super-Charging Object-Oriented Programming
Through Precise Typing of Open Recursion (Artifact)

Andong Fan &
The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

Lionel Parreaux &
The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

— Abstract

This artifact consists of an SBT project with a troduced in the corresponding paper. We provide a
Scala implementation of the MLscript programming test suite that includes SuperOOP examples and a
language extended with “super-charged” object- web demo that gives live typing and running results
oriented programming features (SuperOOP), in- of the user input source.

2012 ACM Subject Classification Software and its engineering — Object oriented languages
Keywords and phrases Object-Oriented Programming, the Expression Problem, Open Recursion
Digital Object Identifier 10.4230/DARTS.9.2.22

Acknowledgements We thank the anonymous reviewers for their helpful comments as well as Cunyuan
Gao for his help with the implementation.

Related Article Andong Fan and Lionel Parreaux, “super-Charging Object-Oriented Programming
Through Precise Typing of Open Recursion”, in 37th European Conference on Object-Oriented Pro-
gramming (ECOOP 2023), LIPIcs, Vol. 263, pp. 11:1-11:28, 2023.
https://doi.org/10.4230/LIPIcs.ECO0P.2023.11

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
1721, 2023, Seattle, Washington, United States

Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

In the corresponding paper, we refer to our implementation of SuperOOP as part of the MLscript
programming language. This artifact contains that implementation. MLscript code examples in
the paper should be functional as they are shown. Our implementation shows the desired typing
and running results of those examples. Specifically, under shared/src/test/diff/ecoop23:

Intro.mls contains the example in paper Section 1

ExpressionProblem.mls contains the motivating paper example in paper Section 2
PolymorphicVariants.mls contains a modular evaluator of extended lambda calculus case
study [1] in the appendix of the paper

SimpleRegionDSL.mls contains a simple “regions” DSL case study [3] in the appendix of the
paper

Moreover, we explain how the MLscript compiler codebase is organized and introduce the
compiler implementation in the codebase documentation. Of particular interest, we discuss how
class and mixin typing is implemented and how corresponding JavaScript code is generated in that
document. We hope this could inspire the reuse of the artifact to extend the MLscript compiler
with new features.
© Andong Fan and Lionel Parreaux;

Bv licensed under Creative Commons License CC-BY 4.0
Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 22, pp. 22:1-22:2
\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,

Dagstuhl Publishing, Germany

mailto:afanab@cse.ust.hk
https://orcid.org/0000-0003-2124-9625
mailto:parreaux@cse.ust.hk
https://orcid.org/0000-0002-8805-0728
https://doi.org/10.4230/DARTS.9.2.22
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

22:2

super-Charging Object-Oriented Programming (Artifact)

2 Content

The artifact package consists of a Docker [2] image (linux/amd64) and a README.md which includes
the instructions to load the image and test our artifact. Sources inside the Docker image with all
necessary dependencies installed are as follows:

mls-codebase-doc.md: the codebase documentation

shared/src/main/scala/mlscript directory: the sources of the MLscript compiler

shared/src/test/scala/mlscript directory: testing infrastructure

shared/src/test/diff directory: MLscript tests

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the implementation is open-
source and available at https://github.com/hkust-taco/superoop. The Docker image is pushed
to Docker Hub at https://hub.docker.com/r/superoop/superoop-docker/. The web demo is
also online and available at https://hkust-taco.github.io/superoop/.

4 Tested platforms

Any system with Docker available can access, compile, and test our artifact. The Docker image
archived in this artifact is for the amd64 platform, which contains all dependencies to compile
and run our artifact. We tested that all 428 MLscript tests pass in 15 seconds on Intel® Core™
i7-13700KF and AMD Ryzen™ 9 5900X processors. We have also prepared an image for the
armé64 platform and pushed that to our Docker Hub repository. On a MacBook Pro (2021) with
Apple M1 Max processor, all the tests pass in 15 seconds.

To test our artifact from scratch, one needs to install a recent Java Virtual Machine (JVM),
SBT, and NodeJS. We explicitly support NodeJS versions 16.14 to 16.17, 17, 18, and 19.

5 License

The artifact is available under the MIT License.

6 MD5 sum of the artifact

41a2dcbd8e090b15582145f2c9a42fad

7 Size of the artifact

686.2 MB

— References

1 Jacques Garrigue. Code reuse through poly- 3 Yaozhu Sun, Utkarsh Dhandhania, and Bruno
morphic variants. In In Workshop on Found- C. d. S. Oliveira. Compositional embeddings
ations of Software Engineering, 2000. URL: of domain-specific languages. Proc. ACM Pro-
https://www.math.nagoya-u.ac.jp/~garrigue/ gram. Lang., 6(O0OPSLA2), October 2022. doi:
papers/variant-reuse.pdf. 10.1145/3563294.

2 Dirk Merkel. Docker: lightweight linux containers
for consistent development and deployment. Linux
journal, 2014(239):2, 2014.

https://github.com/hkust-taco/superoop
https://hub.docker.com/r/superoop/superoop-docker/
https://hkust-taco.github.io/superoop/
https://www.math.nagoya-u.ac.jp/~garrigue/papers/variant-reuse.pdf
https://www.math.nagoya-u.ac.jp/~garrigue/papers/variant-reuse.pdf
https://doi.org/10.1145/3563294
https://doi.org/10.1145/3563294

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

