
Do Machine Learning Models Produce TypeScript
Types That Type Check? (Artifact)
Ming-Ho Yee #

Northeastern University, Boston, MA, USA

Arjun Guha #

Northeastern University, Boston, MA, USA
Roblox Research, San Mateo, CA, USA

Abstract
Type migration is the process of adding types to
untyped code to gain assurance at compile time.
TypeScript and other gradual type systems facil-
itate type migration by allowing programmers to
start with imprecise types and gradually strengthen
them. However, adding types is a manual effort
and several migrations on large, industry codebases
have been reported to have taken several years.
In the research community, there has been signifi-
cant interest in using machine learning to automate
TypeScript type migration. Existing machine learn-
ing models report a high degree of accuracy in
predicting individual TypeScript type annotations.
However, in this paper we argue that accuracy can
be misleading, and we should address a different
question: can an automatic type migration tool pro-
duce code that passes the TypeScript type checker?

We present TypeWeaver, a TypeScript type
migration tool that can be used with an arbitrary

type prediction model. We evaluate TypeWeaver
with three models from the literature: DeepTyper,
a recurrent neural network; LambdaNet, a graph
neural network; and InCoder, a general-purpose,
multi-language transformer that supports fill-in-the-
middle tasks. Our tool automates several steps that
are necessary for using a type prediction model,
including (1) importing types for a project’s de-
pendencies; (2) migrating JavaScript modules to
TypeScript notation; (3) inserting predicted type
annotations into the program to produce Type-
Script when needed; and (4) rejecting non-type
predictions when needed.

We evaluate TypeWeaver on a dataset of 513
JavaScript packages, including packages that have
never been typed before. With the best type pre-
diction model, we find that only 21% of packages
type check, but more encouragingly, 69% of files
type check successfully.

2012 ACM Subject Classification Software and its engineering → Source code generation; General and
reference → Evaluation; Theory of computation → Type structures
Keywords and phrases Type migration, deep learning
Digital Object Identifier 10.4230/DARTS.9.2.5
Funding This work is partially supported by the National Science Foundation grant CCF-2102291.
Acknowledgements We thank Northeastern Research Computing and the New England Research Cloud
for providing computing resources; and Donald Pinckney and the anonymous reviewers for their feedback.

Related Article Ming-Ho Yee and Arjun Guha, “Do Machine Learning Models Produce TypeScript
Types That Type Check?”, in 37th European Conference on Object-Oriented Programming (ECOOP
2023), LIPIcs, Vol. 263, pp. 37:1–37:28, 2023. https://doi.org/10.4230/LIPIcs.ECOOP.2023.37

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ming-Ho Yee and Arjun Guha;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 5, pp. 5:1–5:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:mh@mhyee.com
https://orcid.org/0000-0002-8008-8481
mailto:a.guha@northeastern.edu
https://orcid.org/0000-0002-7493-3271
https://doi.org/10.4230/DARTS.9.2.5
https://doi.org/10.4230/LIPIcs.ECOOP.2023.37
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


5:2 Do Machine Learning Models Produce TypeScript Types That Type Check? (Artifact)

1 Scope

This artifact is functional. All figures and tables in the paper (with the exceptions of Figures
1–3 and 13–16, which are examples) are generated from the experiments. They can be regenerated
from the CSV data, and should match the paper. It is also possible to run all experiments from
scratch: in this case, the figures and tables will not exactly match the paper, because the machine
learning models are non-deterministic and may return different results.
This artifact is reusable. The artifact can be used to migrate your own JavaScript project to
TypeScript, using the infrastructure in ./data/playground/. New models can be added to the
artifact, though the process is time consuming, as models typically expose different interfaces and
thus require custom adapters. New datasets can also be added to the artifact.

For full instructions, refer to the README.md and ECOOP_AE_Submission_Document.md files.

2 Content

The artifact package includes:
Benchmarks (source code of NPM packages)
Results (log files, TypeScript source code, CSV files)
Code (Python, TypeScript, and R)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on
the Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also
available at: https://doi.org/10.5281/zenodo.7662708 and https://github.com/nuprl/
TypeWeaver/tree/ecoop2023-artifact.

4 Tested platforms

The artifact has been tested on Ubuntu Linux, and requires Python +3.6 and the tqdm package.
All other software dependencies are managed by Open Container Initiative [4] images; OCI
implementations include Podman [3] and Docker [2]. The GPU experiments require a GPU with
at least 14 GB of VRAM.

5 License

The artifact is available under a Creative Commons Attribution 4.0 International license (CC BY
4.0) [1].

6 MD5 sum of the artifact

415b9ed685645c24f95d500d099c4c08

7 Size of the artifact

666.6 MB

https://doi.org/10.5281/zenodo.7662708
https://github.com/nuprl/TypeWeaver/tree/ecoop2023-artifact
https://github.com/nuprl/TypeWeaver/tree/ecoop2023-artifact


M.-H. Yee and A. Guha 5:3

References
1 Creative Commons. Attribution 4.0 International

(CC BY 4.0). https://creativecommons.org/
licenses/by/4.0/. Accessed: 2023-05-25.

2 Docker Inc. Docker. https://www.docker.com/.
Accessed: 2023-05-25.

3 Podman. Podman. https://podman.io/. Accessed:
2023-05-25.

4 The Linux Foundation. Open Container Initiative.
https://opencontainers.org/. Accessed: 2023-
05-25.

DARTS

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.docker.com/
https://podman.io/
https://opencontainers.org/

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

