
Garbage-Free Abstract Interpretation Through
Abstract Reference Counting (Artifact)
Noah Van Es
Software Languages Lab, Vrije Universiteit Brussel, Belgium
noah.van.es@vub.be

Quentin Stiévenart
Software Languages Lab, Vrije Universiteit Brussel, Belgium
quentin.stievenart@vub.be

Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium
coen.de.roover@vub.be

Abstract
This artifact is a modified version of Scala-AM,
an abstract interpretation framework implemen-
ted in Scala. Specifically, we extended Scala-AM
with several implementations of machine abstrac-
tions that each employ a different approach to ab-
stract garbage collection. These include traditional
(tracing-based) approaches to abstract garbage col-
lection, as well as our own novel approach using
abstract reference counting. In particular, using
the machine abstraction that employs abstract ref-
erence counting (with cycle detection) results in

a garbage-free abstract interpreter can greatly im-
prove both the precision and performance of the
corresponding machine abstraction in the original
version of the Scala-AM framework.

We have set up the framework in such a way that
one can easily run a variety of experiments to use,
evaluate and compare these approaches to abstract
garbage collection. This artifact contains document-
ation on how these experiments can be configured,
specifically to reproduce the results presented in
the companion paper.

2012 ACM Subject Classification Theory of computation → Program analysis
Keywords and phrases static analysis, abstract interpretation, abstract garbage collection, reference
counting
Digital Object Identifier 10.4230/DARTS.5.2.7
Funding Noah Van Es: Funded by a PhD Fellowship of the Research Foundation - Flanders (FWO)

Related Article Noah Van Es, Quentin Stiévenart, and Coen De Roover, “Garbage-Free Abstract
Interpretation Through Abstract Reference Counting”, in 33rd European Conference on Object-Oriented
Programming (ECOOP 2019), LIPIcs, Vol. 134, pp. 10:1–10:33, 2019.
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.10
Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15–19, 2019, London, United Kingdom

1 Scope

This artifact implements abstract reference counting, our novel approach to abstract garbage
collection that is presented in the companion paper, as well as existing tracing-based approaches
to abstract garbage collection as an extension to the Scala-AM framework [1, 2]. While the
formalization in the paper uses a minimalistic language λANF, this implementation can be used to
analyze a larger subset of the Scheme programming language, and in addition supports multiple
configurations for the abstract domain and context-sensitivity of the analysis.

© Noah Van Es, Quentin Stiévenart, and Coen De Roover;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 7, pp. 7:1–7:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noah.van.es@vub.be
mailto:quentin.stievenart@vub.be
mailto:coen.de.roover@vub.be
https://doi.org/10.4230/DARTS.5.2.7
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


7:2 Garbage-Free Abstract Interpretation Through Abstract Reference Counting (Artifact)

We have set up the framework in such a way that the experiments and results that are reported
in the companion paper can easily be reproduced. In particular, the framework can directly
be used to compare the precision, performance and overhead of analyses that employ different
approaches to abstract garbage collection.

2 Content

The artifact package includes:
a manual (ecoop2019arc-artifact-manual.pdf) that briefly describes our implementation
(i.e., a modified version of the Scala-AM framework) and provides detailed instructions on
how it can be used, in particular to reproduce the experiments of the companion paper.
the source code of our implementation (scala-am-abstractgc.zip), which can be run locally.
a VM image (ecoop2019arc-artifact-vm.ova) that comes pre-loaded with our implementa-
tion and all the dependencies that are required to run it.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The source code of the artifact is also
available at: https://github.com/noahvanes/scala-am-abstractgc. Moreover, the detailed
instructions for reproducing the experiments conducted in the companion paper are accessible at
https://soft.vub.ac.be/~noahves/ecoop2019arc/ecoop2019arc-artifact-manual.pdf.

4 Tested platforms

The artifact can be installed on any platform running the Java Virtual Machine, version 8 or
more recent. The provided VM image (.ova) requires around 7.5 GB of free space on disk, and we
recommend using it with at least 4GB of RAM.

5 License

The artifact is available under the MIT license (https://opensource.org/licenses/MIT).

6 MD5 sum of the artifact

8d8ac158bb40ecd3bf4c94727787fa4b

7 Size of the artifact

3.76 GiB

References
1 Quentin Stiévenart, Jens Nicolay, Wolfgang

De Meuter, and Coen De Roover. Building a modu-
lar static analysis framework in Scala (tool paper).
In Proceedings of the 2016 7th ACM SIGPLAN
Symposium on Scala, pages 105–109. ACM, 2016.

2 Quentin Stiévenart, Maarten Vandercammen,
Wolfgang De Meuter, and Coen De Roover. Scala-
AM: A modular static analysis framework. In
Source Code Analysis and Manipulation (SCAM),
2016 IEEE 16th International Working Confer-
ence on, pages 85–90. IEEE, 2016.

https://github.com/noahvanes/scala-am-abstractgc
https://soft.vub.ac.be/~noahves/ecoop2019arc/ecoop2019arc-artifact-manual.pdf
https://opensource.org/licenses/MIT

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

