Enabling Additional Parallelism in Asynchronous
JavaScript Applications (Artifact)

Ellen Arteca =
Northeastern University, Boston, MA, USA

Frank Tip &
Northeastern University, Boston, MA, USA

Max Schafer =
GitHub, Oxford, UK

— Abstract

JavaScript is a single-threaded programming lan-
guage, so asynchronous programming is practiced
out of necessity to ensure that applications remain
responsive in the presence of user input or inter-
actions with file systems and networks. However,
many JavaScript applications execute in environ-
ments that do exhibit concurrency by, e.g., inter-
acting with multiple or concurrent servers, or by
using file systems managed by operating systems
that support concurrent I/O. In this paper, we
demonstrate that JavaScript programmers often
schedule asynchronous I/O operations suboptim-
ally, and that reordering such operations may yield
significant performance benefits. Concretely, we

define a static side-effect analysis that can be used
to determine how asynchronous I/O operations can
be refactored so that asynchronous I/O-related re-
quests are made as early as possible, and so that
the results of these requests are awaited as late as
possible. While our static analysis is potentially
unsound, we have not encountered any situations
where it suggested reorderings that change program
behavior. We evaluate the refactoring on 20 ap-
plications that perform file- or network-related 1/0.
For these applications, we observe average speedups
ranging between 0.99% and 53.6% for the tests that
execute refactored code (8.1% on average).

2012 ACM Subject Classification Software and its engineering — Automated static analysis; Software
and its engineering — Concurrent programming structures; Software and its engineering — Software
performance

Keywords and phrases asynchronous programming, refactoring, side-effect analysis, performance optim-
ization, static analysis, JavaScript

Digital Object Identifier 10.4230/DARTS.7.2.5

Funding E. Arteca and F. Tip were supported in part by the National Science Foundation grants

CCF-1715153 and CCF-1907727. E. Arteca was also supported in part by the Natural Sciences and
Engineering Research Council of Canada.

Related Article Ellen Arteca, Frank Tip, and Max Schéfer, “Enabling Additional Parallelism in Asyn-
chronous JavaScript Applications”; in 35th European Conference on Object-Oriented Programming
(ECOOP 2021), LIPIcs, Vol. 194, pp. 7:1-7:28, 2021.
https://doi.org/10.4230/LIPIcs.ECO0P.2021.7

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12-16, 2021, Aarhus, Denmark (Virtual Conference)

1 Scope

This artifact consists of a docker image, the contents of which are described in Section 2. In the
docker, you can:

interact with our data, and reproduce the graphs from the paper (or construct similar graphs

we did not include in the paper)

run Resynchronizer on a new project

check out the transformed projects we tested with and rerun the timing experiments
© Ellen Arteca, Frank Tip, and Max Schéfer;

Bv licensed under Creative Commons License CC-BY 4.0
Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 5, pp. 5:1-5:6
Dagstuhl Artifacts Series

DAGSTUHL
\\v ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl Publishing, Germany

mailto:arteca.e@northeastern.edu
mailto:f.tip@northeastern.edu
mailto:max-schaefer@github.com
https://doi.org/10.4230/DARTS.7.2.5
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

5:2

Enabling Additional Parallelism in Asynchronous JavaScript Applications (Artifact)

2 Content

The relevant contents of the docker container are as follows:
ExperimentalData: data from our timing experiments; can be used to reproduce the graphs
in the paper and supplementary materials
DataAnalysis directory: contains a jupyter notebook for interacting with our data
Resynchronizer directory: contains the code for applying and running Resynchronizer
Resynchronizer/ReorderingUtils.qll: static side effect analysis code
Resynchronizer/reorder_me.py: the driving script for applying the reorderings determined
through the analysis
Resynchronizer/applyResync.sh: script for applying Resynchronizer to a project Paper
directory: paper and associated supplementary materials

Instructions for interacting with the container are included in Appendix A.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the contents of the artifact
and instructions for recreating the docker image is also available at: https://github.com/
emarteca/Resynchronizer.

4 Tested platforms

This docker container has been tested on Linux (both Ubuntu and Arch), but it is self-contained
and should work on any system where docker is set up. It should run without issue on a standard
laptop (it was tested on a ThinkPad P43s with 32GB RAM).

5 License

The artifact is available under the MIT License.

6 MD5 sum of the artifact

2004edb5b603c4c97d 7bffae052939fa

7 Size of the artifact

2.34 GiB

A Usage

Make sure you have docker installed.
Download the image, and load it:

docker load —i resynchronizer.tgz # assuming image file resynchronizer.tgz

https://github.com/emarteca/Resynchronizer
https://github.com/emarteca/Resynchronizer

E. Arteca, F. Tip, and M. Schifer 5:3

Run the docker:

mkdir loc_mount

docker run \

--mount type=bind,source=‘pwd ‘/loc_mount ,destination=/mount -w
/home/resynchronizer -it \

--user=0 \

--env="DISPLAY" \

--env="QT_X11_NO_MITSHM=1" \

--volume="/tmp/.X11l-unix:/tmp/.X1l-unix:rw" \

-p 8888:8888 \

resynchronizer:latest

Now, you’ll be in the /home/resynchronizer directory of the docker image. In the docker,
you can:

interact with our data, and reproduce the graphs from the paper (or construct similar graphs

we did not include in the paper)

run Resynchronizer on a new project

check out the transformed projects we tested with and rerun the timing experiments

A.1 Contents of the container

The relevant contents of the docker container are as follows (as listed above in section 2):
ExperimentalData: data from our timing experiments; can be used to reproduce the graphs
in the paper and supplementary materials
DataAnalysis directory: contains a jupyter notebook for interacting with our data
Resynchronizer directory: contains the code for applying and running Resynchronizer
Resynchronizer/ReorderingUtils.qll: static side effect analysis code
Resynchronizer/reorder_me.py: the driving script for applying the reorderings determined
through the analysis
Resynchronizer/applyResync.sh: script for applying Resynchronizer to a project Paper
directory: paper and associated supplementary materials

A.2 Interacting with data: graph reproduction

The ExperimentalData directory contains all the raw timing data from our experiments. To
reproduce the graphs in the paper and further explore the data, go into the DataAnalysis directory
and open the jupyter notebook:

cd DatalAnalysis
jupyter notebook --ip 0.0.0.0 --no-browser --allow-root

This will produce some output, the last line of which will be of the form:

http://127.0.0.1:8888/7token=<some string of chars>

Then, on your machine, you can access the notebook by copy pasting that path into your
browser and opening data_analysis.ipynb . Alternatively, you can access the notebook by
going to http://127.0.0.1:8888/notebooks/data_analysis.ipynb on your browser, and then
entering the string of characters following token= from the docker output, when prompted for a
token.

DARTS

5:4 Enabling Additional Parallelism in Asynchronous JavaScript Applications (Artifact)

In the notebook, there are the following example commands to recreate the graphs from the
paper. For example:

pkgname = "kactus"

load_data_for_package (pkgname)

regenerate Figure 10 in the paper

scatterplot_test_speedup (comp_mean_table, pkgname)

regenerate Figure 11 in the paper

plot_test_times(bothswap_jest_tests, noswap_jest_tests, 117)

Calling load_data_for_package with the name of another project will allow you to interact
with that data instead. Looking at the supplementary materials, here are a few other examples:

second graph in Supplementary materials: section 3
load_data_for_package ("webdriverio")
scatterplot_test_speedup (comp_mean_table, "webdriverio")

first graph in Supplementary materials: section 4
load_data_for_package ("kactus")

plot_test_times(bothswap_jest_tests, noswap_jest_tests, 22)

When you're done looking at the data, exit the notebook to try the rest of the artifact.

A.3 Run Resynchronizer on a new project

To use Resynchronizer, first enter the Resynchronizer directory in the container home. Demon-
strative example of applying resynchronizer to the version of mattermost-redux used in our
experiments:

git clone https://github.com/mattermost/mattermost-redux
Playground/mattermost -redux

cd Playground/mattermost -redux

checkout the specific commit we tested on

(was most recent commit at the time)

git checkout dd44020f008f6e1955709ff7fc3e1c8c42388396

cd ../..

set up the project

note: this can differ per project, we have a general script that works
in most cases but depending on the build configuration of the project
you want to test with, this may differ

./resetProject.sh Playground/mattermost-redux

H OH H

now, apply resynchronizer
./applyResync.sh Playground/mattermost-redux/ QLDBs/mattermost-redux

The mattermost-redux with the reorderings applied is now saved in the directory
reordered_proj in /home/resynchronizer (your current directory).

To see the effect of the transformations, grep for the temporary variables:

cd reordered_proj
grep -rn "TEMP_VAR_AUTOGEN"

E. Arteca, F. Tip, and M. Schifer

You should see the following output:

src/client/client4.ts:1047:var TIMING_TEMP_VAR_AUTOGEN287__RANDOM =
perf_hooks.performance.now();
src/client/client4.ts:1048: var AWAIT_VAR_TIMING_TEMP_VAR_
AUTOGEN287__RANDOM = await this.doFetchWithResponse (
src/client/client4.ts:1052:console.log("/home/resynchronizer/
reordered_proj/src/client/client4.ts& [719, 8; 722, 10]&
TEMP_VAR_AUTOGEN287__RANDOM& " +
(perf_hooks.performance.now() - TIMING_TEMP_VAR_AUTOGEN287__RANDOM));
src/client/client4.ts:1053: const {response} =
AWAIT_VAR_TIMING_TEMP_VAR_AUTOGEN287__RANDOM
src/actions/admin.ts:1007:var TEMP_VAR_AUTOGEN263__RANDOM =
Client4 .sendWarnMetricAck (warnMetricId, forceAck);
src/actions/admin.ts:1012:var TIMING_TEMP_VAR_AUTOGEN263__RANDOM =
perf_hooks.performance.now();
src/actions/admin.ts:1013: await TEMP_VAR_AUTOGEN263__RANDOM
src/actions/admin.ts:1014: console.log("/home/resynchronizer/reordered_
proj/src/actions/admin.ts& [656, 12; 656, 68]& TEMP_VAR_
AUTOGEN263__RANDOM& " + (perf_hooks.performance.now() -
TIMING_TEMP_VAR_AUTOGEN263__RANDOM)) ;
src/actions/search.ts:511:var TEMP_VAR_AUTOGEN152__RANDOM =
Client4.searchPosts (teamId, terms, true);
src/actions/search.ts:516:var TIMING_TEMP_VAR_AUTOGEN152__RANDOM =
perf_hooks.performance.now () ;
src/actions/search.ts:517: var AWAIT_VAR_TIMING_TEMP_VAR_
AUTOGEN152 _RANDOM = await TEMP_VAR_AUTOGEN152 _RANDOM
src/actions/search.ts:518: console.log("/home/resynchronizer/
reordered_proj/src/actions/search.ts& [298, 12; 298, 67]&
TEMP_VAR_AUTOGEN152__RANDOM& " +
(perf_hooks.performance.now() - TIMING_TEMP_VAR_AUTOGEN152__RANDOM)) ;
src/actions/search.ts:519: posts =
AWAIT_VAR_TIMING_TEMP_VAR_AUTOGEN152__RANDOM

Here you see the newly introduced variables assigned to the computation that was originally
being awaited, with:

var TEMP_VAR_AUTOGEN <number > =

You can also see where the results are awaited:
await TEMP_VAR_AUTOGEN <number >

The other results of the grep are the TIMING_TEMP variables, which are only introduced for
the purposes of logging how long the awaited computations are taking (you see these variables in
the console.log calls).

If you want to run the tests of mattermost-redux and observe the printing of the timing
tracking statements:

npm run test

Then, go back to the /home/resynchronizer directory to go to the next step.

A.4 Rerunning timing experiments

The transformed projects are available on github: we forked them and created branches with the
reorderings applied (called ReorderingApplied).

5:5

DARTS

5:6 Enabling Additional Parallelism in Asynchronous JavaScript Applications (Artifact)

For example, to check out the reordered version of mattermost-redux that contains the
experiment scripts:

git clone --branch ReorderingApplied
https://github.com/emarteca/mattermost -redux.git

This version of the repo contains the reorderings, all the scripts required to run the experiments,
and the list of tests affected by the reorderings.
Before running experiments, you must set up and build the project:

./resetProject.sh mattermost-redux

standardize the paths of the tests to match those in

the docker container (when cloned, they match the original
paths on the computer where I ran the experiments
./dockerize_paths.sh mattermost-redux

Then, you can run the experiments.

cd mattermost -redux
./batchList0fTests.sh 50 test_list.txt raw_output.out
test_times_bothswap_50times.out 5

The parameters are:

50 : the number of test iterations

test_list.txt : the pre-generated list of tests affected by the reorderings

raw_output.out : the raw logged output of all the tests, that gets processed into the next file
test_times_bothswap_50times.out : the file where the processed test output gets dumped;
this matches ExperimentalData/mattermost-redux/test_times_bothswap_50times.out
(although of course the exact numbers will differ since they are test runtimes)

5 : the number of warmup runs

If you want to only run a few test iterations to make sure it’s working, I would recommend
setting a smaller number of test iterations (maybe 10) and omitting the warmup runs (if the
warmup run argument is omitted it defaults to 0).

You can also run the experiments on the non-reordered code by checking out the JustTiming
branch (where all awaits that will be reordered are timed):

git checkout JustTiming
Then, rerun the experiments the same way as above. Change the output filename to
test_times_noswap_50times.out to emulate the experiments we performed.

Note: the timing values will be different running here than in the reported results in the
paper, since those were not run inside a docker container.

A.5 Thanks!

Let us know if you run into any issues or have any questions! PRs or issues on the associated
GitHub repo are more than welcome.

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Usage
	A.1 Contents of the container
	A.2 Interacting with data: graph reproduction
	A.3 Run Resynchronizer on a new project
	A.4 Rerunning timing experiments
	A.5 Thanks!

