
Lifted Static Analysis of Dynamic Program Families
by Abstract Interpretation (Artifact)
Aleksandar S. Dimovski #

Mother Teresa University, Skopje, North Macedonia

Sven Apel #

Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany

Abstract
In this article, we describe the usage and evalu-
ation results of the tool DSPLNum2Analyzer in-
troduced by the paper “Lifted Static Analysis of
Dynamic Program Families by Abstract Interpret-
ation”. We provide step-by-step instructions on
how to download, install, run, and compare the

tool’s outputs to outputs described in the paper.
DSPLNum2Analyzer is a research prototype lif-
ted static analyzer based on abstract interpretation
designed for performing numerical static analysis
of dynamic C program families.

2012 ACM Subject Classification Software and its engineering → Software functional properties; Software
and its engineering → Software creation and management; Theory of computation → Logic
Keywords and phrases Dynamic program families, Static analysis, Abstract interpretation, Decision
tree lifted domain
Digital Object Identifier 10.4230/DARTS.7.2.6

Related Article Aleksandar S. Dimovski and Sven Apel, “Lifted Static Analysis of Dynamic Program
Families by Abstract Interpretation”, in 35th European Conference on Object-Oriented Programming
(ECOOP 2021), LIPIcs, Vol. 194, pp. 14:1–14:28, 2021.
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12–16, 2021, Aarhus, Denmark (Virtual Conference)

1 Scope

In this work, we present a tool, called DSPLNum2Analyzer, for lifted static analysis (á-la
abstract interpretation) of dynamic program families in C [1]. Our proof-of-concept implementation
is written in OCaml and consists of around 8K lines of code. The tool uses the lifted domain of
decision trees T(CD,D), in which numerical domains D (e.g., intervals, octagons, and polyhedra)
from the APRON library [4] are used as parameters. Definitions of abstract operations and
transfer functions of the decision tree lifted domain can be found in [1, 3]. We compare precision
and time performances of our decision tree-based lifted analysis with the single-program analysis,
where feature variables are considered as ordinary program variables and the resulting single
program is analyzed using off-the-shelf numerical domains from the APRON library [4]. This
artifact confirms that our lifted analysis provides an acceptable precision/cost tradeoff [1]: we
obtain invariants with a higher degree of precision within a reasonable amount of time than when
using single-program analysis.

2 Content

The artifact package includes:
ecoop27.ova is a Virtual Machine image containing the tool already installed. Username:
ecoop27, Password: ecoop27. Enter ‘DSPLNUM2Analyzer’ subfolder of the ‘home’ folder and
follow instructions for using the tool.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Aleksandar S. Dimovski and Sven Apel;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 6, pp. 6:1–6:6
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:aleksandar.dimovski@unt.edu.mk
https://orcid.org/0000-0002-3601-2631
mailto:apel@cs.uni-saarland.de
https://orcid.org/0000-0003-3687-2233
https://doi.org/10.4230/DARTS.7.2.6
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

6:2 Lifted Static Analysis of Dynamic Program Families (Artifact)

DSPLNUM2Analyzer.tar.gz contains the tool and instructions how to install and use it. To
install it using a single script see README-Script.txt. To install it using step-by-step written
commands see README-StepByStep.txt

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at [2]: https://zenodo.org/record/4718697#.YJrDzagzbIU.

4 Tested platforms

All experiments are executed on a 64-bit Intel®CoreT M i7-8700 CPU@3.20GHz × 12, Ubuntu
18.04.5 LTS, with 8 GB memory. We report times measured via Sys.time function of OCaml
needed only for the actual static analysis task to be performed.

5 License

The artifact is available under license “CC-BY”;
http://creativecommons.org/licenses/by/3.0/.

6 MD5 sum of the artifact

9b7967b7be95ddf100a645830eea1b2b

7 Size of the artifact

1.66 GiB

A Performance results

All experiments are executed on a 64-bit Intel®CoreT M i7-8700 CPU@3.20GHz × 12, Ubuntu
18.04.5 LTS, with 8 GB memory. All times are reported as average over five independent executions.
We compare performances (time and precision) of our decision-tree based lifted analysis with the
single-program analysis. All benchmarks from the paper are in “tests” and “spl-tests” subfolders of
“DSPLNUM2Analyzer” folder. We report times measured via Sys.time function of OCaml needed
only for the actual static analysis task to be performed. Possible validity answers to assertions
are: “unreachable”, “correct”, “erroneous”, “i don’t know”, and “mixed”. For detailed description
of their meaning and the obtained invariants for each benchmark, we refer to the paper [1].

A.1 Warming-up benchmarks
Motivating Example.

dFAMILY example given in Fig.2 (on pp. 4), "Motivating Example" section:
$./Main.native -single -domain boxes tests/dfamily-single.c | [0.001],
“i don’t know”=2
$./Main.native -single -domain polyhedra tests/dfamily-single.c | [0.004], “i don’t
know”=2

https://zenodo.org/record/4718697#.YJrDzagzbIU
http://creativecommons.org/licenses/by/3.0/

A. S. Dimovski and S. Apel 6:3

Table 1 Performance results for single analysis A(D) vs. lifted analysis AT(D) and AT(O) on selected
benchmarks from SV-COMP. All times are in seconds.

Benchmark folder |F| LOC
A(P) AT(O) AT(P)

Time Ans. Time Ans. Time Ans.

half_2.c invgen 1 25 0.008 × 0.014 ≃ 0.017 ✓

seq.c invgen 2 30 0.015 × 0.084 ✓ 0.045 ✓

sum01*.c loops 1 15 0.008 × 0.009 ✓ 0.041 ✓

count_up_d*.c loops 1 15 0.002 × 0.008 ≃ 0.011 ✓

hhk2008.c lit 2 20 0.003 × 0.073 ≃ 0.032 ✓

gsv2008.c lit 1 20 0.002 × 0.007 ✓ 0.015 ✓

Mysore.c crafted 1 30 0.0008 × 0.002 ✓ 0.004 ✓

Copenhagen.c crafted 2 30 0.002 × 0.012 ≃ 0.021 ✓

$./Main.native -tree -domain boxes tests/dfamily-tree.c | [0.007], “mixed”=2
$./Main.native -tree -domain polyhedra tests/dfamily-tree.c | [0.011], “mixed”=2

Example 5 (on pp.13).

$./Main.native -single -domain polyhedra tests/example5-single.c | [0.001], see in-
variants at locations [9:], [10:], [11:]
$./Main.native -tree -domain polyhedra tests/example5-tree.c | [0.003], see invari-
ants at locations [9:], [10:], [11:] in Fig.5 on pp.14

Example 8 (on pp.17).

$./Main.native -single -domain polyhedra tests/example8-single.c | [0.003], “i don’t
know”=1, see invariant at location [17:]
$./Main.native -tree -domain polyhedra tests/example8-tree.c | [0.042], “mixed”=1,
see invariant at location [17:] in Fig.8 on pp.18

A.2 Benchmarks from "Other benchmarks" paragraph
We first present results shown in Table 2 on pp. 22 in the paper [1] (here reproduced in Table 1),
since those benchmarks are smaller and less time consuming. For each row, we present results for
1st column (A(P) single-program analysis with polyhedra), 2nd column (AT(O) decision-tree lifted
analysis with octagons), and 3rd column (AT(P) decision-tree lifted analysis with polyhedra). For
more detailed description of the obtained invariants, see the paper [1] (pp. 21-23).

half_2.c.

$./Main.native -single -domain polyhedra tests/half_2-single.c | [0.008], “i don’t
know”=1 | 1st column of Table 1
$./Main.native -tree -domain octagons tests/half_2-tree.c | [0.014], “mixed”=1 | 2nd
column of Table 1
$./Main.native -tree -domain polyhedra tests/half_2-tree.c | [0.017], “mixed”=1 |
3rd column of Table 1

DARTS

6:4 Lifted Static Analysis of Dynamic Program Families (Artifact)

seq.c.

$./Main.native -single -domain polyhedra tests/seq-single.c | [0.015],
“i don’t know”=1
$./Main.native -tree -domain octagons tests/seq-tree.c | [0.084], “mixed”=1
$./Main.native -tree -domain polyhedra tests/seq-tree.c | [0.045], “mixed”=1

sum01*.c.

$./Main.native -single -domain polyhedra tests/sum01_bug02-single.c | [0.008], “i
don’t know”=1
$./Main.native -tree -domain octagons tests/sum01_bug02-tree.c | [0.009], “mixed”=1
$./Main.native -tree -domain polyhedra tests/sum01_bug02-tree.c | [0.041],
"mixed"=1
$./Main.native -tree -domain boxes tests/sum01_bug02-tree.c | optionally results for
domain=”boxes” | [0.009], "mixed"=1

count_up_d*.c.

$./Main.native -single -domain polyhedra tests/count_up_down-single.c | [0.002], “i
don’t know”=1
$./Main.native -tree -domain octagons tests/count_up_down-tree.c | [0.008],
“mixed”=1
$./Main.native -tree -domain polyhedra tests/count_up_down-tree.c | [0.011],
“mixed”=1

hhk2008.c.

$./Main.native -single -domain polyhedra tests/hhk2008-single.c | [0.003], “i don’t
know”=1
$./Main.native -tree -domain octagons tests/hhk2008-tree.c | [0.073], “mixed”=1
$./Main.native -tree -domain polyhedra tests/hhk2008-tree.c | [0.032], “mixed”=1

gsv2008.c.

$./Main.native -single -domain polyhedra tests/gsv2008-single.c | [0.002], “i don’t
know”=1
$./Main.native -tree -domain octagons tests/gsv2008-tree.c | [0.007], “mixed”=1
$./Main.native -tree -domain polyhedra tests/gsv2008-tree.c | [0.015], “mixed”=1

Mysore.c.

$./Main.native -single -domain polyhedra tests/Mysore-single.c | [0.0008], “i don’t
know”=1
$./Main.native -tree -domain octagons tests/Mysore-tree.c | [0.002], “mixed”=1
$./Main.native -tree -domain polyhedra tests/Mysore-tree.c | [0.004], “mixed”=1

A. S. Dimovski and S. Apel 6:5

Table 2 Performance results for single analysis A(I) vs. lifted analysis AT(I) with one and two features
on selected e-mail variant simulators. All times are in seconds.

Benchmark LOC
A(I), 0 feature AT(I), 1 feature AT(I), 2 features

Time Unrea. Rea. Time Unrea. Mix Time Unrea. Mix

e-mail_spec0 2645 16.2 80 48 29.3 80 48(1:1) 50.7 80 48(3:1)

e-mail_spec6 2660 18.8 6 26 23.6 16 16(1:1) 24.2 16 16(3:1)

e-mail_spec8 2665 14.6 12 20 19.1 12 20(1:1) 27.7 12 20(2:2)

e-mail_spec11 2660 15.2 160 96 24.7 160 96(1:1) 32.1 160 96(3:1)

e-mail_spec27 2630 14.5 384 128 28.4 384 128(1:1) 38.4 384 128(3:1)

Copenhagen.c.

$./Main.native -single -domain polyhedra tests/Copenhagen-single.c | [0.002],
“i don’t know”=1
$./Main.native -tree -domain octagons tests/Copenhagen-tree.c | [0.012], “mixed”=1
$./Main.native -tree -domain polyhedra tests/Copenhagen-tree.c | [0.021], “mixed”=1

A.3 Benchmarks from “E-mail system” paragraph
We now present results shown in Table 1 on pp. 19 in the paper [1] (here reproduced in Table 2).
Since the output is huge, we use “-minimal” option to print out only the analysis result regarding
assertions. If you want to see the complete output, including the invariants in all program locations,
just remove “-minimal” option. You can also send the output in a textual file for more easier
inspection. For each row, we present results for 1st column (A(I) single-program analysis with
intervals/boxes), 2nd column (AT(I) decision-tree lifted analysis with boxes and 1 feature), and
3rd column (AT(I) decision-tree lifted analysis with boxes and 2 features).

e-mail_spec0.

$./Main.native -single -domain boxes -minimal spl-tests/email_spec0-single.c |
1st column of Table 2
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec0-feat1.c | 2nd
column of Table 2
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec0-feat2.c | 3rd
column of Table 2

e-mail_spec6.

$./Main.native -single -domain boxes -minimal spl-tests/email_spec6-single.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec6-feat1.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec6-feat2.c

e-mail_spec8.

$./Main.native -single -domain boxes -minimal spl-tests/email_spec8-single.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec8-feat1.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec8-feat2.c

DARTS

6:6 Lifted Static Analysis of Dynamic Program Families (Artifact)

e-mail_spec11.

$./Main.native -single -domain boxes -minimal spl-tests/email_spec11-single.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec11-feat1.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec11-feat2.c

e-mail_spec27.

$./Main.native -single -domain boxes -minimal spl-tests/email_spec27-single.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec27-feat1.c
$./Main.native -tree -domain boxes -minimal spl-tests/email_spec27-feat2.c

References
1 Aleksandar S. Dimovski and Sven Apel. Lifted

static analysis of dynamic program families by ab-
stract interpretation. In 35th European Conference
on Object-Oriented Programming, ECOOP 2021,
volume 194 of LIPIcs, pages 14:1–14:28. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2021.
doi:10.4230/LIPIcs.ECOOP.2021.14.

2 Aleksandar S. Dimovski and Sven Apel. Tool arti-
fact for “lifted static analysis of dynamic program
families by abstract interpretation”. Zenodo, 2021.
doi:10.5281/zenodo.4718697.

3 Aleksandar S. Dimovski, Sven Apel, and Axel Legay.
A decision tree lifted domain for analyzing pro-

gram families with numerical features. In Funda-
mental Approaches to Software Engineering - 24th
International Conference, FASE 2021, Proceedings,
volume 12649 of LNCS, pages 67–86. Springer, 2021.
doi:10.1007/978-3-030-71500-7_4.

4 Bertrand Jeannet and Antoine Miné. Apron: A
library of numerical abstract domains for static
analysis. In Computer Aided Verification, 21st In-
ternational Conference, CAV 2009. Proceedings,
volume 5643 of LNCS, pages 661–667. Springer,
2009. doi:10.1007/978-3-642-02658-4_52.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.5281/zenodo.4718697
https://doi.org/10.1007/978-3-030-71500-7_4
https://doi.org/10.1007/978-3-642-02658-4_52

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Performance results
	A.1 Warming-up benchmarks
	A.2 Benchmarks from "Other benchmarks" paragraph
	A.3 Benchmarks from ``E-mail system'' paragraph

