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— Abstract

This artifact consists of an SBT project with a  troduced in the corresponding paper. We provide a
Scala implementation of the MLscript programming  test suite that includes SuperOOP examples and a
language extended with “super-charged” object- web demo that gives live typing and running results
oriented programming features (SuperOOP), in-  of the user input source.
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1 Scope

In the corresponding paper, we refer to our implementation of SuperOOP as part of the MLscript
programming language. This artifact contains that implementation. MLscript code examples in
the paper should be functional as they are shown. Our implementation shows the desired typing
and running results of those examples. Specifically, under shared/src/test/diff/ecoop23:

Intro.mls contains the example in paper Section 1

ExpressionProblem.mls contains the motivating paper example in paper Section 2
PolymorphicVariants.mls contains a modular evaluator of extended lambda calculus case
study [1] in the appendix of the paper

SimpleRegionDSL.mls contains a simple “regions” DSL case study [3] in the appendix of the
paper

Moreover, we explain how the MLscript compiler codebase is organized and introduce the
compiler implementation in the codebase documentation. Of particular interest, we discuss how
class and mixin typing is implemented and how corresponding JavaScript code is generated in that
document. We hope this could inspire the reuse of the artifact to extend the MLscript compiler
with new features.
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2 Content

The artifact package consists of a Docker [2] image (linux/amd64) and a README.md which includes
the instructions to load the image and test our artifact. Sources inside the Docker image with all
necessary dependencies installed are as follows:

mls-codebase-doc.md: the codebase documentation

shared/src/main/scala/mlscript directory: the sources of the MLscript compiler

shared/src/test/scala/mlscript directory: testing infrastructure

shared/src/test/diff directory: MLscript tests

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the implementation is open-
source and available at https://github.com/hkust-taco/superoop. The Docker image is pushed
to Docker Hub at https://hub.docker.com/r/superoop/superoop-docker/. The web demo is
also online and available at https://hkust-taco.github.io/superoop/.

4 Tested platforms

Any system with Docker available can access, compile, and test our artifact. The Docker image
archived in this artifact is for the amd64 platform, which contains all dependencies to compile
and run our artifact. We tested that all 428 MLscript tests pass in 15 seconds on Intel® Core™
i7-13700KF and AMD Ryzen™ 9 5900X processors. We have also prepared an image for the
armé64 platform and pushed that to our Docker Hub repository. On a MacBook Pro (2021) with
Apple M1 Max processor, all the tests pass in 15 seconds.

To test our artifact from scratch, one needs to install a recent Java Virtual Machine (JVM),
SBT, and NodeJS. We explicitly support NodeJS versions 16.14 to 16.17, 17, 18, and 19.

5 License

The artifact is available under the MIT License.

6 MD5 sum of the artifact

41a2dcbd8e090b15582145f2c9a42fad

7 Size of the artifact

686.2 MB
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