
On Julia’s Efficient Algorithm for Subtyping Union
Types and Covariant Tuples (Artifact)
Benjamin Chung
Northeastern University, Boston, MA, USA
bchung@ccs.neu.edu

Francesco Zappa Nardelli
Inria, France
francesco.zappa_nardelli@inria.fr

Jan Vitek
Northeastern University, Boston, MA, USA
Czech Technical University in Prague, Czech Republic
j.vitek@neu.edu

Abstract
The key claim in our paper Julia’s efficient
algorithm for subtyping unions and covariant
tuples is that our algorithm works. This
artifact provides support for that claim through
two means: a Coq proof of the algorithm’s
correctness and an implementation of the
algorithm. The single-file proof contains three
proof-generating implementations of subtyping,

based on normalization and two variations on
the subtyping algorithm we describe. The
implementation consists of a web interface to an
OCaml implementation of our algorithm, which
checks subtyping between any two arbitrary user-
defined types and generates both the answer and
a trace of algorithm execution.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engineering
→ General programming languages
Keywords and phrases Type systems, subtyping, algorithmic type systems, distributive unions
Digital Object Identifier 10.4230/DARTS.5.2.8

Related Article Benjamin Chung, Francesco Zappa Nardelli, and Jan Vitek, “Julia’s Efficient Algorithm
for Subtyping Unions and Covariant Tuples”, in 33rd European Conference on Object-Oriented
Programming (ECOOP 2019), LIPIcs, Vol. 134, pp. 24:1–24:15, 2019.
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.24
Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15–19, 2019, London, United Kingdom

1 Introduction

This is the artifact for the pearl paper “On Julia’s efficient algorithm for subtyping union types
and covariant tuples.” It consists of two primary components:

index.html: An implementation of the subtyping algorithm running in a webpage. This
implementation is modified only slightly from the one described in the paper to enable
visualization. For sources, see the web-impl directory.
julia-iterators.v: The Coq source code for the proofs referenced in our paper.

This document is a worse-formatted and non-executable version of index.html. We suggest
the the online version (at https://benchung.github.io/subtype-artifact/) or simply open
index.html from the artifact archive for information on the artifact and to try out our algorithm.
The website version of the artifact is tested to work in Google Chrome, and should work in all
modern browsers.

© Benjamin W. Chung, Francesco Zappa Nardelli, and Jan Vitek;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 8, pp. 8:1–8:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bchung@ccs.neu.edu
mailto:francesco.zappa_nardelli@inria.fr
mailto:j.vitek@neu.edu
https://doi.org/10.4230/DARTS.5.2.8
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.24
https://benchung.github.io/subtype-artifact/
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


8:2 On Julia’s Efficient Algorithm for Subtyping Union Types and Covariant Tuples (Artifact)

2 Proof

The proof script (found in proof/julia-iterators.v) depends on Coq 8.9.0. A detailed de-
scription of our proof can be found in section 3 of the paper. The proof is standalone, and has
no library dependencies.

It relies on the standard library provided axiom Eqdep.Eq_rect_eq.eq_rect_eq, which es-
tablishes the invariance under substitution of dependent equality. In our formalization, structural
type iterators are dependent upon the type over which they iterate. We rely on this axiom to
decide when two iterators are iterating over the same or different types. It is an axiom in our
system as it is independent of the calculus of constructions.

3 Implementation

We include a web implementation of our algorithm. To use it, please see index.html for the
running implementation and instructions on its use and compilation.

Compiling the Implementation
The implementation is written in OCaml and compiled using js_of_ocaml. It requires:

OCaml 4.07.0 or later
opam 2.0.4 or later

To compile the OCaml to Javascript, run

make deps
make

in the web-impl subdirectory, which should update the file web-impl/js/subtype.js.

4 License

Copyright 2019 Benjamin Chung, Francesco Zappa Nardelli, Jan Vitek
The artifact associated with this description is licensed under the Apache License, Version 2.0

(the “License”); you may not use the associated artifact except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

5 MD5 sum of the artifact

4d0356d94cd8d21f42e6b73de886f871

6 Size of the artifact

746657 bytes

http://www.apache.org/licenses/LICENSE-2.0

	Introduction
	Proof
	Implementation
	License
	MD5 sum of the artifact
	Size of the artifact

