
How to Take the Inverse of a Type (Artifact)
Daniel Marshall # Ñ

School of Computing, University of Kent, Canterbury, UK

Dominic Orchard #Ñ

School of Computing, University of Kent, Canterbury, UK
Department of Computer Science and Technology, University of Cambridge, UK

Abstract
In functional programming, regular types are a sub-
set of algebraic data types formed from products
and sums with their respective units. One can
view regular types as forming a commutative semir-
ing but where the usual axioms are isomorphisms
rather than equalities. In the pearl, we show that
regular types in a linear setting permit a useful
notion of multiplicative inverse, allowing us to ‘di-
vide’ one type by another. We begin with an ex-
ploration of the properties and applications of this

construction, and this artifact includes examples
in Haskell demonstrating its relevance to various
topics from the literature including program cal-
culation, Laurent polynomials, and derivatives of
data types. Some examples from the paper require
a richer setting than Haskell can offer; the artifact
replays the first set of examples in Granule, while
also presenting additional examples demonstrating
further algebraic structure through linear functions
that incorporate local side effects.

2012 ACM Subject Classification Theory of computation → Type theory
Keywords and phrases linear types, regular types, algebra of programming, derivatives
Digital Object Identifier 10.4230/DARTS.8.2.1
Funding This work is supported by an EPSRC Doctoral Training Award (Marshall) and EPSRC grant
EP/T013516/1 (Verifying Resource-like Data Use in Programs via Types).

Related Article Daniel Marshall and Dominic Orchard, “How to Take the Inverse of a Type”, in 36th
European Conference on Object-Oriented Programming (ECOOP 2022), LIPIcs, Vol. 222, pp. 5:1–5:27,
2022.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.5

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6–10, 2022, Berlin, Germany
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact provides relevant samples of code for each section in the paper, bundled with a Docker
image. Much of the code in the paper is given using Haskell’s linear types extension, and we
provide this but also the equivalent code in Granule where possible to demonstrate the translation.
Some code (in particular, one direction of the involution from the “Communicating with Inverses”
chapter) is only possible to represent in Granule, so the contents of the two files do not match
exactly. There are some extra pieces of code not present in the paper, provided for interest and
further experimentation.

1.1 Getting started
Load the file provided via:

docker load < ecoop22-paper13-artifact.tar.gz

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Daniel Marshall and Dominic Orchard;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 1, pp. 1:1–1:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:dm635@kent.ac.uk
https://www.starsandspira.ls
https://orcid.org/0000-0002-4284-3757
mailto:d.a.orchard@kent.ac.uk
https://dorchard.github.io
https://orcid.org/0000-0002-7058-7842
https://doi.org/10.4230/DARTS.8.2.1
https://doi.org/10.4230/LIPIcs.ECOOP.2022.5
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

1:2 How to Take the Inverse of a Type (Artifact)

This may take some time as Docker will unpack the zip file before loading the image. The
Docker image can now be started as with any other Docker image; for example, the below command
will start up an interactive terminal session.

docker run -it ecoop22-paper13-artifact bin/bash

This image comes with GHC 9.2.1 and Granule 0.8.2.0 pre-installed, so no additional software
needs to be downloaded or installed. The source code files for the paper are in the /code directory,
named pearl.hs and pearl.gr for the Haskell code and Granule code respectively.

These files can be compiled via ghc pearl.hs and gr pearl.gr to verify that they typecheck
and behave correctly. The reviewer may feel free to modify these files as they wish to experiment
with the various ideas from the paper as they follow along; the text editor nano is installed,
or if another option would be preferred it can be installed using apt or otherwise. In order to
experiment with the Haskell code more interactively, ghci will load GHC’s interactive environment,
and :l pearl.hs will load in the file in the usual way. The reviewer can then, for example,
inspect the types of functions via :t. For experimentation with the Granule one can use grepl,
which is an interactive Granule environment that behaves in much the same way (:l, :r and :t
have the same meanings as in ghci).

Example usages of ghci and grepl are given below, for reference.

ghci
GHCi, version 9.2.1: https://www.haskell.org/ghc/ :? for help
:ghci> :l pearl.hs
[1 of 1] Compiling Main (pearl.hs, interpreted)
Ok, one module loaded.
ghci> :t divide
divide :: a %1 -> Inverse a %1 -> ()
ghci> divide True boolDrop
()
ghci> :q
Leaving GHCi.

grepl
Welcome to Granule interactive mode (grepl). Version 0.8.2.0
Granule> :l pearl.gr
/code/pearl.gr, checked.
Granule> :t divide

divide : forall {a : Type} . a -> (a -> ()) -> ()
Granule> divide True boolDrop
()
Granule> :q
Leaving Granule interactive.

2 Content

The artifact package comprises a Docker image built upon a minimal installation of Debian, with
GHC 9.2.1 and Granule 0.8.2.0 preinstalled. As this paper is a pearl, the primary purpose of
the artifact is to allow for being able to play around with the code samples in the paper in a
practical setting, to aid understanding. There are no experimental results to replicate; the focus
is on providing an additional demonstration of the ideas.

D. Marshall and D. Orchard 1:3

There are code samples in most sections of the paper, and as stated above we provide the
relevant code from each section. The code files themselves (found in the /code folder, and named
pearl.hs and pearl.gr) are divided into sections by comments with the chapter titles from the
pearl, for ease of reference.

The code can easily be modified to experiment further with the various types, functions and
ideas from the paper. We suggest various possible avenues for further exploration in the later
sections of the pearl, and some examples that did not make it into the body of the text are
provided along with the artifact. We invite additional contributions from interested readers!

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
on Zenodo at: https://doi.org/10.5281/zenodo.6275280.

4 Tested platforms

There are no special hardware or software requirements for the artifact beyond the standard
system requirements for Docker and GHC. Around 5GB of free space will be needed to store the
uncompressed Docker image.

The artifact itself has been tested on a MacBook running macOS 12.1, with 16GB of RAM,
but since the artifact runs through Docker it should work fine on a much wider variety of systems.

If the user wishes to experiment with the code on their own system, rather than through the
Docker image, then this should also be possible. GHC can be installed through any of the standard
means (though note that the version will need to be at least 9.0.1, as the linear types extension
is required for all of our examples). Granule binaries or instructions for building the Granule
compiler from source can be found at https://github.com/granule-project/granule.

5 License

The artifact is available under the BSD 3-Clause license (https://opensource.org/licenses/
BSD-3-Clause), since this is the license for the Granule compiler which needs to be distributed
with the artifact image.

6 MD5 sum of the artifact

b187f849e170e11fee955643a722add1

7 Size of the artifact

1.28 GiB

DARTS

https://doi.org/10.5281/zenodo.6275280
https://github.com/granule-project/granule
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause

	1 Scope
	1.1 Getting started

	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

