and

adapt the mRUBiS architecture described in the model. The adaptation aims at resolving the
injected issues and thus at satisfying the goals of mRUBiS.

3. According to a set of validators, the simulator validates the adaptation and runtime model
to check whether issues are remaining in the mRUBiS architecture. It further evaluates the
self-adaptation by computing the utility of the current architecture based on a utility function
and by measuring the execution time of the self-adaptation (i.e., of the 2nd step). This data is
summarized at the simulation end.

For the mRUBiS architecture, we provide scenarios, issues, validators, and utility functions
for a self-healing and a self-optimization case study. For both case studies, the artifacts further
provides sample solutions. Furthermore, each of these elements can be replaced or extended by
developers to address other case studies. Even mRUBiS as the adaptable software described by
the runtime model can be replaced or extended. The language to express the runtime model is
generic and supports modeling arbitrary component-based architectures and properties.

Moreover, the mRUBiS artifact does not restrict the adaptation engines developed on top of it.
In contrast, it even encourages developers to explore variants of engines, for instance, by optionally
using the provided change events to drive the model-based self-adaptation. Developers can use
their favorite technologies to implement the engines such as code (Java) or model-based rules
(e.g., expressed with OCL and Story Diagrams) that operate on the runtime model. Finally, the
exemplar allows developers to evaluate the effectiveness (in terms of the utility of the adaptable
software), efficiency (in terms of execution time), and scalability of self-adaptation by scaling the
size of the architectural model and the number of injected issues per simulation round.

The artifact has been developed with the Eclipse Modeling Framework (EMF) and it is available
as a plug-in for Eclipse. Thus, any adaptation engine developed on top of this artifact can use any
EMF-compatible technique to process, analyze, and change the architectural runtime model to
perform self-adaptation.

2 Content

The artifact package includes a snapshot of the Git repository https://github.com/thomas-
vogel/mRUBiS (March 16th, 2018; last commit: 962edbcbe476cf8d9b6a6cfb50c1b1bb304d35ee).
The package contains the following sub-packages (each sub-package is an Eclipse plug-in project
that can be imported as a project into Eclipse to continue development and to extend the artifact):

https://github.com/thomas-vogel/mRUBiS
https://github.com/thomas-vogel/mRUBiS


T. Vogel 1:3

de.mdelab.comparch
This package defines the metamodel for the CompArch (short for component architecture)
modeling language that is used to express the architectural runtime model.
de.mdelab.comparch.edit
This package defines edit operations for CompArch models. It is completely and automatically
generated from the CompArch metamodel by EMF and used by the generated tree-based
editor for CompArch models (see package de.mdelab.comparch.editor).
de.mdelab.comparch.editor
This package implements a tree-based editor for CompArch models that uses the generated edit
operations (see de.mdelab.comparch.edit). It is completely and automatically generated
from the CompArch metamodel by EMF.
de.mdelab.comparch.editor.graphical
This package implements the graphical CompArch modeling editor and thus, defines the
notation for CompArch models. The editor is based on Eclipse Sirius and only depends on the
CompArch metamodel (see package de.mdelab.comparch).
de.mdelab.simulator
This package implements the core of the simulator. This core is generic and does not any contain
aspects that are specific to a concrete adaptable software such as mRUBiS. Consequently,
generic validators are implemented in this package. This package only depends on the
CompArch metamodel (see package de.mdelab.comparch).
de.mdelab.simulator.mrubis
This package extends the simulator core and thus, the de.mdelab.simulator package by
implementing aspects that are specific to mRUBiS such as certain validators, the injectors for
the issues, and the utility functions.
de.mdelab.simulator.mrubis.examples
This package just bundles the two packages

de.mdelab.simulator.mrubis.examples.selfhealing
de.mdelab.simulator.mrubis.examples.selfoptimization

to provide them as Eclipse example projects.
de.mdelab.simulator.mrubis.examples.selfhealing
This package implements example solutions for adaptation engines for the self-healing case
study of mRUBiS. It is provided as Eclipse Example Project, in which CompArch models can
be generated (see package de.mdelab.simulator.mrubis.ui) and the simulator (see package
de.mdelab.simulator.mrubis) is used to develop, test, and evaluate the solutions.
de.mdelab.simulator.mrubis.examples.selfoptimization
This package implements the example solution for an adaptation engine for the self-optimization
case study of mRUBiS. It is provided as Eclipse Example Project, in which CompArch models
can be generated (see package de.mdelab.simulator.mrubis.ui) and the simulator (see
package de.mdelab.simulator.mrubis) is used to develop, test, and evaluate the solution.
de.mdelab.simulator.mrubis.feature
This package is a so called Eclipse feature project that just bundles all other sub-packages to
the feature called mRUBiS Exemplar. Such a feature eases generating a release of the exemplar
for the Eclipse update site from which (a release of) the mRUBiS exemplar can be installed to
Eclipse.
de.mdelab.simulator.mrubis.ui
This package just implements the UI for generating CompArch models for mRUBiS. It uses
mRUBiS-specific knowledge defined in the de.mdelab.simulator.mrubis package to generate
a CompArch model of a user-defined size.

DARTS



1:4 mRUBiS

The overall package further includes two folders and two files:
docs
This folder contains the Eclipse update site project and the update site itself for the mRUBiS
exemplar. The mRUBiS exemplar can be installed from the update site to Eclipse. The folder
further contains the generated Java documentation (Javadoc) of the exemplar.
wiki
This folder contains a snapshot of the wiki with comprehensive documentation of the mRUBiS
exemplar. The snapshot is a set of Markdown files.
LICENCE
The Eclipse Public License 1.0 file.
README.md
A high-level description of the mRUBiS exemplar.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/thomas-vogel/mRUBiS.

4 Tested platforms

mRUBiS is available as a plug-in for the Eclipse Oxygen.2 (4.7.2) Release with the Eclipse Modeling
Tools package. This package provides Eclipse including the Eclipse Modeling Framework (EMF).
The artifact has been developed and tested with Java 8 on Ubuntu 16.04 while only basic tests
have been made with Windows.

5 License

The artifact is available under Eclipse Public License 1.0.

6 MD5 sum of the artifact

1e9de8c6a61c2850006c5f631dcc32a3

7 Size of the artifact

5896049 bytes (5.9MB on disk)

https://github.com/thomas-vogel/mRUBiS

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

