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Abstract
A mandatory feature for blockchain software, such
as smart contracts and decentralized applications,
is determinism. In fact, non-deterministic behaviors
do not allow blockchain nodes to reach one common
consensual state or a deterministic response, which
causes the blockchain to be forked, stopped, or
to deny services. While domain-specific languages
are deterministic by design, general-purpose lan-
guages widely used for the development of smart
contracts such as Go, provide many sources of non-
determinism. However, not all non-deterministic
behaviours are critical. In fact, only those that
affect the state or the response of the blockchain
can cause problems, as other uses (for example,
logging) are only observable by the node that ex-

ecutes the application and not by others. Therefore,
some frameworks for blockchains, such as Hyper-
ledger Fabric or Cosmos SDK, do not prohibit the
use of non-deterministic constructs but leave the
programmer the burden of ensuring that the block-
chain application is deterministic. In this paper,
we present a flow-based approach to detect non-
deterministic vulnerabilities which could comprom-
ise the blockchain. The analysis is implemented in
GoLiSA, a semantics-based static analyzer for Go
applications. Our experimental results show that
GoLiSA is able to detect all vulnerabilities related
to non-determinism on a significant set of applic-
ations, with better results than other open-source
analyzers for blockchain software written in Go.
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Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The scope of the artifact is to reproduce the results reported in the paper Information Flow Analysis
for Detecting Non-Determinism in Blockchain in Proceedings of the 37th European Conference
on Object-Oriented Programming (ECOOP 2023). In particular, the artifact provides a complete
environment for using our analyses, to evaluate them on a set of 651 real-world Hyperledger Fabric
smart contracts and to compare GoLiSA against state-of-the-art static analyzers in this domain.

2 Content

The artifact comprises the following distinct components:
Virtual Machine (Linux)

README file: instruction to reproduce paper results and guide for GoLiSA
Analyzers: GoLiSA, ChainCode Analyzer 1 and ReviveˆCC 2

Benchmark: Set of smart contracts written in Go
Results: generated after the execution of analyzers

In the following formats:
Virtual Machine (Linux): .OVA

README file: .pdf

Analyzers: binaries and source code
Benchmark: source code written in Go
Results:
∗ GoLiSA result: .json
∗ ChaincodeAnalyzer: .txt (structured output format not available)
∗ ReviveˆCC: .txt (structured output format not available)

The components contained in the virtual machine can be found in the following locations:
README file: /home/artifactvm/Desktop/README.pdf

Analyzers: /home/artifactvm/Desktop/Analyzers

Benchmark: /home/artifactvm/Desktop/Benchmark

Results: /home/artifactvm/Desktop/Results

1 Available at https://github.com/hyperledger-labs/chaincode-analyzer
2 Available at https://github.com/sivachokkapu/revive-cc
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3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the version of GoLiSA
contained in the artifact is also available at: https://github.com/lisa-analyzer/go-lisa/
tree/ecoop2023.

4 Tested platforms

Oracle Virtual Box 7.0. The virtual machine was tested on Windows 10 64-bit and Ubuntu 20
LTS 64-bit.

5 License

The artifact is available under Creative Commons license.

6 MD5 sum of the artifact

82404092ce81342ef212de6cefb3e5e2

7 Size of the artifact

4.99 GiB

A Getting Started

1. Import the .OVA file using Oracle Virtual Box
2. Launch the imported Virtual Machine.
3. Open the file README.pdf on the Desktop and follow the instructions.
Note: if necessary the password of ubuntu user is ecoop2023
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