
Prisma: A Tierless Language for Enforcing
Contract-Client Protocols in Decentralized
Applications (Artifact)
David Richter #

Technische Universität Darmstadt, Germany
David Kretzler #

Technische Universität Darmstadt, Germany

Pascal Weisenburger #

Universität St. Gallen, Switzerland
Guido Salvaneschi #

Universität St. Gallen, Switzerland

Sebastian Faust #

Technische Universität Darmstadt, Germany
Mira Mezini #

Technische Universität Darmstadt, Germany

Abstract
Decentralized applications (dApps) consist of smart
contracts that run on blockchains and clients that
model collaborating parties. dApps are used to
model financial and legal business functionality.
Today, contracts and clients are written as separ-
ate programs – in different programming languages
– communicating via send and receive operations.
This makes distributed program flow awkward to ex-
press and reason about, increasing the potential for
mismatches in the client-contract interface, which
can be exploited by malicious clients, potentially
leading to huge financial losses. In this paper, we
present Prisma, a language for tierless decentral-
ized applications, where the contract and its clients

are defined in one unit. Pairs of send and receive
actions that “belong together” are encapsulated
into a single direct-style operation, which is ex-
ecuted differently by sending and receiving parties.
This enables expressing distributed program flow
via standard control flow and renders mismatching
communication impossible. We prove formally that
our compiler preserves program behavior in pres-
ence of an attacker controlling the client code. We
systematically compare Prisma with mainstream
and advanced programming models for dApps and
provide empirical evidence for its expressiveness
and performance.

2012 ACM Subject Classification Software and its engineering → Distributed programming languages;
Software and its engineering → Domain specific languages; Software and its engineering → Compilers
Keywords and phrases Domain Specific Languages, Smart Contracts, Scala
Digital Object Identifier 10.4230/DARTS.8.2.16
Funding This work has been funded by the German Federal Ministry of Education and Research
iBlockchain project (BMBF No. 16KIS0902), by the German Research Foundation (DFG, SFB 1119
CROSSING Project), by the BMBF and the Hessian Ministry of Higher Education, Research, Science
and the Arts within their joint support of the National Research Center for Applied Cybersecurity
ATHENE, by the Hessian LOEWE initiative (emergenCITY ), by the Swiss National Science Foundation
(SNSF, No. 200429), and by the University of St. Gallen (IPF, No. 1031569).

Related Article David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust,
and Mira Mezini, “Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized
Applications”, in 36th European Conference on Object-Oriented Programming (ECOOP 2022), LIPIcs,
Vol. 222, pp. 35:1–35:4, 2022.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6–10, 2022, Berlin, Germany
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© David Richter, David Kretzler, Pascal Weisenburger,
Guido Salvaneschi, Sebastian Faust, and Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 16, pp. 16:1–16:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:david.kretzler@tu-darmstadt.de
https://orcid.org/0000-0002-6556-6457
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
mailto:guido.salvaneschi@unisg.ch
https://orcid.org/0000-0002-9324-8894
mailto:sebastian.faust@tu-darmstadt.de
https://orcid.org/0000-0002-8625-4639
mailto:mezini@informatik.tu-darmstadt.de
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/DARTS.8.2.16
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


16:2 Prisma: A Tierless Language for Enforcing Protocols (Artifact)

1 Scope

The central component of this artifact is the compiler that compiles Prisma programs (i) to EVM
byte code for the smart contract that runs on the Ethereum blockchain and (ii) to JVM byte code
for client programs that interact with the contract. It is accompanied by several case studies of
decentralized applications written in Prisma. Other programmers can use the compiler to develop
their own dApps.

The artifacts provides a docker image and allows to replicate our whole evaluation including:
the compilation of the compiler,
compilation of the case studies,
evaluation of case studies, and
aggregation of the measurement results to Tex-Files
as used to create some of the figures in our paper.

More concretely:
The data of Figure 16 ’The cost of abstraction’ will be recreated in the files "measurementRes-
ults.tex" resp. "humanReadableMeasurementResults.md".
The data of Appendix Table 21 ’Categories and Cross-tier calls’ and Appendix Figure 22
’LOC in Solidity/JavaScript and Prisma’ will be recreated in the files "codeResults.tex" resp.
"humanReadableCodeResults.md".

For the purpose of understanding the features of the Prisma programming language we refer
to the paper section 2.

2 Content

Overview: What does the artifact comprise?
A docker image that includes all dependecies to repeat all steps of our evaluation (from
compilation of the dApps to the aggregation of results to Latex variables)
A Readme describing how to use the artifact (markdown)
The code of the Prisma compiler (Scala)
The case studies (implemented in our Prisma programming language)
Evaluation Code (Solidity and NodeJS)
A screenshot displaying the expected results (png)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/stg-tud/prisma.

4 Tested platforms

Hardware: The device you execute the docker image should provide a performance comparable to
modern computers or Notebooks. Embedded devices, e.g., a Raspberry Pi, might not be sufficient.

Software: We expect artifact reviewers to have preinstalled
docker,
a text editor,
a pdf viewer,

https://github.com/stg-tud/prisma


D. Richter, D. Kretzler, P. Weisenburger, G. Salvaneschi, S. Faust, and M. Mezini 16:3

pdflatex with the following packages:

\ usepackage {tikz}
\ usetikzlibrary { patterns }
\ usepackage { pgfplots }
\ usepgfplotslibrary { statistics }

5 License

The artifact is available under Apache 2.0 License.

6 MD5 sum of the artifact

0c6f90c19e776ae9232aa44f03e598d9

7 Size of the artifact

804MB

DARTS


	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

