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Abstract
The compilation scheme for Volatile accesses in the
OpenJDK 9 HotSpot Java Virtual Machine has a
major problem that persists despite a recent bug
report and a long discussion. One of the suggested
fixes is to let Java compile Volatile accesses in the
same way as C/C++11. However, we show that
this approach is invalid for Java. Indeed, we show a
set of optimizations that is valid for C/C++11 but

invalid for Java, while the compilation scheme is
similar. We prove the correctness of the compilation
scheme to Power and x86 and a suite of valid
optimizations in Java. Our proofs are based on
a language model that we validate by proving key
properties such as the DRF-SC theorem and by
running litmus tests via our implementation of Java
in Herd7.
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1 Scope

This artifact includes three parts:
The extended Herd7 [1] implementation with Java architecture (code): the extended herd7
with support for the Java VarHandle syntax. The code should build with no problem and is
able to run litmus tests written in the Java VarHandle syntax.
Litmus Tests that appeared in our paper (benchmark): we use the benchmark litmus tests to
show that our fixed memory model behave the same as the original memory model except for
the problematic cases. For the problematic cases, we show that our fixed memory model solve
the original problem.
Coq proofs for some of the theorems in the paper (proof): the proofs of some theorems in
the paper are sound (compiles through coq). This includes the theorems about properties of
JAM21.
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3:2 A Sample DARTS Research Description (Artifact)

2 Content

The artifact package includes:
The extended Herd7 implementation with Java architecture (code)
Litmus Tests that appeared in our paper (benchmark)
Coq proofs for some of the theorems in the paper (proof)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material.

4 Tested platforms

The extended Herd7 implementation with Java architecture (code): Requires Ocaml 4.09.0
and dune 2.9.1
Litmus Tests that appeared in our paper (benchmark): Can be executed using the extended
Herd7 tool with the JAM model
Coq proofs for some of the theorems in the paper (proof): Requires Coq 8.06.1 with Ocaml
4.02.3

5 License

The artifact is available under license Creative Commons license.

6 MD5 sum of the artifact

68b11fb27dbd97fbe5d9588b133d9658

7 Size of the artifact

1.5M
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