
Information Flow Analysis for Detecting
Non-Determinism in Blockchain (Artifact)
Luca Olivieri #

University of Verona, Italy
Corvallis Srl, Padova, Italy

Luca Negrini #

Corvallis Srl, Padova, Italy

Vincenzo Arceri #

University of Parma, Italy
Fabio Tagliaferro #

CYS4 Srl, Florence, Italy

Pietro Ferrara #

Ca’ Foscari University of Venice, Italy
Agostino Cortesi #

Ca’ Foscari University of Venice, Italy

Fausto Spoto #

University of Verona, Italy

Abstract
A mandatory feature for blockchain software, such
as smart contracts and decentralized applications,
is determinism. In fact, non-deterministic behaviors
do not allow blockchain nodes to reach one common
consensual state or a deterministic response, which
causes the blockchain to be forked, stopped, or
to deny services. While domain-specific languages
are deterministic by design, general-purpose lan-
guages widely used for the development of smart
contracts such as Go, provide many sources of non-
determinism. However, not all non-deterministic
behaviours are critical. In fact, only those that
affect the state or the response of the blockchain
can cause problems, as other uses (for example,
logging) are only observable by the node that ex-

ecutes the application and not by others. Therefore,
some frameworks for blockchains, such as Hyper-
ledger Fabric or Cosmos SDK, do not prohibit the
use of non-deterministic constructs but leave the
programmer the burden of ensuring that the block-
chain application is deterministic. In this paper,
we present a flow-based approach to detect non-
deterministic vulnerabilities which could comprom-
ise the blockchain. The analysis is implemented in
GoLiSA, a semantics-based static analyzer for Go
applications. Our experimental results show that
GoLiSA is able to detect all vulnerabilities related
to non-determinism on a significant set of applic-
ations, with better results than other open-source
analyzers for blockchain software written in Go.

2012 ACM Subject Classification Security and privacy → Distributed systems security; Theory of
computation → Program analysis; Theory of computation → Program verification; Software and its
engineering → Software notations and tools
Keywords and phrases Static Analysis, Program Verification, Non-determinism, Blockchain, Smart
contracts, DApps, Go language
Digital Object Identifier 10.4230/DARTS.9.2.23
Funding Vincenzo Arceri: Bando di Ateneo per la ricerca 2022, founded by University of Parma, project
number: MUR_DM737_2022_FIL_PROGETTI_B_ARCERI_COFIN, Formal verification of GPLs
blockchain smart contracts
Pietro Ferrara: SERICS (PE00000014) under the NRRP MUR program funded by the EU – NGEU,
iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2, Investment 1.5)
NextGeneration EU – Project ID: ECS 00000043, and SPIN-2021 “Static Analysis for Data Scientists”
funded by Ca’ Foscari University
Agostino Cortesi: SERICS (PE00000014) under the NRRP MUR program funded by the EU – NGEU,
iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2, Investment 1.5)
NextGeneration EU – Project ID: ECS 00000043, and SPIN-2021 “Ressa-Rob” funded by Ca’ Foscari
University

V1.1

A
rt
ifa

cts Available

ECOOP

© Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro Ferrara,
Agostino Cortesi, and Fausto Spoto;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 23, pp. 23:1–23:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:luca.olivieri@univr.it
https://orcid.org/0000-0001-8074-8980
mailto:luca.negrini@corvallis.it
https://orcid.org/0000-0001-9930-8854
mailto:vincenzo.arceri@unipr.it
https://orcid.org/0000-0002-5150-0393
mailto:fabio.tagliaferro@cys4.com
https://orcid.org/0000-0002-5904-8768
mailto:pietro.ferrara@unive.it
https://orcid.org/0000-0002-4678-933X
mailto:cortesi@unive.it
https://orcid.org/0000-0002-0946-5440
mailto:fausto.spoto@univr.it
https://orcid.org/0000-0003-2973-0384
https://doi.org/10.4230/DARTS.9.2.23
https://doi.org/10.4230/DARTS.9.2.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


23:2 Information Flow Analysis for Detecting Non-Determinism in Blockchain (Artifact)

Related Article Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro Ferrara, Agostino
Cortesi, and Fausto Spoto, “Information Flow Analysis for Detecting Non-Determinism in Blockchain”,
in 37th European Conference on Object-Oriented Programming (ECOOP 2023), LIPIcs, Vol. 263,
pp. 23:1–23:25, 2023. https://doi.org/10.4230/LIPIcs.ECOOP.2023.23

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The scope of the artifact is to reproduce the results reported in the paper Information Flow Analysis
for Detecting Non-Determinism in Blockchain in Proceedings of the 37th European Conference
on Object-Oriented Programming (ECOOP 2023). In particular, the artifact provides a complete
environment for using our analyses, to evaluate them on a set of 651 real-world Hyperledger Fabric
smart contracts and to compare GoLiSA against state-of-the-art static analyzers in this domain.

2 Content

The artifact comprises the following distinct components:
Virtual Machine (Linux)

README file: instruction to reproduce paper results and guide for GoLiSA
Analyzers: GoLiSA, ChainCode Analyzer 1 and ReviveˆCC 2

Benchmark: Set of smart contracts written in Go
Results: generated after the execution of analyzers

In the following formats:
Virtual Machine (Linux): .OVA

README file: .pdf

Analyzers: binaries and source code
Benchmark: source code written in Go
Results:
∗ GoLiSA result: .json
∗ ChaincodeAnalyzer: .txt (structured output format not available)
∗ ReviveˆCC: .txt (structured output format not available)

The components contained in the virtual machine can be found in the following locations:
README file: /home/artifactvm/Desktop/README.pdf

Analyzers: /home/artifactvm/Desktop/Analyzers

Benchmark: /home/artifactvm/Desktop/Benchmark

Results: /home/artifactvm/Desktop/Results

1 Available at https://github.com/hyperledger-labs/chaincode-analyzer
2 Available at https://github.com/sivachokkapu/revive-cc

https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/hyperledger-labs/chaincode-analyzer
https://github.com/sivachokkapu/revive-cc


L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:3

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the version of GoLiSA
contained in the artifact is also available at: https://github.com/lisa-analyzer/go-lisa/
tree/ecoop2023.

4 Tested platforms

Oracle Virtual Box 7.0. The virtual machine was tested on Windows 10 64-bit and Ubuntu 20
LTS 64-bit.

5 License

The artifact is available under Creative Commons license.

6 MD5 sum of the artifact

82404092ce81342ef212de6cefb3e5e2

7 Size of the artifact

4.99 GiB

A Getting Started

1. Import the .OVA file using Oracle Virtual Box
2. Launch the imported Virtual Machine.
3. Open the file README.pdf on the Desktop and follow the instructions.
Note: if necessary the password of ubuntu user is ecoop2023

DARTS

https://github.com/lisa-analyzer/go-lisa/tree/ecoop2023
https://github.com/lisa-analyzer/go-lisa/tree/ecoop2023

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Getting Started

