Aims and Scope

The Dagstuhl Artifacts Series (DARTS) publishes evaluated research data and artifacts in all areas of computer science. An artifact can be any kind of content related to computer science research, e.g., experimental data, source code, virtual machines containing a complete setup, test suites, or tools.

License

This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0): https://creativecommons.org/licenses/by/4.0.

In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work under the following conditions, without impairing or restricting the authors' moral rights:

- Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Contact

Schloss Dagstuhl – Leibniz-Zentrum für Informatik
DARTS, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
publishing@dagstuhl.de

Digital Object Identifier

10.4230/DARTS.10.1.0

https://www.dagstuhl.de/darts
Contents

Artifact Evaluation Process

Matthias Becker and Catherine E. Nemitz .. 0:vii

Artifact Evaluation Committee

.. 0:ix

Artifacts

Predictable GPU Sharing in Component-Based Real-Time Systems (Artifact)

Crêpe: Clock Reconfigurability for Preemption Control (Artifact)

Eva Dengler and Peter Wägemann ... 2:1–2:3

Autonomy Today: Many Delay-Prone Black Boxes (Artifact)

Sizhe Liu, Rohan Wagle, James H. Anderson, Ming Yang, Chi Zhang,
and Yunhua Li ... 3:1–3:3

The Omnivisor: A real-time static partitioning hypervisor extension for heterogeneous
core virtualization over MPSoCs (Artifact)

Daniele Ottaviano, Francesco Ciruolo, Renato Mancuso, and Marcello Cinque 4:1–4:7
Artifact Evaluation Process

The ECRTS Artifact Evaluation (AE) process takes place after the paper decisions have been finalized. We seek to achieve the benefits of the AE process without disturbing the current process through which ECRTS has generated high-quality programs in the past. Therefore, the current submission, review, and acceptance procedure are completely unaltered by the decision to run an AE process.

Once acceptance decisions are final, the authors of accepted papers are invited to submit an artifact evaluation (or replication) package. Hence, the repeatability evaluation process has no impact on whether a paper is accepted at ECRTS, and will be entirely optional and up to authors. Moreover, there is no disclosure of the title and authors of papers which would not pass the repeatability evaluation. This is to avoid negative bias towards submitting their artifact on the authors’ part. Once authors who desire to do so have submitted their artifacts, an Artifact Evaluation Committee (AEC) composed mainly of PhD students close to graduation, postdocs, and young researchers evaluates the artifacts.

Artifacts should include two components:
- a document explaining how to use the artifact and which of the experiments presented in the paper are repeatable (with reference to specific digits, figures, and tables in the paper), the system requirements and instructions for installing and using the artifact;
- the software and any accompanying data.

During the first week, all the evaluators check that they can run the code of artifacts assigned to them, without problems. In case of problems, these are promptly (and anonymously) reported to the authors of the artifact that can help fixing them. The total evaluation period is 2.5 weeks. After the review period, a brief online discussion takes place if/when necessary and notifications are sent to authors.
Artifact Evaluation Committee

Tanya Amert
Carleton University
Northfield, United States of America
tamert@carleton.edu

Jatin Arora
CISTER, ISEP, Polytechnic Institute of Porto
Porto, Portugal
jatin@isep.ipp.pt

Joshua Bakita
University of North Carolina at Chapel Hill
Chapel Hill, United States of America
jbakita@cs.unc.edu

Daniel Casini
Scuola Superiore Sant’Anna
Pisa, Italy
daniel.casini@santannapisa.it

Kuan-Hsun Chen
University of Twente
Twente, Netherlands
k.h.chen@utwente.nl

Xiaotian Dai
University of York
York, United Kingdom
xiaotian.dai@york.ac.uk

Zheng Dong
Wayne State University
Detroit, United States of America
dong@wayne.edu

Brian Donyanavard
San Diego State University
San Diego, United States of America
bдонянавард@sdsu.edu

Anna Friebe
Mälardalen University
Västerås, Sweden
anna.friebe@mdh.se

Mario Günzel
TU Dortmund University
Dortmund, Germany
mario.guenzel@tu-dortmund.de

Seonyeong Heo
Kyung Hee University
Yongin, South Korea
seonyeong.heo@khu.ac.kr

Sims Osborne
Elon University
Elon, United States of America
sosborne3@elon.edu

Luigi Pannoci
Scuola Superiore Sant’Anna
Pisa, Italy
luigi.pannocchi@santannapisa.it

Romaric Pegdwende Nikiema
University of Rennes/INRIA
Rennes, France
pegdwende.nikiema@inria.fr

Marion Sudvarg
Washington University in St. Louis
St. Louis, United States of America
msudvarg@wustl.edu

Corey Tessler
University of Nevada Las Vegas
Las Vegas, United States of America
corey.tessler@unlv.edu

Editors: Matthias Becker and Catherine E. Nemitz
Dagstuhl Artifacts Series, Vol. 10, Issue 1, Artifact No. 0, pp. 0:ix–0:x
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany