
Scala with Explicit Nulls (Artifact)
Abel Nieto
University of Waterloo, Canada
anietoro@uwaterloo.ca

Yaoyu Zhao
University of Waterloo, Canada
y437zhao@edu.uwaterloo.ca

Ondřej Lhoták
University of Waterloo, Canada
olhotak@uwaterloo.ca

Angela Chang
University of Waterloo, Canada
yue.chang@edu.uwaterloo.ca

Justin Pu
University of Waterloo, Canada
justin.pu@edu.uwaterloo.ca

Abstract
This artifact is a companion to the paper “Scala
with Explicit Nulls”, where we present a modifica-
tion to the Scala type system that makes nullability
explicit in the types. Specifically, we make reference
types non-nullable by default, while still allowing
for nullable types via union types.

The artifact contains an implementation of this
new type system design as a fork of the Dotty
(Scala 3) compiler. Additionally, the artifact con-
tains the source code of multiple Scala libraries that
we used to evaluate our design.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Theory of computation → Denotational semantics; Theory of computation → Type theory; Software
and its engineering → Interoperability
Keywords and phrases Scala, Java, nullability, language interoperability, type systems
Digital Object Identifier 10.4230/DARTS.6.2.14
Funding This research was supported by the Natural Sciences and Engineering Research Council of
Canada and by the Waterloo-Huawei Joint Innovation Lab.
Acknowledgements We would like to thank Sébastien Doeraene, Fengyun Liu, Guillaume Martres, and
Martin Odersky for their feedback on our explicit nulls design and their help with Dotty.

Related Article Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu, “Scala with
Explicit Nulls”, in 34th European Conference on Object-Oriented Programming (ECOOP 2020), LIPIcs,
Vol. 166, pp. 25:1–25:26, 2020. https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
Related Conference 34th European Conference on Object-Oriented Programming (ECOOP 2020),
November 15–17, 2020, Berlin, Germany (Virtual Conference)

1 Scope

The artifact substantiates the paper’s contributions (reproduced verbatim in italics below), not
including the formalization of type nullification:

We retrofitted Scala’s type system with a mechanism for tracking nullability, using union types.
To improve usability of nullable values in Scala code, we also added a simple form of flow
typing to Scala. The artifact contains a fork for the Dotty (Scala 3) compiler that
implements the type system for explicit nulls described in the paper, including
flow typing.

© Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 6, Issue 2, Artifact No. 14, pp. 14:1–14:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2741-8119
mailto:anietoro@uwaterloo.ca
mailto:y437zhao@edu.uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
mailto:yue.chang@edu.uwaterloo.ca
mailto:justin.pu@edu.uwaterloo.ca
https://doi.org/10.4230/DARTS.6.2.14
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


14:2 Scala with Explicit Nulls (Artifact)

So that Scala programs can interoperate with Java code, where nulls remain implicit, we present
a type nullification function that turns Java types into equivalent Scala types. The compiler
contained in the artifact implements type nullification as described in the paper.
This can can be verified through a test suite also present in the artifact.
We evaluate the design by migrating multiple Scala libraries to explicit nulls. The main
findings are that most of the effort in migrating Scala code to explicit nulls comes from
Java interoperability, and that the effort is significant for some libraries. The artifact
contains the source code of multiple Scala libraries used to evaluate the effort
required to migrate Scala code to the explicit nulls type system. The artifact
contains instructions for how to (manually) generate the tables appearing in the
paper. Due to mismatching library versions, the results (e.g. number of errors
per thousand lines of code) obtained from the artifact do not exactly match those
in the paper, but the high-level findings of the paper continue to hold.

2 Content

The artifact is packaged as a Virtual Box VM (an .ova file) containing:
A detailed guide describing the artifact.
A modified version of the Dotty compiler containing the new explicit nulls type system.
A test suite for the new type system.
Copies of the Dotty Community Build libraries used to evaluate our implementation.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

We have tested the VM with VirtualBox Version 6.1.6 r137129 (Qt5.6.3). The OS installed in the
VM is Ubuntu 18.04.

5 License

The Dotty compiler is available under an Apache License 2.0 license. The community build
libraries are available under their respective licenses.

6 MD5 sum of the artifact

5aa27baba97d324c2e28d5361e5a672e

7 Size of the artifact

5.1 GiB


	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

