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Abstract
Local-first software manages and processes private
data locally while still enabling collaboration
between multiple parties connected via partially un-
reliable networks. Such software typically involves
interactions with users and the execution environ-
ment (the outside world). The unpredictability of
such interactions paired with their decentralized
nature make reasoning about the correctness of
local-first software a challenging endeavor. Yet, ex-
isting solutions to develop local-first software do
not provide support for automated safety guaran-
tees and instead expect developers to reason about
concurrent interactions in an environment with un-
reliable network conditions.

We propose LoRe, a programming model and

compiler that automatically verifies developer-
supplied safety properties for local-first applications.
LoRe combines the declarative data flow of react-
ive programming with static analysis and verifica-
tion techniques to precisely determine concurrent
interactions that violate safety invariants and to
selectively employ strong consistency through co-
ordination where required. We propose a formalized
proof principle and demonstrate how to automate
the process in a prototype implementation that out-
puts verified executable code. Our evaluation shows
that LoRe simplifies the development of safe local-
first software when compared to state-of-the-art
approaches and that verification times are accept-
able.
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11:2 LoRe: A Programming Model for Verifiably Safe Local-First Software (Artifact)

1 Scope

The goal of this artifact is to evaluate the performance of the verification process used by the
LoRe compiler. In particular, it allows the reproduction of the performance benchmarks presented
in Section 4 of the related paper.

2 Content

The artifact package includes:
readme.md: A readme describing how to use the artifact (written in markdown).
lore.docker.tar: An executable docker image of LoRe’s verification backend that allows
compiling LoRe programs to Viper intermediate language.
viper.docker.tar: An executable docker image that contains the Viper1 verifier and utilities
for benchmarking.
examples: The LoRe source code of two example applications: The calendar application from
the paper and the TPC-C benchmark.
sources: The source code of LoRe’s verification backend (written in Scala).

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the source code of the LoRe
compiler is available at https://github.com/stg-tud/LoRe.

4 Tested platforms

Software: The artifact includes two executables packaged as x86 Docker images. Therefore,
it requires a container runtime such as Docker2 or Podman3 that is capable of running docker
images. When run on a different platform than x86 (such as an Apple Silicon Mac), one likely has
to specify the platform as in docker run --platform linux/amd64. Depending on the local Docker
installation, one may need to prefix the described docker commands with sudo.
Hardware: The artifact is supposed to run on normal consumer hardware such as laptops and
desktop computers. The verification process relies on the Z3 SMT solver which requires a certain
level of computing power and memory. We therefore recommend a machine with at least 16GB of
memory.

5 License

The artifact is available under a CC BY 4.0 license.

6 MD5 sum of the artifact

e27898622113ac3de4936bafda3151fa

7 Size of the artifact

1.43 GiB

1 https://www.pm.inf.ethz.ch/research/viper.html
2 https://www.docker.com/
3 https://podman.io/
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