
Functional Programming for Distributed Systems with
XC (Artifact)
Giorgio Audrito # Ñ

University of Turin, Italy

Roberto Casadei # Ñ

University of Bologna, Cesena, Italy

Ferruccio Damiani #Ñ

University of Turin, Italy

Guido Salvaneschi #Ñ

Universität St. Gallen, Switzerland

Mirko Viroli #Ñ

University of Bologna, Cesena, Italy

Abstract
In the paper “Functional programming for distrib-
uted systems with XC” we present XC, a program-
ming language to develop the collective behaviour
of homogeneous distributed systems while abstract-
ing over concurrency, asynchronous execution, mes-
sage loss, and device failures. The paper describes
the design of XC, formalizes a core calculus for
it, and shows that XC can effectively capture the
logic of several distributed protocols and applic-
ations including gossiping, distributed summariz-

ation, information flows over self-healing commu-
nication structures, and self-organizing behaviours.
Then, it discusses implementation, in a Scala and
a C++ embedded domain-specific language (DSL),
and provides evaluation through a case study in a
smart city scenario, called SmartC. The reusable
artifact described in this paper contains precisely
those software projects: the Scala DSL, referred to
as XC/Scala; the C++ DSL, referred to as XC/C++;
and the SmartC implementation in both DSLs.

2012 ACM Subject Classification Software and its engineering → Distributed programming languages;
Software and its engineering → Abstraction, modeling and modularity; Theory of computation →
Functional constructs; Computing methodologies → Distributed programming languages
Keywords and phrases Distributed programming, Field Calculi, Scala DSL, C++ DSL
Digital Object Identifier 10.4230/DARTS.8.2.8
Funding This work was supported by the EU/MUR FSE REACT-EU PON R&I 2014-2022
(CCI2014IT16M2OP005), the Swiss National Science Foundation (SNSF, No. 200429), the Hessian
LOEWE initiative emergenCITY, and the Ateneo/CSP “Bando ex post 2020”.

Related Article Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and Mirko
Viroli, “Functional Programming for Distributed Systems with XC”, in 36th European Conference on
Object-Oriented Programming (ECOOP 2022), LIPIcs, Vol. 222, pp. 20:1–20:28, 2022.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6–10, 2022, Berlin, Germany
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact includes the XC implementations described in Section 5 of the companion paper [2],
and the case study implementation described in Section 6 of the companion paper. Its purpose is
to show that the domain-specific languages (DSLs) provide a working implementation of XC, to

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Giorgio Audrito, Roberto Casadei, Ferruccio Damiani,
Guido Salvaneschi, and Mirko Viroli;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 8, pp. 8:1–8:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:giorgio.audrito@unito.it
http://giorgio.audrito.info/#!/research/
https://orcid.org/0000-0002-2319-0375
mailto:roby.casadei@unibo.it
https://robertocasadei.github.io/
https://orcid.org/0000-0001-9149-949X
mailto:ferruccio.damiani@unito.it
http://www.di.unito.it/~damiani/
https://orcid.org/0000-0001-8109-1706
mailto:guido.salvaneschi@unisg.ch
https://programming-group.com/
https://orcid.org/0000-0002-9324-8894
mailto:mirko.viroli@unibo.it
https://www.unibo.it/sitoweb/mirko.viroli/en
https://orcid.org/0000-0003-2702-5702
https://doi.org/10.4230/DARTS.8.2.8
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


8:2 Functional Programming for Distributed Systems with XC (Artifact)

allow the reproduction of the case study, and to discuss the reusability of the developed tools and
experimental setups for further research.

Specifically, the artifact supports the following claims of the paper:
C1) RQ 1: the decentralised execution of the XC program on each device results in the desired

collective behavior. Evidence is provided by executing the simulations and plotting the results.
C2) RQ 2: the overall behavior can be expressed by composing functions of collective behaviour

that correctly combine thanks to alignment. Evidence is provided by the means of C1) and
inspecting the source code of the case study.

C3) The Scala DSL provides a working implementation of XC. Evidence is provided by the means
of C1), C2), and by inspecting and executing XC/Scala programs.

C4) The C++ DSL provides a working implementation of XC. Evidence is provided by the means
of C1), C2), and by inspecting and executing XC/C++ programs.

Reusability can be assessed by extending or reusing the XC/Scala and XC/C++ implementations,
to develop new constructs, algorithms, and applications, as well as by extending or modifying the
case study to experiment with new scenarios and algorithms.

2 Content

The artifact package consists of a compressed archive with the following:
the source code and build infrastructure of XC/Scala, a DSL for XC embedded in the Scala
programming language;
the source code and build infrastructure of XC/C++, a DSL for XC embedded in the C++
programming language;
the source code and build infrastructure for the SmartC case study, both in XC/Scala and
XC/C++;
the Markdown file of the artifact manual;
a LICENSE file.

It also includes a ready-to-use virtual machine image (OVA file) with all the required dependencies.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact content is also
available at the following repositories:

XC/Scala [5]: https://github.com/scafi/artifact-2021-ecoop-xc
XC/C++ [1]: https://github.com/fcpp/fcpp
SmartC (Scala implementation) [4]: https://github.com/scafi/artifact-2021-ecoop-smartc

4 Tested platforms

The Scala-based artifacts leverage Gradle, which runs on all major operating systems and requires
only a Java JDK version 8 or higher to execute. Tests have been carried out in Ubuntu 20.04 and
Windows 10 on a Dell Xps with Intel Core i7-8550U CPU @ 1.80GHz × 8, 16Gb RAM, SSD disk.
Notice that an Internet connection is needed to download artifact dependencies for compilation
and execution of the case study. Regarding memory requirements, it is suggested to have at least
1GiB of free RAM.

https://github.com/scafi/artifact-2021-ecoop-xc
https://github.com/fcpp/fcpp
https://github.com/scafi/artifact-2021-ecoop-smartc


G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 8:3

The C++-based artifacts leverage CMake, which runs on all major operating systems and
requires only a C++ compiler (GCC or CLANG) to execute. Tests have been carried out on a
MacBook Pro with Intel Core i9 CPU @ 2.40 GHz × 8, 32Gb RAM, SSD disk. There are no
connectivity requirements nor stringent memory requirements for the C++-based artifact.

The VirtualBox image has been tested with VirtualBox 6.0 and VMWare Workstation Player
16 under Ubuntu 20.04.3 LTS and Windows 10.

5 License

The artifact is available under the Apache 2.0 license.

6 MD5 sum of the artifact

a86d8900a526e46a96e36680e4e6a95b

7 Size of the artifact

5.5 GiB

A Related Work

The XC/Scala and XC/C++ implementations are based on the ScaFi language [6, 7] and FCPP
language [1], respectively. The XC/Scala case study consists of a simulation built using the
Alchemist meta-simulator [8] and its Alchemist/ScaFi integration [11]. The XC/C++ case study
consists of a simulation built on the integrated FCPP simulator [3]. Another aggregate computing
language which is not an internal but rather a standalone DSL is Protelis [9]. For a comprehensive
coverage of related work the reader can refer to [10].

References
1 Giorgio Audrito. FCPP: an efficient and extens-

ible field calculus framework. In Proceedings of
the 1st International Conference on Autonomic
Computing and Self-Organizing Systems, ACSOS,
pages 153–159. IEEE Computer Society, 2020.
doi:10.1109/ACSOS49614.2020.00037.

2 Giorgio Audrito, Roberto Casadei, Ferruccio Dami-
ani, Guido Salvaneschi, and Mirko Viroli. Func-
tional programming for distributed systems with
XC. In Karim Ali and Jan Vitek, editors, 36th
European Conference on Object-Oriented Program-
ming, ECOOP 2022, June 6-10, 2022, Berlin, Ger-
many, volume 222 of LIPIcs, pages 20:1–20:28.
Schloss Dagstuhl - Leibniz-Zentrum für Inform-
atik, 2022. To appear. doi:10.4230/LIPIcs.ECOOP.
2022.20.

3 Giorgio Audrito, Luigi Rapetta, and Gianluca
Torta. Extensible 3d simulation of aggregated sys-
tems with fcpp. In 24th International Conference
on Coordination Models and Languages, Proceed-
ings, Lecture Notes in Computer Science. Springer,
2022. To appear.

4 Roberto Casadei. scafi/artifact-2021-ecoop-smartc:
v1.2, 2022. doi:10.5281/ZENODO.6538822.

5 Roberto Casadei. scafi/artifact-2021-ecoop-xc:
v1.2, 2022. doi:10.5281/ZENODO.6538810.

6 Roberto Casadei, Mirko Viroli, Giorgio Audrito,
and Ferruccio Damiani. FScaFi : A core calcu-
lus for collective adaptive systems programming.
In ISoLA (2), volume 12477 of Lecture Notes in
Computer Science, pages 344–360. Springer, 2020.
doi:10.1007/978-3-030-61470-6_21.

7 Roberto Casadei, Mirko Viroli, Giorgio Audrito,
Danilo Pianini, and Ferruccio Damiani. Engineer-
ing collective intelligence at the edge with aggregate
processes. Eng. Appl. Artif. Intell., 97:104081, 2021.
doi:10.1016/j.engappai.2020.104081.

8 Danilo Pianini, Sara Montagna, and Mirko Viroli.
Chemical-oriented simulation of computational sys-
tems with ALCHEMIST. J. Simulation, 7(3):202–
215, 2013. doi:10.1057/jos.2012.27.

9 Danilo Pianini, Mirko Viroli, and Jacob Beal. Pro-
telis: practical aggregate programming. In Roger L.
Wainwright, Juan Manuel Corchado, Alessio Bech-
ini, and Jiman Hong, editors, Proceedings of the
30th Annual ACM Symposium on Applied Comput-
ing, Salamanca, Spain, April 13-17, 2015, pages
1846–1853. ACM, 2015. doi:10.1145/2695664.
2695913.

10 Mirko Viroli, Jacob Beal, Ferruccio Damiani, Gior-
gio Audrito, Roberto Casadei, and Danilo Pianini.
From distributed coordination to field calculus and

DARTS

https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.5281/ZENODO.6538822
https://doi.org/10.5281/ZENODO.6538810
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913


8:4 Functional Programming for Distributed Systems with XC (Artifact)

aggregate computing. J. Log. Algebraic Methods
Program., 109, 2019. doi:10.1016/j.jlamp.2019.
100486.

11 Mirko Viroli, Roberto Casadei, and Danilo Pianini.
Simulating large-scale aggregate mass with alchem-

ist and scala. In Federated Conference on Com-
puter Science and Information Systems (FedCSIS),
volume 8 of Annals of Computer Science and In-
formation Systems, pages 1495–1504. IEEE, 2016.
doi:10.15439/2016F407.

https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.15439/2016F407

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Related Work

