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Abstract
SAT/SMT-solvers and model checkers automate
formal verification of sequential programs. Formal
reasoning about scalable concurrent programs is
still manual and requires expert knowledge. But
scalability is a fundamental requirement of current
and future programs.

Sequential imperative programs compose state-
ments, function/method calls and control flow con-
structs. Concurrent programming models provide
constructs for concurrent composition. Concur-
rency abstractions such as threads and synchroniza-
tion primitives such as locks compose the individual
parts of a concurrent program that are meant to ex-
ecute in parallel. We propose to rather compose the
individual parts again using sequential composition
and compile this sequential composition into a con-
current one. The developer can use existing tools

to formally verify the sequential program while the
translated concurrent program provides the dearly
requested scalability.

Following this insight, we present ConDRust,
a new programming model and compiler for Rust
programs. The ConDRust compiler translates se-
quential composition into a concurrent composition
based on threads and message-passing channels.
During compilation, the compiler preserves the se-
mantics of the sequential program along with much
desired properties such as determinism.

Our evaluation shows that our ConDRust com-
piler generates concurrent deterministic code that
can outperform even non-deterministic programs
by up to a factor of three for irregular algorithms
that are particularly hard to parallelize.
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16:2 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs (Artifact)

1 Scope

This artifact aims to back the performance claims made in the accompanying paper. It contains
our presented implementations of various benchmarks from the STAMP [3], PARSEC [1] and
YCSB [2] suites. We also include the build of the ConDRust compiler (named ohuac) used to
generate the code for the benchmarks as well as all external libraries used.

Additionally, this repository contains the proof that an explicit panic we inserted in the code
as part of our optimization is never encountered in the sequential version of the code.

2 Content

The artifact package is a Docker image which includes:
The ConDRust compiler, named ohuac (binary)
Source code available on https://github.com/ohua-lang/condrust.
A patched version of the rust-stm library fixing a deadlock problem (code)
Original available on https://github.com/Marthog/rust-stm.
A library providing rudimentary STM-aware data structures (code)
Performance benchmarks for various benchmarks from STAMP and PARSEC that appeared
in our paper (benchmark)
A Key-Value Store implementation also appearing in our paper (benchmark)
A correctness proof for the absence of panics in an optimization we perform (proof)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

The artifact is provided as Docker file and should therefore run on all platforms supported by the
software. It is known to run on Ubuntu 22.04, NixOS 22.11 and macOS 13.

5 License

The artifact is available under Creative Commons Attribution 4.0 International license (CC BY
4.0).

6 MD5 sum of the artifact

670b7c3d47310b956acf3c451b35a6a9

7 Size of the artifact

1.7 GiB

https://github.com/ohua-lang/condrust
https://github.com/Marthog/rust-stm
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