
Low-Level Bi-Abduction (Artifact)
Lukáš Holík # Ñ

FIT, Brno University of Technology, Czech Republic

Petr Peringer #Ñ

FIT, Brno University of Technology, Czech Republic

Adam Rogalewicz # Ñ

FIT, Brno University of Technology, Czech Republic

Veronika Šoková #Ñ

FIT, Brno University of Technology, Czech Republic

Tomáš Vojnar #Ñ

FIT, Brno University of Technology, Czech Republic

Florian Zuleger #Ñ

Faculty of Informatics, TU Wien, Austria

Abstract
Broom is a new static analyzer for C written in
OCaml. Broom primarily aims at open programs,
i.e., fragments of programs, with dynamic pointer-
linked data structures – in particular, various kinds
of lists – that employ advanced low-level pointer
operations. It is based on separation logic and the

principle of bi-abductive reasoning. The artifact
is a VirtualBox image of a Linux machine with
Ubuntu 20.04 operating system. It contains source
code and binary of the Broom tool, benchmarks,
and scripts for running our and the competing tools
we compare to.

2012 ACM Subject Classification Theory of computation Ñ Separation logic; Theory of computation
Ñ Logic and verification; Software and its engineering Ñ Formal software verification
Keywords and phrases programs with dynamic linked data structures, programs with pointers, low-level
pointer operations, static analysis, shape analysis, separation logic, bi-abduction
Digital Object Identifier 10.4230/DARTS.8.2.11
Funding The Czech authors were supported by the project 20-07487S of the Czech Science Foundation,
the FIT BUT internal project FIT-S-20-6427, and L. Holík by the ERC.CZ project LL1908.

Related Article Lukáš Holík, Petr Peringer, Adam Rogalewicz, Veronika Šoková, Tomáš Vojnar, and
Florian Zuleger, “Low-Level Bi-Abduction”, in 36th European Conference on Object-Oriented Program-
ming (ECOOP 2022), LIPIcs, Vol. 222, pp. 19:1–19:30, 2022.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6–10, 2022, Berlin, Germany
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact includes the Broom tool described in Section 8 of the related article. Its purpose is
to allow the reproduction of the examples discussed in Section 2 and and in the appendices, and
the benchmarks in Section 8.4.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Lukáš Holík, Petr Peringer, Adam Rogalewicz, Veronika Šoková,
Tomáš Vojnar, and Florian Zuleger;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 11, pp. 11:1–11:6
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:holik@fit.vut.cz
https://www.fit.vut.cz/person/holik/
https://orcid.org/0000-0001-6957-1651
mailto:peringer@fit.vut.cz
https://www.fit.vut.cz/person/peringer/
https://orcid.org/0000-0002-8264-8307
mailto:rogalew@fit.vut.cz
https://www.fit.vut.cz/person/rogalew/
https://orcid.org/0000-0002-7911-0549
mailto:isokova@fit.vut.cz
https://www.fit.vut.cz/person/isokova/
https://orcid.org/0000-0003-1980-7245
mailto:vojnar@fit.vut.cz
https://www.fit.vut.cz/person/vojnar/
https://orcid.org/0000-0002-2746-8792
mailto:florian.zuleger@tuwien.ac.at
https://informatics.tuwien.ac.at/people/florian-zuleger
https://orcid.org/0000-0003-1468-8398
https://doi.org/10.4230/DARTS.8.2.11
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

11:2 Low-Level Bi-Abduction (Artifact)

2 Content

The artifact package includes:
broom

code-listener/ – the Code Listener framework (a dependency of Broom)
doc/ – documentation generated from the source code
examples/ – examples presented in Figures 1, 8, 9, 10, and 11
scripts/ – a collection of useful scripts including broom
src/ – source code of the Broom tool
tests/ – benchmarks
README.md –

broom-long-output/ – output of script ./run-long.sh
infer-output/ – output for Infer of script ./run-short.sh
gillian-output/ – output for Gillian of script ./run-short.sh
download-infer.sh – a script to download Infer v1.1.0
run-long.sh – a script to run the benchmark for Table 2
run-short.sh – a script to run the benchmark for Table 1
show-tab1.sh – a script to show Table 1
show-tab2.sh – a script to show Table 2
ECOOP2022_techrep.pdf – the technical report of the related article
README.md – a tutorial on how to use the artifact

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://pajda.fit.vutbr.cz/rogalew/broom.

4 Tested platforms

To get the results presented in the paper, the experiments were run on a machine with an Intel
i7-4770 processor with 32 GiB of memory and the Linux operating system (Fedora 34). The
current implementation of Broom uses a single core only. The tool was tested also on a machine
with a 2.3 GHz Intel Core i5 processor with 8GB RAM, running macOS or Ubuntu 20.04.

This artifact contains a VirtualBox image (Ubuntu 20.04). The hardware capabilities offered
by the virtual machine should fulfill the above requirements. All required software is pre-installed.

5 License

The artifact is available under the GPLv3 license.

6 MD5 sum of the artifact

101f2587490f8f755abecd453e2c01d1

7 Size of the artifact

4.9 GiB

https://pajda.fit.vutbr.cz/rogalew/broom

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 11:3

8 Getting started

1. Extract the file broom-ecoop22.ova.
2. Download and install VirtualBox1 if you do not have it already.
3. Open VirtualBox and select File > Import Appliance... Now, select OVA file in the import

box and verify the settings in the center window. Make any changes if you need to in that
center window. If you want to run Infer or Gillian, enable internet conection (optional). Click
Import at the bottom.

4. Run the appliance. The login and password of the default user are: osboxes / osboxes.org.
5. Continue with the instructions in the next section (or in ${HOME}/artifact/README.md).

9 Usage

9.1 Executing running examples from the paper
The source code of the examples is available here:

examples/01-circ_dll.c for Fig. 1
examples/02-cond.c for Fig. 8
examples/03-loop.c for Fig. 9
examples/04-nondet_cond.c for Fig. 10
examples/05-bitwise.c for Fig. 11

For executing all the examples at once:

1. Go to the directory broom:

cd ${HOME}/artifact/broom

2. Execute the following command:

make examples

3. After a successful execution, Broom creates outputs in _build/examples/*.txt

One can also analyze each program file.c separately as follows:

./scripts/broom --print-cl --verbose=3 --display-stats -- file.c

Differences between the generated output and the description in the paper
Compared to the separation logic described in Section 5 of the related article, Broom uses a slightly
different notation:

base(x) ” bpxq

len(x) ” epxq ´ x

x-(c)->y stands for x ÞÑ y and we have c “ sizepyq; we write c in the points-to arrow of the
tool output in order to make it easier for the reader to track the size of y
x-(size)->T stands for x ÞÑ Jrsizes where size is some expression
x-(size)->0 stands for x ÞÑ 0rsizes where size is some expression

1 https://www.virtualbox.org/

DARTS

https://www.virtualbox.org/

11:4 Low-Level Bi-Abduction (Artifact)

The axioms of page 9 from the paper then become

@l.lenplq ě 0 ^ l ě baseplq ^ lenpbaseplqq ´ l “ lenplq ^ baseplq “ 0 ô lenplq “ 0
@l, l1.p0 ă baseplq ă l1 ð baseplq ` lenpbaseplqq 0 ă basepl1q ă l ð basepl1q ` lenpbasepl1qqq

ñ baseplq “ basepl1q

Note that we can always recover epxq from this presentation by setting bpxq “ basepxq and
epxq “ basepxq ` lenpbasepxqq.

For the current state formula denoted as Q in the paper (and printed as Curr by Broom), all
variables that do not also appear in the pre-condition denoted as P in the paper (and printed
as Miss by Broom) are assumed to be existentially quantified; however, we do not print the
quantifiers in order not to clutter the presentation. For example, for P : x “ X ^ X ÞÑ Y and
Q : x “ X ^ X ÞÑ u, the formula Q has to be understood as Du.x “ X ^ X ÞÑ u because u does
not appear in the pre-condition P .

9.2 Reproducing results for Table 1
The below table describes how benchmark names from the paper match to the coresponding source
code in the broom/tests folder.

Shortcut File
circ-DLL lists/circ_dll_simple.c
circ-DLL-err lists/circ_dll_simple-err.c
circ-DLL-embedded lists/circ_dll_embeded_int.c
Linux-list-1 linux-list/predator-test-0156-no-include.c
Linux-list-2 linux-list/linux-list-t2.c
Linux-list-2-err linux-list/linux-list-t2-err.c
Linux-list-all linux-list/linux-list.c
intrusive-list ideas/intrusive-list.c
intrusive-list-min ideas/intrusive-list-minimal-example.c
intrusive-list-smoke ideas/test_intrusive_single_file.c

For executing all benchmarks at once:

1. Go to the directory artifact:

cd ${HOME}/artifact

2. Optionally: execute the following command which will download Infer v1.1.0 into the folder
infer-linux64-v1.1.0:

./download-infer.sh

3. Optionally: download the source code of Gililan (PLDI’20 version) from https://github.
com/GillianPlatform/Gillian/releases/tag/PLDI20. In case of problems see https://
gillianplatform.github.io/. For installation:

sudo apt install npm
npm install -g esy --prefix ~/.npm

to .profile

https://github.com/GillianPlatform/Gillian/releases/tag/PLDI20
https://github.com/GillianPlatform/Gillian/releases/tag/PLDI20
https://gillianplatform.github.io/
https://gillianplatform.github.io/

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 11:5

PATH="$HOME/.npm/bin:$PATH"

cd Gillian-PLDI20 # the folder containing ’esy.json’
in ’esy.json’ change "@opam/odoc": "*" to "@opam/odoc": "1.5.0"
rm -rf esy.lock
esy
esy install

4. Execute the following command which will execute Broom, Infer (optional), and Gillian
(optional) on the subset of benchmarks listed above:

./run-short.sh

5. After a successful execution, Broom creates outputs in broom-output-now, Infer in the folder
infer-output-now (or you can use infer-output), and Gillian in gillian-output-now (or
you can use gillian-output).

6. Execute the following command which will print the wall time correspondingly to Table 1. The
number of functions for which complete contracts were produced (columns 5, 8, and 11 of Table
1) has been manually checked, i.e., we took the output of the tools (see output folders from
Point 5) and manually inspected all produced contracts for completeness to get the numbers
in the table.

./show-tab1.sh

9.3 Reproducing results for Table 2
The below table describes how benchmark names from the paper match to the coresponding source
code in the broom/tests folder.

Shortcut File
intrusive-list-min ideas/intrusive-list-minimal-example.c
intrusive-list-min-2 ideas/intrusive-list-minimal-example2.c
intrusive-list-min-3 ideas/intrusive-list-minimal-example3.c
intrusive-list-smoke ideas/test_intrusive_single_file.c

This experiment is rather time-consuming, so Point 2 may be skipped. For executing all experiments
at once:

1. Go to the directory artifact:

cd ${HOME}/artifact

2. Optionally: execute the following command which will execute Broom on the subset of
benchmarks listed above:

./run-long.sh

3. After a successful execution, Broom creates outputs in broom-long-output-now (or you can
use broom-long-output).

4. Execute the following command which will print the wall time correspondingly to Table 2.
The number of functions for which complete contracts were produced (column 5) has been
manually checked, i.e., we took the output of the tools (see output folders from Point 3) and
manually inspected all produced contracts for completeness to get the numbers in the table.

./show-tab2.sh

DARTS

11:6 Low-Level Bi-Abduction (Artifact)

9.4 Executing Broom in general
The file broom/README.md provides more information about how to install the Broom tool on
different operating systems and how to execute it. The file broom/options.md provides more
information about the input parameters of Broom. One can also get this information by execut-
ing ./scripts/broom -h. Additionally, the file broom/doc/index.html contains automatically
generated documentation of the source code.

One can experiment with the presented files, and more C code can be found in the broom/tests/
folder.

A smaller example than those used in Table 2 to illustrate the difference in abduction strategies
is available here:

./scripts/broom -- tests/call-01-ok_gcc.c # contracts incomplete

./scripts/broom --abduction-strategy=1 -- tests/call-01-ok_gcc.c

An example of memory leak detection after a program terminates (when Valgrind reports still
reachable):

./scripts/broom -- tests/global-mem-leaks-err.c # memory leaks from
global variables

./scripts/broom --no-exit-leaks -- tests/global-mem-leaks-err.c

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	8 Getting started
	9 Usage
	9.1 Executing running examples from the paper
	9.2 Reproducing results for Table 1
	9.3 Reproducing results for Table 2
	9.4 Executing Broom in general

