
Covariant Conversions (CoCo): A Design Pattern for
Type-Safe Modular Software Evolution in
Object-Oriented Systems (Artifact)
Jan Bessai #Ñ

Technische Universität Dortmund, Germany

George T. Heineman # Ñ

Worcester Polytechnic Institute, MA, USA

Boris Düdder #

University of Copenhagen, Denmark

Abstract
This artifact contains code illustrating the Covari-
ant Conversions (CoCo) design pattern in Java,
Scala, and C#. The CoCo pattern shows how
to solve the expression problem in modern object-
oriented languages without the need for language
extensions. It structures code so that adding new
classes and new methods is possible without changes

to existing implementations. The artifact is a live
image of a Linux machine for archival purposes. It
allows to boot into an environment which has an
IDE installed to inspect the code. Build infrastruc-
ture to compile, run, test, and benchmark the code
without internet access is also included.

2012 ACM Subject Classification Software and its engineering → Software evolution; Software and its
engineering → design patterns; Software and its engineering → abstraction, modeling and modularity
Keywords and phrases Expression problem, software evolution, type safety, producer method, binary
method
Digital Object Identifier 10.4230/DARTS.7.2.4
Acknowledgements Creating the live image would have been impossible without the marvelous instruc-
tions by Will Haley [4].

Related Article Jan Bessai, George T. Heineman, and Boris Düdder, “Covariant Conversions (CoCo):
A Design Pattern for Type-Safe Modular Software Evolution in Object-Oriented Systems”, in 35th
European Conference on Object-Oriented Programming (ECOOP 2021), LIPIcs, Vol. 194, pp. 4:1–4:25,
2021. https://doi.org/10.4230/LIPIcs.ECOOP.2021.4

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12–16, 2021, Aarhus, Denmark (Virtual Conference)

1 Scope

The related article presents the Covariant Conversions (CoCo) design pattern by showing an
example and further evaluates its application using two case-studies. The example is a simple
object-oriented model for processing XML files and implemented in Java. It is encompassed by
modular client code, which is also discussed in the article. The purpose of the implementation is
to provide further details to the UML diagrams presented in the article, as well as a proof for the
claim that CoCo can be implemented in pure Java without additional language extensions. The
first case study is an extended version of a standard expression problem example of arithmetic
expressions [8]. It is implemented in Java, Scala, and C# to support the claim that the CoCo
pattern works with mainstream object-oriented programming languages. The artifact also includes
alternative Java implementations which use other established expression problem approaches.
Tradeoffs of these approaches with CoCo become most clear when looking at their actual code
and running the included benchmarks. The second case study is a Java implementation of parts

Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Jan Bessai, George Heineman, and Boris Düdder;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 4, pp. 4:1–4:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:Jan.Bessai@tu-dortmund.de
https://ls14-www.cs.tu-dortmund.de/cms/de/mitarbeiter/wimis/Bessai.html
mailto:heineman@wpi.edu
https://www.wpi.edu/people/faculty/heineman
mailto:boris.d@di.ku.dk
https://orcid.org/0000-0002-0241-7729
https://doi.org/10.4230/DARTS.7.2.4
https://doi.org/10.4230/LIPIcs.ECOOP.2021.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


4:2 CoCo: A Design Pattern for Type-Safe Modular Software Evolution (Artifact)

of the compiler suite from the text-book “Types and programming languages” by Pierce [6]. It
serves to be able to compare CoCo with two other approaches, EVF [9] and Castor [10], both by
Zhang and Oliveira.

2 Content

The artifact package includes:
A live image to boot a Linux machine
The code discussed above and in the accompanying article
(in folder /home/coco/ecoop2021artifacts of the booted system)
A minimal graphical environment with an IDE (VSCodium) to inspect the code
The necessary infrastructure to compile, run, benchmark and test the code
More detailed instructions
(in file /home/coco/Desktop/README.txt of the booted system)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at Zenodo [1] and Github [2], where direct access to the source code included in the image is
possible and updates will be posted if necessary.

4 Tested platforms

You can boot the image directly on your machine, or in a virtual machine. We have tested it to
work with qemu-5.2.0 on a Linux host, starting it with

qemu-system-x86_64 \
-enable-kvm -smp 2,sockets=1,cores=2,threads=1 -cpu host \
-m 4096 -cdrom ecoop_coco.iso

which will cause it use use 2 cores of the host system (kvm line), and 4096 MB of RAM. Less
RAM is not recommended, because performance tests might fail and the IDE might crash. At
the cost of performance, less CPU cores may be used, or they may be emulated instead of using
(kvm) virtualization.
The image has also been tested in VirtualBox 6 on Linux, Mac, and Windows hosts, where you
need to perform the following steps:
1. Click on “New”
2. Choose a name for the machine
3. Set Type to “Linux”
4. Set Version to “Debian 64 Bit”
5. Set the memory size to 4096MB or more
6. Select “Do not add a virtual hard disk”
7. Click on Create
8. Right Click on the newly selected machine and select Settings
9. Add a new Optical Device under “Storage” by clicking on the Optical-Device-Logo next to the

IDE Controller
10. Click on Add in the Medium Dialog
11. Select the ecoop_coco.iso image, click on “Choose” and then on “Ok”



J. Bessai, G. T. Heineman, and B. Düdder 4:3

12. Adjust the other machine settings according to your Host Hardware (e.g. adding more cores
and activating acceleration)

Similar instructions apply for other virtualization technologies.

Depending on your computer it should also be possible to burn the image on a DVD or flash it on
an USB-drive and directly boot it. Using Linux or similar systems the image can be copied to an
external drive by

dd if=ecoop_coco.iso of=/dev/drive

where drive has to be replaced by the device file of your drive (e.g. sdb). Note that this will erase
all data on the target device!

5 License

License information and sources are included in the image, or available on via the Devuan
webpage [3], Microsoft packages [5], and the VSCodium repository [7]. The code to illustrate
CoCo is available under the APACHE 2.0 license, which is included along side of it.

6 MD5 sum of the artifact

ba86f1ea3fbe5ea6d7af023f744d8288

7 Size of the artifact

1.79 GiB

A Important Notes

Note that the image is intended for archival purposes:
It will not receive any security updates.
It should only be booted on machines that are isolated (e.g. by a VM or physically) from any
valuable data.
It is not meant to provide a production-grade user experience.
It does not contain translations.
It does not have support for assistive technologies.

While you can read and write files, the image is immutable and will not store anything you do
with it across reboots, unless you add and mount an additional medium.

B Further Information

The image contains a minimal set of software and is based on Devuan (ceres/unstable), which is
a Debian fork. It is running with a Linux 5.10.6 kernel and boots into a graphical environment
(XServer). If the XServer does not start, you might try selecting “no modesetting” at the boot
loader. When still dropped to the console, you can login using username “coco” with password
“coco” or “root” with the same password. The XServer can be started manually by typing in
“startx” as user “coco”. This can help to debug error messages.

DARTS



4:4 CoCo: A Design Pattern for Type-Safe Modular Software Evolution (Artifact)

References
1 Jan Bessai, George T. Heineman, and Boris Düd-

der. Covariant conversions (coco): A design pattern
for type-safe modular software evolution in object-
oriented systems (artifact), 2021. doi:10.5281/
zenodo.4756838.

2 Jan Bessai, George T. Heineman, and Boris
Düdder. Github repository for this artifact,
2021. URL: https://github.com/JanBessai/
ecoop2021artifacts.

3 Devuan GNU+Linux, 2021. URL: https://www.
devuan.org/.

4 Will Haley. Create a custom debian live
environment (CD or USB), 2020. URL:
https://willhaley.com/blog/custom-debian-
live-environment/.

5 Linux software repository for microsoft prod-
ucts, 2021. URL: https://docs.microsoft.com/
en-us/windows-server/administration/linux-
package-repository-for-microsoft-software.

6 Benjamin C. Pierce. Types and programming lan-
guages. MIT Press, 2002. URL: https://www.cis.
upenn.edu/~bcpierce/tapl/.

7 Pavlo Rudy. VSCodium Repository, 2021. URL:
https://gitlab.com/paulcarroty/vscodium-deb-
rpm-repo.

8 Philip Wadler. The expression problem,
1998. E-Mail to the Java Genericity Mail-
ing List. URL: http://homepages.inf.ed.ac.uk/
wadler/papers/expression/expression.txt.

9 Weixin Zhang and Bruno C. d. S. Oliveira. EVF:
an extensible and expressive visitor framework for
programming language reuse. In Peter Müller, edi-
tor, 31st European Conference on Object-Oriented
Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain, volume 74 of LIPIcs, pages 29:1–
29:32. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2017. doi:10.4230/LIPIcs.ECOOP.2017.29.

10 Weixin Zhang and Bruno C. d. S. Oliveira. CAS-
TOR: Programming with extensible generative vis-
itors. Sci. Comput. Program., 193:102449, 2020.
doi:10.1016/j.scico.2020.102449.

https://doi.org/10.5281/zenodo.4756838
https://doi.org/10.5281/zenodo.4756838
https://github.com/JanBessai/ecoop2021artifacts
https://github.com/JanBessai/ecoop2021artifacts
https://www.devuan.org/
https://www.devuan.org/
https://willhaley.com/blog/custom-debian-live-environment/
https://willhaley.com/blog/custom-debian-live-environment/
https://docs.microsoft.com/en-us/windows-server/administration/linux-package-repository-for-microsoft-software
https://docs.microsoft.com/en-us/windows-server/administration/linux-package-repository-for-microsoft-software
https://docs.microsoft.com/en-us/windows-server/administration/linux-package-repository-for-microsoft-software
https://www.cis.upenn.edu/~bcpierce/tapl/
https://www.cis.upenn.edu/~bcpierce/tapl/
https://gitlab.com/paulcarroty/vscodium-deb-rpm-repo
https://gitlab.com/paulcarroty/vscodium-deb-rpm-repo
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.4230/LIPIcs.ECOOP.2017.29
https://doi.org/10.1016/j.scico.2020.102449

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Important Notes
	B Further Information

