
LoRe: A Programming Model for Verifiably Safe
Local-First Software (Artifact)
Julian Haas #

Technische Universität Darmstadt, Germany
Ragnar Mogk
Technische Universität Darmstadt, Germany

Elena Yanakieva
University of Kaiserslautern-Landau, Germany

Annette Bieniusa
University of Kaiserslautern-Landau, Germany

Mira Mezini
Technische Universität Darmstadt, Germany

Abstract
Local-first software manages and processes private
data locally while still enabling collaboration
between multiple parties connected via partially un-
reliable networks. Such software typically involves
interactions with users and the execution environ-
ment (the outside world). The unpredictability of
such interactions paired with their decentralized
nature make reasoning about the correctness of
local-first software a challenging endeavor. Yet, ex-
isting solutions to develop local-first software do
not provide support for automated safety guaran-
tees and instead expect developers to reason about
concurrent interactions in an environment with un-
reliable network conditions.

We propose LoRe, a programming model and

compiler that automatically verifies developer-
supplied safety properties for local-first applications.
LoRe combines the declarative data flow of react-
ive programming with static analysis and verifica-
tion techniques to precisely determine concurrent
interactions that violate safety invariants and to
selectively employ strong consistency through co-
ordination where required. We propose a formalized
proof principle and demonstrate how to automate
the process in a prototype implementation that out-
puts verified executable code. Our evaluation shows
that LoRe simplifies the development of safe local-
first software when compared to state-of-the-art
approaches and that verification times are accept-
able.

2012 ACM Subject Classification Software and its engineering → Formal software verification; Software
and its engineering → Distributed programming languages; Software and its engineering → Data
flow languages; Software and its engineering → Consistency; Theory of computation → Pre- and
post-conditions; Theory of computation → Program specifications; Computer systems organization →
Peer-to-peer architectures
Keywords and phrases Local-First Software, Reactive Programming, Invariants, Consistency, Automated
Verification
Digital Object Identifier 10.4230/DARTS.9.2.11
Funding This work was funded by the German Federal Ministry of Education and Research together with
the Hessen State Ministry for Higher Education (ATHENE), the German Research Foundation (SFB
1053), and the German Federal Ministry for Economic Affairs and Climate Action project SafeFBDC
(01MK21002K).

Related Article Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and Mira Mezini,
“LoRe: A Programming Model for Verifiably Safe Local-First Software”, in 37th European Conference
on Object-Oriented Programming (ECOOP 2023), LIPIcs, Vol. 263, pp. 12:1–12:15, 2023.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and
Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 11, pp. 11:1–11:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:haas@cs.tu-darmstadt.de
https://orcid.org/0000-0001-9959-5099
https://orcid.org/0000-0003-4583-1791
https://orcid.org/0000-0002-2900-7252
https://orcid.org/0000-0002-1654-6118
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/DARTS.9.2.11
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


11:2 LoRe: A Programming Model for Verifiably Safe Local-First Software (Artifact)

1 Scope

The goal of this artifact is to evaluate the performance of the verification process used by the
LoRe compiler. In particular, it allows the reproduction of the performance benchmarks presented
in Section 4 of the related paper.

2 Content

The artifact package includes:
readme.md: A readme describing how to use the artifact (written in markdown).
lore.docker.tar: An executable docker image of LoRe’s verification backend that allows
compiling LoRe programs to Viper intermediate language.
viper.docker.tar: An executable docker image that contains the Viper1 verifier and utilities
for benchmarking.
examples: The LoRe source code of two example applications: The calendar application from
the paper and the TPC-C benchmark.
sources: The source code of LoRe’s verification backend (written in Scala).

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the source code of the LoRe
compiler is available at https://github.com/stg-tud/LoRe.

4 Tested platforms

Software: The artifact includes two executables packaged as x86 Docker images. Therefore,
it requires a container runtime such as Docker2 or Podman3 that is capable of running docker
images. When run on a different platform than x86 (such as an Apple Silicon Mac), one likely has
to specify the platform as in docker run --platform linux/amd64. Depending on the local Docker
installation, one may need to prefix the described docker commands with sudo.
Hardware: The artifact is supposed to run on normal consumer hardware such as laptops and
desktop computers. The verification process relies on the Z3 SMT solver which requires a certain
level of computing power and memory. We therefore recommend a machine with at least 16GB of
memory.

5 License

The artifact is available under a CC BY 4.0 license.

6 MD5 sum of the artifact

e27898622113ac3de4936bafda3151fa

7 Size of the artifact

1.43 GiB

1 https://www.pm.inf.ethz.ch/research/viper.html
2 https://www.docker.com/
3 https://podman.io/

https://github.com/stg-tud/LoRe
https://www.pm.inf.ethz.ch/research/viper.html
https://www.docker.com/
https://podman.io/

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

