
Hoogle⋆: Constants and λ-abstractions in
Petri-net-based Synthesis using Symbolic Execution
(Artifact)
Henrique Botelho Guerra #

INESC-ID and IST, University of Lisbon, Portugal

João F. Ferreira # Ñ

INESC-ID and IST, University of Lisbon, Portugal

João Costa Seco #Ñ

NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

Abstract
Type-directed component-based program synthesis
is the task of automatically building a function with
applications of available components and whose
type matches a given goal type. Existing approaches
to component-based synthesis, based on classical
proof search, cannot deal with large sets of com-
ponents. Recently, Hoogle+, a component-based
synthesizer for Haskell, overcomes this issue by redu-
cing the search problem to a Petri-net reachability
problem. However, Hoogle+ cannot synthesize
constants nor λ-abstractions, which limits the prob-
lems that it can solve.

We present Hoogle⋆, an extension to Hoogle+
that brings constants and λ-abstractions to the
search space, in two independent steps. First, we
introduce the notion of wildcard component, a com-
ponent that matches all types. This enables the al-

gorithm to produce incomplete functions, i.e., func-
tions containing occurrences of the wildcard com-
ponent. Second, we complete those functions, by
replacing each occurrence with constants or custom-
defined λ-abstractions. We have chosen to find
constants by means of an inference algorithm: we
present a new unification algorithm based on sym-
bolic execution that uses the input-output examples
supplied by the user to compute substitutions for
the occurrences of the wildcard.

When compared to Hoogle+, Hoogle⋆ can
solve more kinds of problems, especially prob-
lems that require the generation of constants and
λ-abstractions, without performance degradation.

The artifact contains the source code of
Hoogle⋆, as well as scripts to reproduce the evalu-
ation done in the paper.

2012 ACM Subject Classification Software and its engineering → Automatic programming; Theory of
computation → Automated reasoning
Keywords and phrases Type-directed, component-based, program synthesis, symbolic execution, unifica-
tion, Haskell
Digital Object Identifier 10.4230/DARTS.9.2.20
Funding FCT UIDB/04516/2020, FCT UIDB/50021/2020, and ANI Lisboa-01-0247-Feder-045917

Related Article Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco, “Hoogle⋆: Constants
and λ-abstractions in Petri-net-based Synthesis using Symbolic Execution”, in 37th European Conference
on Object-Oriented Programming (ECOOP 2023), LIPIcs, Vol. 263, pp. 4:1–4:28, 2023.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 20, pp. 20:1–20:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:henrique.b.guerra@tecnico.ulisboa.pt
https://orcid.org/0009-0002-5906-3033
mailto:joao@joaoff.com
https://joaoff.com
https://orcid.org/0000-0002-6612-9013
mailto:joao.seco@fct.unl.pt
http://ctp.di.fct.unl.pt/~jcs
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/DARTS.9.2.20
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


20:2 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis (Artifact)

1 Scope

The artifact includes the source code of Hoogle⋆, and allows the reproduction of the experiments
done in the evaluation section of the paper, automatically generating tables 3 and 4 of the paper.

Specifically, it supports the answers to the two research questions in the paper:
RQ1 Can Hoogle⋆ solve all the problems that Hoogle+ solves, without performance degrada-

tion?
RQ2 Can Hoogle⋆ solve more problems than Hoogle+?

Answer to RQ1 The addition of the wildcard component did not lead to performance degradations.
Instead, the removal of constants resulted in performance improvements. From the original
Hoogle+ benchmarks, there is a single benchmark that Hoogle+ solves and Hoogle⋆

cannot solve within the timeout, but it solves two that Hoogle+ does not solve.
Answer to RQ2 Hoogle⋆ can solve many more new problems than Hoogle+, especially when

constants or λ-abstractions are required, which makes it able to solve new classes of problems.
We also found that in the cases that both synthesizers produce solutions, the solutions of
Hoogle⋆ are simpler, since they use fewer components.

2 Content

The artifact package consists of a zip file with:

1. A docker image with a minimal installation on Ubuntu 22.04, GHC 8.8.4, stack 2.11.1, and:
the source code of Hoogle⋆, Hoogle+ and Hoogle+ with examples;
Hoogle⋆, Hoogle+ and Hoogle+ with examples pre-installed and ready to use;
a script that runs the experiments of the paper and generates tables 3 and 4 of the paper.

2. A README.md file containing:
a description of the files and directories present in the docker images;
instructions on how to run the evaluation, and run particular problems on each version;
a mapping of the algorithms in the paper to the functions in the source code.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/sr-lab/hoogle_plus.

4 Tested platforms

The artifact only requires docker to run. Table 1 shows the platforms in which we successfully ran
the evaluation script.

Table 1 Tested platforms.

CPU RAM OS Docker Server Version

AMD Ryzen 5 5600G 16 GB Ubuntu 22.04 20.10.21
Intel Core i5-4200U 8 GB Windows 7 Professional 19.03.12

AMD Ryzen 5 5500U 12 GB Ubuntu 22.04 20.10.24

https://github.com/sr-lab/hoogle_plus


H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 20:3

5 License

The artifact is available under license Creative Commons license.

6 MD5 sum of the artifact

5eaf7ec500bb0795aaf8925ce874ebdf

7 Size of the artifact

1.83 GiB

A Documentation

Table 2 shows the mapping between the algorithms described in the paper and the functions in
the source code.

To change the way the occurrences of the wildcard component are replaced, simply redefine the
function runExampleChecks (/home/hoogle_plus_ext/src/HooglePlus/GHCChecker.hs). Note
that this function takes as argument the function synthesized by the Petri net (possibly with
wildcards), as well as the query type and the set of input-output examples, and returns a list of
functions in which the occurrences of the wildcard are replaced, because we may find different
replacements for the same wildcard.

The file README.md contains more information, as explained in Section 2.

Table 2 Mapping between algorithms of the paper and the source code. The paths are relative to the
directory /home/hoogle_plus_ext.

Algorithm Source code

Algorithm 1 function eval in src/SymbolicMatch/Eval.hs
Algorithm 2 functions main and executeSearch in app/HooglePlus.hs
Algorithm 3 functions executeCheck and runExampleChecks in

src/HooglePlus/GHCChecker.hs
Algorithm 4 function synthLamba in src/HooglePlus/GHCChecker.hs and func-

tion linearSynth in src/HooglePlus/LinearSynth.hs
Algorithm 5 function completeExpr in src/HooglePlus/LinearSynth.hs
Algorithm 6 function applyMatch in src/HooglePlus/LinearSynth.hs

Addition of wildcard function generateEnv in src/Database/Environment.hs
Unification algorithm function match in src/SymbolicMatch/Match.hs; each case of this

function is related to an inference rule presented in the paper.
Conversion to Haskell notation function showExpr in src/SymbolicMatch/Expr.hs

DARTS


	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Documentation

