
Behavioural Types for Local-First Software (Artifact)
Roland Kuhn #

Actyx AG, Kassel, Germany

Hernán Melgratti #

University of Buenos Aires, Argentina
Conicet, Buenos Aires, Argentina

Emilio Tuosto #

Gran Sasso Science Institute, L’Aquila, Italy

Abstract
This artifact supports the theory of swarm pro-
tocols presented in the related article. Specific-
ally, following the top-down development typical
of choreographic approaches, our artifact enables
the specification of systems of peers communicating
through an event notification mechanism from a
global viewpoint which can then be projected to
local specifications of peers, rendered as machines.
To the best of our knowledge, ours is the first im-

plementation of a behavioural type framework sup-
porting the application of the principles of local-first
software for network devices which collaborate on
a common task while retaining full autonomy. The
artifact can be integrated in the Actyx industrial
platform; this proves this work a viable step to-
wards reasoning about local-first and peer-to-peer
software systems.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Software and
its engineering → Distributed systems organizing principles; Software and its engineering → Distributed
programming languages
Keywords and phrases Distributed coordination, local-first software, behavioural types, publish–
subscribe, asynchronous communication
Digital Object Identifier 10.4230/DARTS.9.2.14
Funding Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-
Curie grant agreement No 778233. Work partially funded by MIUR project PRIN 2017FTXR7S IT
MATTERS (Methods and Tools for Trustworthy Smart Systems), by the PRO3 MUR project Software
Quality, and by PNRR MUR project VITALITY (ECS00000041), Spoke 2 ASTRA – Advanced Space
Technologies and Research Alliance. Work partly funded by the European Union (TaRDIS, 101093006).
Acknowledgements The authors also thank Daniela Marottoli for her help in the initial development of
this artifact.

Related Article Roland Kuhn, Hernán Melgratti, and Emilio Tuosto, “Behavioural Types for Local-First
Software”, in 37th European Conference on Object-Oriented Programming (ECOOP 2023), LIPIcs,
Vol. 263, pp. 15:1–15:28, 2023. https://doi.org/10.4230/LIPIcs.ECOOP.2023.15

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact provides a prototype implementation of our type-checker and machine runner along
with the code for our running example from the paper [1]. The tools can check and run this
example. Summarising Section 3 of the paper and with reference to Fig. 2 (page 10 of our paper):

machine-check verifies that events and their handlers are properly declared in TypeScript
code, infers local types and subscriptions from TypeScript code, and finally relates events to
states of swarm machines

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Roland Kuhn, Hernán Melgratti, and Emilio Tuosto;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 14, pp. 14:1–14:5
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:roland@actyx.io
https://orcid.org/0000-0003-1582-6238
mailto:hmelgra@dc.uba.ar
https://orcid.org/0000-0003-0760-0618
mailto:emilio.tuosto@gssi.it
https://orcid.org/0000-0002-7032-3281
https://doi.org/10.4230/DARTS.9.2.14
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


14:2 Behavioural Types for Local-First Software (Artifact)

machine-runner uses TypeScript code as an API to execute the behaviour specified by local
types
TypeChecking checks for well-formedness of swarm protocols and subscriptions as defined
in Section 6 of our paper, calculates projections, checks for equivalence of types inferred
by machine-check and the corresponding projected ones. Moreover, the rndMove function
described below performs simulation to explore possible admissible executions of our theoretical
model.
The artifact is applied to an example project to demonstrate the use of the inferred machine
type to generically render a machine UI which allows the user to interact with machines by
invoking their (enabled) commands.

Appendix A provides details on the usage of the artifact.
This artifact serves three main purposes: (i) To validate the results in our related ECOOP

article, (ii) to demonstrate the feasibility and applicability of our type checking approach, and
(iii) to enable the application of our theory in concrete applications.

2 Content

The artifact consists of four files:
a Docker image for the aarch64 processor architecture (e.g. Apple Silicon),
a Docker image for the amd64 processor architecture (e.g. most PCs),
a README file in markdown format detailing how to run and explore the above images (also
included as Appendix B), and
an archive of the source code in case you want to make changes or use it in other ways.

We give more details on the source code structure in Appendix A.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://doi.org/10.5281/zenodo.7737188.

4 Tested platforms

The artifact has been prepared as a Docker image for the amd64 or aarch64 (e.g. recent macbooks)
processor architecture. Source code is provided as well.

5 License

The source code contained in the artifact (delineated by the file contents of sources.tar.gz) is
available under license CC-BY-4.0. You are free to use the copy of Actyx and Actyx CLI contained
within the Docker images in the context of exploring the artifact itself—further use requires a
commercial license from Actyx AG. The remaining contents of the Docker images is available
under their respective licenses.

6 MD5 sum of the artifact

4e62cef3573ecd16d61aab78c0b7d2ea

https://doi.org/10.5281/zenodo.7737188


R. Kuhn, H. Melgratti, and E. Tuosto 14:3

7 Size of the artifact

1.2GB

A Structure of the code

A.1 Directory /typechecking
Formal syntax of Machines as finite equations, discussed in Section 5, (Equation 1 and below)
corresponds to LType in typechecking/src/LType.hs.
Formal syntax of swarm protocols as finite equations (Section 4), corresponds to GType in
typechecking/src/GType.hs.
Note that LType and GType correspond to particular cases of a general definition of infinite
trees ITree represented as a set of equations, which are defined in typechecking/src/ITree.hs.
Log operations (sublog relation, shuffling) in Section 2.4 are defined in typechecking/src/Log.hs

Swarms and their operational semantics are in typechecking/src/Swarm.hs. It should be noted
that there are two flavours of the semantics. Functions local and receive generate all possible
continuations according to the rules [LOCAL] and [PROP]. In addition, we provide rndMove
function which in case of several available moves in a swarm, it randomly selects the machine
that randomly performs a [LOCAL] or [PROP] for a randomly selected command or log.
Well-formedness properties of swarm protocols (Defs 4.1, 6.1, 6.3, 6.5, and 6.7) are implemented
in typechecking/src/Protocol.hs.
Projection operation in Def. 5.1 is given in typechecking/src/Projection.hs

Effective type (Def. 7.3), Log equivalence (Def. 7.5) and eventually faithfullness (Def. 7.6) are
given in typechecking/src/Results.hs

The definition of the swarm protocol shown in the figure of Example 1.1 and then formalised in
Example 4.2 is given in typechecking/example/taxi-full/global.json. Note that the definition
is given as a state machine (as in the figure). The translations from finite-state machines to
infinite trees and vice versa are implemented in typechecking/src/Fsm.hs. Their implementation
is given through a type class, because it allows the transformation from finite-state machines
(FSMs) to infinite trees of general types. We use such transformations both for swarm
protocols and for the machines obtained by projections. Note that the projection operation in
typechecking/src/Projection.hs generates infinite trees. To obtain their FSMs we transform
trees to FSMs (i.e., for obtaining P-projected-minimised.uml when running testcheck).

See also /typechecking/README.md for more details.

A.2 Directory /machine-runner
runtime library implementing the interpretation of asymmetric replicated state machines for
use in real applications using the Actyx middleware
definition of the State prototype in src/types.ts

definition of the @proto decorator in src/decorator.ts

definition of the runMachine function in src/pond.ts

A.3 Directory /machine-check
build tool for inferring machine types from TypeScript code and using /typechecking/typecheck
to verify them against a given swarm protocol
type interence algorithm in src/traverse.ts

DARTS



14:4 Behavioural Types for Local-First Software (Artifact)

conversion from runtime description of state machines to the JSON format understood by
typecheck in src/arsm.ts
conversion of TypeScript types into JSON schema in src/typescript-json-schema.ts (adapted
from [2])

A.4 Directory /taxiRide
machine definition in src/machines.ts (Listing 1 in the paper is a slightly reformatted excerpt
from this file)
illustration of adding a graphical UI in src/ShowMachine.tsx (using the React framework)

B Instructions

The artifact is delivered in the form of a docker image for the amd64 or aarch64 (e.g. recent
macbooks) processor architecture. Please use docker load -i docker_image.tar.gz to load the
image into your Docker daemon and note the name of its tag that Docker will print (should be
machines:latest). You can inspect the contents and try out the build tools by starting a shell in
the container:

docker run -it machines /bin/bash

The environment is a minimal debian, so you’ll need to install your favourite editor if you
want to make changes (e.g. apt update && apt install emacs). You start out in the /taxiRide
directory, where the main tool demo is to run npm run check. This will analyse all machines in
the project (see src/machines.ts), feed their inferred types to ../typechecking/typecheck, and
generate src/proto.ts to enable machine-runner to execute the machine.

You may try out introducing some errors to see how the check result changes. For example
the protocol would not be well-formed if the taxi role ignored the PassengerID event (you can
do this in src/machines.ts:126 by removing the second argument to the onSelected method of
class AuctionP). Another example could be to remove the emission of the PassengerID event in
execSelect (line 119 in the same file), which will be flagged as the machine not matching its
prescribed projection from the swarm protocol.

B.1 Playing with type-checking
From a docker shell go into folder /typechecking/examples/taxi-full and run

../../ typeresults -g global .json -s subscription .json

to validate the conclusions in
Example 3.2: Taxi example is log- and cmd-deterministic, hence it is deterministic
Example 5.2: Taxi example is causal consistent wrt the given subscription
Example 5.4: Taxi example is determinate wrt the given subscription
Example 5.6: Taxi example is confusion-free wrt the given subscription
Example 5.8: Taxi example is well-formed wrt the given subscription.

This command also produces the projections in Figure 3. More precisely, the command
creates a file for each role in typechecking/examples/taxi-full yielding the minimised local types
represented as plantUml state machines. For instance, P-projected-minimised.uml corresponds
to the minimisation of the top machine in Fig. 3 (e.g., the two equivalent states in Fig. 3 that
are sources of transitions labelled by BidderId? are represented by a unique state in the file
P-projected-minimised.uml).



R. Kuhn, H. Melgratti, and E. Tuosto 14:5

The rndMove function exploits projections to simulate our scenario in a swarm made of 3
replicas for each role. This function generates execution trases by randomly applying the semantic
rules [LOCAL] and [PROP] (page 8) at each step. For each random, trace it checks that it reaches
eventual consensus.

B.2 Live demo
Playing with the code is easier when you can use your usual code editor. To do that, download and
unpack the sources.tar.gz and open a shell in the place where you unpacked it. The following
command runs the image with your local sources of the taxiRide example mapped into the
container so that your local edits will be picked up within the container:

docker run -d --name machines -p 1234:1234 -p 4454:4454 \
-v ‘pwd ‘/ taxiRide /src :/ taxiRide /src machines

This command starts the container as a background process (you can check it with docker ps
or docker logs machines) and also initialises the Actyx runtime system, which is bundled in
the container. Thereafter you can run commands inside this container, e.g. a shell with
docker exec -it machines /bin/bash (note the exec instead of run). You can start the web
browser demo with

docker exec machines npm start

Now you can take a look at a small demo app showing one passenger and two taxi machines
with which you can interact by pointing your web browser to http://localhost:1234. If this
fails or displays “Loading . . . ” make sure to include the -p options as shown in the docker run
command above, and that your web browser is running on the same computer as docker.

With this setup, you can now edit the code in taxiRide/src and watch how that affects the
app in the browser. Note that the swarm protocol checks will only be done again when restarting
the npm start command given above.

References
1 Roland Kuhn, Hernán Melgratti, and Emilio Tu-

osto. Behavioural Types for Local-First Software. In
37th European Conference on Object-Oriented Pro-
gramming (ECOOP 2023), volume 263 of Leibniz
International Proceedings in Informatics (LIPIcs),
pages 15:1–15:28, Dagstuhl, Germany, 2023. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ECOOP.2023.15.

2 YousefED. typescript-json-schema library,
2015-2023. URL: https://github.com/
YousefED/typescript-json-schema/blob/
master/typescript-json-schema.ts.

DARTS

http://localhost:1234
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://github.com/YousefED/typescript-json-schema/blob/master/typescript-json-schema.ts
https://github.com/YousefED/typescript-json-schema/blob/master/typescript-json-schema.ts
https://github.com/YousefED/typescript-json-schema/blob/master/typescript-json-schema.ts

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Structure of the code
	A.1 Directory /typechecking
	A.2 Directory /machine-runner
	A.3 Directory /machine-check
	A.4 Directory /taxiRide

	B Instructions
	B.1 Playing with type-checking
	B.2 Live demo


