
Qilin: A New Framework for Supporting Fine-Grained
Context-Sensitivity in Java Pointer Analysis (Artifact)
Dongjie He #

The University of New South Wales, Sydney, Australia

Jingbo Lu #

The University of New South Wales, Sydney, Australia

Jingling Xue #

The University of New South Wales, Sydney, Australia

Abstract
Existing whole-program context-sensitive pointer
analysis frameworks for Java, which were open-
sourced over one decade ago, were designed
and implemented to support only method-level
context-sensitivity (where all the variables/ob-
jects in a method are qualified by a common
context abstraction representing a context un-
der which the method is analyzed). We intro-
duce Qilin as a generalized (modern) alternat-
ive, which will be open-sourced soon on GitHub,
to support the current research trend on explor-
ing fine-grained context-sensitivity (includ-
ing variable-level context-sensitivity where different
variables/objects in a method can be analyzed under
different context abstractions at the variable level),
precisely, efficiently, and modularly. To meet
these four design goals, Qilin is developed as an
imperative framework (implemented in Java) con-
sisting of a fine-grained pointer analysis kernel with

parameterized context-sensitivity that supports on-
the-fly call graph construction and exception ana-
lysis, solved iteratively based on a new carefully-
crafted incremental worklist-based constraint solver,
on top of its handlers for complex Java features.

We have evaluated Qilin extensively using a
set of 12 representative Java programs (popularly
used in the literature). For method-level context-
sensitive analyses, we compare Qilin with Doop
(a declarative framework that defines the state-of-
the-art), Qilin yields logically the same precision
but more efficiently (e.g., 2.4x faster for four typical
baselines considered, on average). For fine-grained
context-sensitive analyses (which are not currently
supported by open-source Java pointer analysis
frameworks such as Doop), we show that Qilin
allows seven recent approaches to be instantiated ef-
fectively in our parameterized framework, requiring
additionally only an average of 50 LOC each.

2012 ACM Subject Classification Theory of computation → Program analysis
Keywords and phrases Pointer Analysis, Fine-Grained Context Sensitivity
Digital Object Identifier 10.4230/DARTS.8.2.6
Funding Supported by ARC Grants DP180104069 and DP210102409.
Acknowledgements We thank all the reviewers for their constructive comments.

Related Article Dongjie He, Jingbo Lu, and Jingling Xue, “Qilin: A New Framework For Supporting
Fine-Grained Context-Sensitivity in Java Pointer Analysis”, in 36th European Conference on Object-
Oriented Programming (ECOOP 2022), LIPIcs, Vol. 222, pp. 30:1–30:29, 2022.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6–10, 2022, Berlin, Germany
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Dongjie He, Jingbo Lu, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 6, pp. 6:1–6:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:dongjieh@cse.unsw.edu.au
mailto:jlu@cse.unsw.edu.au
mailto:jingling@cse.unsw.edu.au
https://doi.org/10.4230/DARTS.8.2.6
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


6:2 Qilin: A New Java Pointer Analysis Framework (Artifact)

1 Scope

This artifact contains the binary form of Qilin, together with the source code of Doop [3]
(expressed in the form of Datalog rules with a number of bug fixes from us) and a set of 12 Java
benchmarks used in our evaluation. The source code of Qilin has been released and maintained
at https://github.com/QiLinPTA/QiLin.

The artifact can be used to reproduce all the tables and raw data that appear in the evaluation
part of our paper. It supports the following four claims that we make in the paper: (1) Qilin
delivers exactly the same precision as Doop (the state-of-the-art) for a few commonly used pointer
analysis like Andersen’s analysis [1], kcfa [5], and kobj [4]; (2) Qilin (currently runs in a single
thread) outperforms Doop (runs in its best setting, i.e., 8 threads) substantially, with an average
speedup of 2.4x; (3) Qilin is very effective in supporting fine-grained context-sensitive pointer
analyses; and (4) Qilin is modular in allowing its common codebase to be shared by a wide range
of existing pointer analysis techniques.

2 Content

The artifact package includes:
a Docker image, which contains

an executable jar file, i.e., artifact/pta/Qilin-1.0-SNAPSHOT.jar,
benchmarks (including 9 benchmarks from DaCapo2006 [2] and 3 Java applications),
a Java library (i.e., artifact/pta/lib/jre/jre1.6.0_45),
the scripts for running all experiments and extracting results, and
Doop (version 4.24.0),

a README.md file,
the PDF file of the paper,
the PDF of the artifact manual, and
a license file.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available at:
https://doi.org/10.5281/zenodo.5763519. Again, we have released Qilin as an open-source
tool at https://github.com/QiLinPTA/QiLin.

4 Tested platforms

We have carried out all the experiments on an eight-core Intel(R) Xeon(R) CPU E5-2637 3.5GHz
machine with 512GB of RAM. The underlying operating system is Ubuntu 20.04. The time budget
used for running each pointer analysis on a program is set as 24 hours.

We would like to warn users that different machines used for running our artifact may
result in different speedups and scalability. Unfortunately, we have thus lost a badge during
the artifact evaluation as the reviewers failed to reproduce the results for some large benchmarks
(e.g., eclipse, checkstyle, findbugs) due to the memory size differences.

In addition, we have provided detailed documentation on Qilin’s wiki page, https://github.
com/QilinPTA/Qilin/wiki, for describing how to use Qilin as either a library or as a command-
line tool and how to write your own analyses in Qilin.

https://github.com/QiLinPTA/QiLin
https://doi.org/10.5281/zenodo.5763519
https://github.com/QiLinPTA/QiLin
https://github.com/QilinPTA/Qilin/wiki
https://github.com/QilinPTA/Qilin/wiki


D. He, J. Lu, and J. Xue 6:3

5 License

The artifact is available under license GPL v3.

6 MD5 sum of the artifact

d0524c71bb102a192eb7f3e226d1d446

7 Size of the artifact

1.6 GiB

References
1 Lars Ole Andersen. Program analysis and specializ-

ation for the C programming language. PhD thesis,
University of Cophenhagen, 1994.

2 Stephen M. Blackburn, Robin Garner, Chris Hoff-
mann, Asjad M. Khang, Kathryn S. McKinley, Ro-
tem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas
VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapobenchmarks: Java bench-
marking development and analysis. In Proceedings
of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages,
and applications, pages 169–190, New York, NY,
USA, 2006. Association for Computing Machinery.
doi:10.1145/1167515.1167488.

3 Martin Bravenboer and Yannis Smaragdakis.
Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM
SIGPLAN conference on Object oriented program-
ming systems languages and applications, pages
243–262, New York, NY, USA, 2009. Association
for Computing Machinery.

4 Ana Milanova, Atanas Rountev, and Barbara G Ry-
der. Parameterized object sensitivity for points-to
analysis for Java. ACM Transactions on Software
Engineering and Methodology, 14(1):1–41, 2005.

5 Micha Sharir and Amir Pnueli. Two approaches to
interprocedural data flow analysis. In S. S. Much-
nick and N. D. Jones, editors, Program Flow Ana-
lysis: Theory and Applications, chapter 7, pages
189–234. Prentice-Hall, 1981.

DARTS

https://doi.org/10.1145/1167515.1167488

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

