
ConDRust: Scalable Deterministic Concurrency from
Verifiable Rust Programs (Artifact)
Felix Suchert #

TU Dresden, Germany

Lisza Zeidler #

Barkhausen Insitut, Dresden, Germany

Jeronimo Castrillon #

TU Dresden, Germany

Sebastian Ertel #

Barkhausen Institut, Dresden, Germany

Abstract
SAT/SMT-solvers and model checkers automate
formal verification of sequential programs. Formal
reasoning about scalable concurrent programs is
still manual and requires expert knowledge. But
scalability is a fundamental requirement of current
and future programs.

Sequential imperative programs compose state-
ments, function/method calls and control flow con-
structs. Concurrent programming models provide
constructs for concurrent composition. Concur-
rency abstractions such as threads and synchroniza-
tion primitives such as locks compose the individual
parts of a concurrent program that are meant to ex-
ecute in parallel. We propose to rather compose the
individual parts again using sequential composition
and compile this sequential composition into a con-
current one. The developer can use existing tools

to formally verify the sequential program while the
translated concurrent program provides the dearly
requested scalability.

Following this insight, we present ConDRust,
a new programming model and compiler for Rust
programs. The ConDRust compiler translates se-
quential composition into a concurrent composition
based on threads and message-passing channels.
During compilation, the compiler preserves the se-
mantics of the sequential program along with much
desired properties such as determinism.

Our evaluation shows that our ConDRust com-
piler generates concurrent deterministic code that
can outperform even non-deterministic programs
by up to a factor of three for irregular algorithms
that are particularly hard to parallelize.

2012 ACM Subject Classification Theory of computation → Parallel computing models; Software and
its engineering → Parallel programming languages
Keywords and phrases concurrent programming, verification, scalability
Digital Object Identifier 10.4230/DARTS.9.2.16
Funding Felix Suchert: was funded by the EU Horizon 2020 Programme under grant agreement No
957269 (EVEREST).
Lisza Zeidler : was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– 469256231.

Related Article Felix Suchert, Lisza Zeidler, Jeronimo Castrillon, and Sebastian Ertel, “ConDRust:
Scalable Deterministic Concurrency from Verifiable Rust Programs”, in 37th European Conference on
Object-Oriented Programming (ECOOP 2023), LIPIcs, Vol. 263, pp. 33:1–33:39, 2023.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Felix Suchert, Lisza Zeidler, Jeronimo Castrillon, and Sebastian Ertel;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 16, pp. 16:1–16:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:felix.suchert@tu-dresden.de
https://orcid.org/0000-0001-7011-9945
mailto:lisza.zeidler@barkhauseninstitut.org
mailto:jeronimo.castrillon@tu-dresden.de
https://orcid.org/0000-0002-5007-445X
mailto:sebastian.ertel@barkhauseninstitut.org
https://doi.org/10.4230/DARTS.9.2.16
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


16:2 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs (Artifact)

1 Scope

This artifact aims to back the performance claims made in the accompanying paper. It contains
our presented implementations of various benchmarks from the STAMP [3], PARSEC [1] and
YCSB [2] suites. We also include the build of the ConDRust compiler (named ohuac) used to
generate the code for the benchmarks as well as all external libraries used.

Additionally, this repository contains the proof that an explicit panic we inserted in the code
as part of our optimization is never encountered in the sequential version of the code.

2 Content

The artifact package is a Docker image which includes:
The ConDRust compiler, named ohuac (binary)
Source code available on https://github.com/ohua-lang/condrust.
A patched version of the rust-stm library fixing a deadlock problem (code)
Original available on https://github.com/Marthog/rust-stm.
A library providing rudimentary STM-aware data structures (code)
Performance benchmarks for various benchmarks from STAMP and PARSEC that appeared
in our paper (benchmark)
A Key-Value Store implementation also appearing in our paper (benchmark)
A correctness proof for the absence of panics in an optimization we perform (proof)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

The artifact is provided as Docker file and should therefore run on all platforms supported by the
software. It is known to run on Ubuntu 22.04, NixOS 22.11 and macOS 13.

5 License

The artifact is available under Creative Commons Attribution 4.0 International license (CC BY
4.0).

6 MD5 sum of the artifact

670b7c3d47310b956acf3c451b35a6a9

7 Size of the artifact

1.7 GiB

https://github.com/ohua-lang/condrust
https://github.com/Marthog/rust-stm


F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 16:3

References
1 Christian Bienia and Kai Li. Parsec 2.0: A new

benchmark suite for chip-multiprocessors. In Pro-
ceedings of the 5th Annual Workshop on Model-
ing, Benchmarking and Simulation, volume 2011,
page 37, 2009.

2 Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with ycsb. In Pro-

ceedings of the 1st ACM symposium on Cloud com-
puting, pages 143–154, 2010.

3 Chi Cao Minh, JaeWoong Chung, Christos Kozyra-
kis, and Kunle Olukotun. Stamp: Stanford trans-
actional applications for multi-processing. In 2008
IEEE International Symposium on Workload Char-
acterization, pages 35–46. IEEE, 2008.

DARTS


	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

