
Toward Tool-Independent Summaries for Symbolic
Execution (Artifact)
Frederico Ramos # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Nuno Sabino # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
Carnegie Mellon University, Pittsburgh, PA, USA
Institute of Telecommunications, Campus de Santiago, Aveiro, Portugal

Pedro Adão #Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
Institute of Telecommunications, Campus de Santiago, Aveiro, Portugal

David A. Naumann #Ñ

Stevens Institute of Technology, Hoboken, NJ, USA

José Fragoso Santos #Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Abstract
The artifact contains the extended versions of the
tools angr and AVD with support for the symbolic
reflection API proposed in the paper. Additionally,
the artifact contains the source code of SumBound-
Verify, our novel tool for the bounded-verification
of symbolic summaries for the C programming lan-
guage. The artifact contains all the scripts and

datasets required to obtain the results presented in
the paper, including: a library of 67 symbolic sum-
maries implemented using the proposed symbolic
reflection API; two symbolic test suites designed to
test two open source C libraries; and the source code
of the third-party summaries that were validated
checked with SumBoundVerify.

2012 ACM Subject Classification Software and its engineering → Software verification and validation;
Security and privacy → Formal methods and theory of security
Keywords and phrases Symbolic Execution, Runtime Modelling, Symbolic Summaries
Digital Object Identifier 10.4230/DARTS.9.2.7
Acknowledgements The authors were supported by Fundação para a Ciência e a Tecnologia
(UIDB/50008/2020, Instituto de Telecomunicações, and UIDB/50021/2020, INESC-ID multi-annual fund-
ing, and PhD grant SFRH/BD/150692/2020), project DIVINA (CMU/TIC/0053/2021), the SmartRetail
project (C6632206063-00466847) financed by IAPMEI, the European Commission under grant agreement
number 830892 (SPARTA), and the NSF award CNS-1718713.

Related Article Frederico Ramos, Nuno Sabino, Pedro Adão, David A. Naumann, and José Fragoso
Santos, “Toward Tool-Independent Summaries for Symbolic Execution”, in 37th European Conference
on Object-Oriented Programming (ECOOP 2023), LIPIcs, Vol. 263, pp. 24:1–24:29, 2023.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17–21, 2023, Seattle, Washington, United States
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Frederico Ramos, Nuno Sabino, Pedro Adão, David A. Naumann, and
José Fragoso Santos;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 7, pp. 7:1–7:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:frederico.ramos@tecnico.ulisboa.pt
https://frediramos.github.io
https://orcid.org/0000-0002-1689-9650
mailto:nuno.sabino@tecnico.ulisboa.pt
https://icemonster.github.io
https://orcid.org/0000-0001-6302-477X
mailto:pedro.adao@tecnico.ulisboa.pt
https://web.tecnico.ulisboa.pt/pedro.adao/
https://orcid.org/0000-0002-4049-1954
mailto:dnaumann@stevens.edu
https://dnaumann.github.io/dnaumann
https://orcid.org/0000-0002-7634-6150
mailto:jose.fragoso@tecnico.ulisboa.pt
https://web.ist.utl.pt/jose.fragoso
https://orcid.org/0000-0001-5077-300X
https://doi.org/10.4230/DARTS.9.2.7
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.9.2.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


7:2 Toward Tool-Independent Summaries for Symbolic Execution (Artifact)

1 Scope

The artifact is composed of two main elements: (1) our versions of the tools angr [5] and AVD [3],
extended with support for the symbolic reflection API proposed in the paper and (2) the source
code of SumBoundVerify, our novel tool for the bounded verification of symbolic summaries
for the C programming language. This artifact aims to fulfill the requirements for ECOOP’s
functional badge.

Symbolic Reflection API

The paper proposes a new symbolic reflection API for developing tool-independent summaries
that can be shared across different symbolic execution tools. The core idea of the paper is that
instead of writing symbolic summaries in the programming language used to build each tool, tool
developers should implement symbolic summaries directly in C using a shared symbolic reflection
API. By implementing the shared API, tool developers gain access to all the symbolic summaries
implemented using that API.

To demonstrate how easy it is to implement the proposed symbolic reflection API, we extended
two tools with support for it: angr [5], a state-of-the-art tool developed at the University of
California Santa Barbara, and AVD [3], our own symbolic execution tool for C. The two extended
tools are included in the artifact along with instructions that explain their usage.

To evaluate the expressivity of our symbolic reflection API, we have developed a comprehensive
library of symbolic summaries. This library comprises 67 summaries, encompassing 26 libc
functions sourced from three distinct header files: string.h, stdlib.h, and stdio.h. All the developed
summaries are included in the artifact.

We evaluate the performance of the summaries developed using our API by comparing it
against the performance of both native summaries and reference implementations. In order to
carry out this experiment, we designed two symbolic test suites for two open source C libraries:
(1) an HashMap library [6], which provides an implementation of a standard array-based hash
table, and (2) a Dynamic Strings library [4], which provides an implementation of heap-allocated
strings. This experiment was designed to focus on libc usage with both libraries making intensive
use of libc string processing functions. The source code of both symbolic test suites is included
in the artifact together with the scripts for automating their execution and the source code of the
targeted libraries.

SumBoundVerify

In addition to the symbolic reflection API, the paper describes SumBoundVerify, a new tool
for the bounded verification of symbolic summaries. SumBoundVerify works by comparing the
symbolic states resulting from the symbolic execution of the summary to be verified against the
states resulting from the execution of its reference implementation. SumBoundVerify classifies
summaries as: (1) over-approximating if the traces modelled by the summary contain the traces
of the corresponding reference implementation; (2) under-approximating if the traces modelled
by the summary are contained in the traces of the corresponding reference implementation;
or (3) unsound if the summary is neither over- nor under-approximating. The source code of
SumBoundVerify is included in the artifact along with instructions that explain its usage and a
range of illustrative examples.

To evaluate the effectiveness of SumBoundVerify, we conducted a thorough bug-finding
analysis on a number of summaries used by three prominent symbolic execution tools: angr [5],
Binsec [1], and Manticore [2]. Furthermore, we used SumBoundVerify to verify the correctness



F. Ramos, N. Sabino, P. Adão, D. Naumann, and J. Fragoso Santos 7:3

of part of our own summaries. This experiment revealed a total of 24 bugs in third-party tools
and 13 bugs in our summaries. The artifact includes the source code of SumBoundVerify
as well as the code of all the summaries that were checked against it and the corresponding
reference implementations.

2 Content

The artifact package includes:
the source code of AVD and angr including the extension of both tools with support for our
symbolic reflection API;
the source code of SumBoundVerify;
the source code of our tool-independent summaries for libc functions;
the source code of the third-party summaries that we validated with SumBoundVerify;
the source of the C-HashMap and Dynamic Strings libraries together with their corresponding
symbolic test suites.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://doi.org/10.6084/m9.figshare.21696386.v1.

4 Tested platforms

To ensure the reproducibility of our experiments, we have made the artifact available as a
compressed Docker image (.tgz) that can be run on any platform supporting the Docker Engine.
This portable format enables easy deployment and execution of our experiment environment.

For accurate reproduction of our performance experiments, it is recommended to run the
Docker image on hardware with the following specifications:

CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
RAM: 32GiB
Disk Space: 200GiB

These hardware specifications were used during our experimental setup and will help ensure
optimal compatibility when reproducing the results of the paper.

5 License

The HashMap [6] library is licensed under the MIT license while the Dynamic Strings [4] library
and angr [5] are both licensed under the BSD 2-Clause simplified licence. Our C-implemented
summaries, AVD and SumBoundVerify are licensed under the Apache license.

6 MD5 sum of the artifact

2d124f1174690bd2451636860b4b804b

7 Size of the artifact

1.33 GB

DARTS

https://doi.org/10.6084/m9.figshare.21696386.v1


7:4 Toward Tool-Independent Summaries for Symbolic Execution (Artifact)

References
1 R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist,

M. Potet, and J. Marion. Binsec/se: A dynamic
symbolic execution toolkit for binary-level ana-
lysis. In 2016 IEEE 23rd International Confer-
ence on Software Analysis, Evolution, and Reen-
gineering (SANER), volume 1, pages 653–656, 2016.
doi:10.1109/SANER.2016.43.

2 Mark Mossberg, Felipe Manzano, Eric Hennenfent,
Alex Groce, Gustavo Grieco, Josselin Feist, Trent
Brunson, and Artem Dinaburg. Manticore: A user-
friendly symbolic execution framework for binaries
and smart contracts. In 2019 34th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 1186–1189, 2019. doi:
10.1109/ASE.2019.00133.

3 Nuno Sabino. Automatic vulnerability detection:
Using compressed execution traces to guide sym-

bolic execution. Master’s thesis, Instituto Superior
Técnico, November 2019.

4 Salvatore Sanfilippo. Simple dynamic strings [on-
line]. 2015. Accessed: 29th June 2023. URL:
https://github.com/antirez/sds.

5 Y. Shoshitaishvili, R. Wang, C. Salls, N. Steph-
ens, M. Polino, A. Dutcher, J. Grosen, S. Feng,
C. Hauser, C. Kruegel, and G. Vigna. SOK: (State
of) The Art of War: Offensive Techniques in Bin-
ary Analysis. In 2016 IEEE Symposium on Se-
curity and Privacy (SP), pages 138–157, 2016.
doi:10.1109/SP.2016.17.

6 Richard Wiedenhöft. C Hash map [online]. 2014.
Accessed: 29th June 2023. URL: https://gist.
github.com/Richard-W/9568649.

https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://github.com/antirez/sds
https://doi.org/10.1109/SP.2016.17
https://gist.github.com/Richard-W/9568649
https://gist.github.com/Richard-W/9568649

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

