
Predictable GPU Sharing in Component-Based
Real-Time Systems (Artifact)
Syed W. Ali #

Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA

Zelin Tong #

Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA

Joseph Goh #

Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA

James H. Anderson #

Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA

Abstract
This paper presents a real-time locking protocol
whose design was motivated by the goal of enabling
safe GPU sharing in time-sliced component-based
systems. This locking protocol enables a GPU to be
shared concurrently across, and utilized within, isol-
ated components with predictable execution times.
It relies on a novel resizing technique where GPU

work is dimensioned on-the-fly to run on partitions
of an NVIDIA GPU. This technique can be applied
to any component that internally utilizes global
CPU scheduling. The proposed locking protocol en-
ables increased GPU parallelism and reduces GPU
capacity loss with analytically provable benefits.

2012 ACM Subject Classification Computer systems organization → Real-time systems
Keywords and phrases GPU locking protocols, real-time locking protocols, priority-inversion blocking,
component-based systems
Digital Object Identifier 10.4230/DARTS.10.1.1
Funding Supported by NSF grants CPS 2038960, CPS 2038855, CNS 2151829, and CPS 2333120.

Related Article Syed W. Ali, Zelin Tong, Joseph Goh, and James H. Anderson, “Predictable GPU
Sharing in Component-Based Real-Time Systems”, in 36th Euromicro Conference on Real-Time Systems
(ECRTS 2024), LIPIcs, Vol. 298, pp. 15:1–15:22, 2024. https://doi.org/10.4230/LIPIcs.ECRTS.2024.
15

Related Conference 36th Euromicro Conference on Real-Time Systems (ECRTS 2024), July 9–12,
2024, Lille, France

1 Scope

There are two primary claims in the corresponding paper that are backed by this artifact. First, the
worst-observed pi-blocking duration for the Streaming Multiprocessor Locking Protocol (SMLP)
is up to 50% lower than the worst-observed pi-blocking duration for the coarse-grain OMLP [2].
Second, GPU kernels do not need to utilize every compute unit in a GPU, thus enabling the
improved parallelism of the SMLP. The first claim is backed by a simulation study. The second
claim is supported by testing a simple GPU kernel and reporting completion times when pinned
to a varying number of compute units.

2 Content

The artifact package includes:
Experiment 1: Simulation code
Experiment 2: NVIDIA GPU partition testing code

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Syed W. Ali, Zelin Tong, Joseph Goh, and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 1, Artifact No. 1, pp. 1:1–1:5
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:swali@cs.unc.edu
https://orcid.org/0009-0001-7249-5028
mailto:ztong@cs.unc.edu
mailto:jgoh@cs.unc.edu
https://orcid.org/0000-0002-2052-9046
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/DARTS.10.1.1
https://doi.org/10.4230/LIPIcs.ECRTS.2024.15
https://doi.org/10.4230/LIPIcs.ECRTS.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de/darts
https://www.dagstuhl.de
https://www.dagstuhl.de

1:2 Predictable GPU Sharing in Component-Based Real-Time Systems (Artifact)

Pre-built simulation results for Experiment 1
Graph generation tools for Experiment 1

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://www.cs.unc.edu/~swali/ecrts24/.

4 Tested platforms

Experiment 1

Experiment 1 requires a machine with many processors as it can run multiple simulations
simultaneously on separate threads. Experiment 1 was performed on the below machine:

CPU: Intel i9-13900k (32 logical processors)
RAM: 32GB, DDR5 6000MHz
OS: Windows 11, Ubuntu Linux 23.10

Compiling instructions and optimizations are detailed in Sec. A.

Experiment 2

Experiment 2 requires a machine with an NVIDIA GPU that is compatible with libsmctrl [1].
Experiment 2 was performed on:

CPU: Intel i7-12700k
RAM: 128GB, DDR4 3600MHz
OS: Ubuntu Linux 23.10
GPU: NVIDIA GeForce RTX 4080

Experiment 2 was also confirmed to work on an i7-3770k CPU, 16GB RAM, Ubuntu 23.10,
and a 3060 Ti. Additionally, this experiment requires a version of CUDA compatible with
libsmctrl [1]. Details on how to build and run the experiments are given in Sec. B.

5 License

The artifact is available under the GPLv3 license.

6 MD5 sum of the artifact

59602553fb34de203b253b31a96c9cf4

7 Size of the artifact

11.2 MiB

A Experiment 1

Either extract from the 7z archive or clone the GitHub repository at https://github.com/
swali-unc/SMLP-ECRTS24. If you want to compile this experiment, please see the instructions on
https://www.cs.unc.edu/~swali/ecrts24/, also briefly shown in Sec. A.5, A.6. A Windows
pre-built binary is in the bin folder of the archive and is also available as a release on GitHub.
All Experiment 1 files are in the SMLP-ECRTS24 folder.

https://www.cs.unc.edu/~swali/ecrts24/
https://github.com/swali-unc/SMLP-ECRTS24
https://github.com/swali-unc/SMLP-ECRTS24
https://www.cs.unc.edu/~swali/ecrts24/

S. W. Ali, Z. Tong, J. Goh, and J. H. Anderson 1:3

This experiment has three modes of operation. (i) A task set can be generated and analyzed
in a CSV file. (ii) A task set can be used as input for a single simulation instance. (iii) The
full simulation is run multiple times using a range of values. If you run the binary without any
parameters, the accepted parameters are listed. Detailed below are the command-line parameters.

A.1 Generating Task Sets

Table 1 Command-line Parameters: Task Generation.

-t Generate and output a task set
-o filename Output CSV filename of the task set
-m corecount Number of processors in the component
-tmin minPeriod Minimum period of each task
-tmax maxPeriod Maximum period of each task
-n numTasks The max number of tasks in a task set
-u targetUtil The target normalized utilization

This will generate a task set and store the data in a CSV file. A task is generated using the
techniques described in [3]. The generated task set can then be used in a single simulation instance
described below.

A.2 Single Simulation

Table 2 Command-line Parameters: Single Simulation.

-s Run a single simulation instance
-i filename Input CSV filename of the task set
-o filename Output filename for observed results
-Hmin hmin Lower bound of tested H values
-Hmax hmax Upper bound of tested H values
-Hstep hstep Value by which H changes every scenario
-Tmin thetaMin Lower bound of Θ
-Tmax thetaMax Upper bound of Θ
-Tstep thetaStep Value by which Θ changes every scenario
-p prob Probability a task is selected to issue a request
-m corecount Number of processors in the component

The above will take an already generated task set (Sec. A.1) as input. It then simulates the
system and outputs the observed data to the specified output file.

A.3 Full Simulation
The results presented in the paper were conducted using the following values:

-a -Mmin 4 -Mmax 16 -Mstep 4 -tminset 3 10 50 -tmaxset 33 100 200 -n 150
-taskSets 1000 -utilMin 0.2 -utilMax 0.9 -utilStep 0.1 -Hmin 8 -Hmax 64
-Hstep 8 -Tmin 1.5 -Tmax 3 -Tstep 0.5 -p 0.5 -o p0.5.csv
The above parameters will ensure up to 40 simulation threads are running concurrently. This

is due to there being 4 Theta values and PARALLEL_SETS=5. With both the OMLP and SMLP
tested, this results in up to 40 concurrent simulation threads. This can be modified to better
match the parallelism capacity of your system by tuning PARALLEL_SETS or generating data over
a smaller range of Θ.

DARTS

1:4 Predictable GPU Sharing in Component-Based Real-Time Systems (Artifact)

Table 3 Command-line Parameters: Full Simulation.

-a Run multiple simulations
-o filename Output filename for observed results
-Mmin corecount Lower bound of tested M values
-Mmax corecount Upper bound of tested M values
-Mstep corecount Value by which M changes every scenario
-tminset tmin1, tmin2, ... Set of minimum periods
-tmaxset tmax1, tmax2, ... Set of maximum periods
-n numTasks The max number of tasks in a task set
-taskSets numSets The number of task sets to generate
-utilMin minUtil Lower bound of normalized utilization values
-utilMax maxUtil Upper bound of normalized utilization values
-utilStep ustep Value by which utilization changes every scenario
-Hmin hmin Lower bound of tested H values
-Hmax hmax Upper bound of tested H values
-Hstep hstep Value by which H changes every scenario
-Tmin thetaMin Lower bound of Θ
-Tmax thetaMax Upper bound of Θ
-Tstep thetaStep Value by which Θ changes every scenario
-p prob Probability a task is selected to issue a request

A.4 Validating Results

The CSV files can take a while to generate. You can also use pre-generated data available here:
https://www.cs.unc.edu/~swali/ecrts24/p0.5.7z (also available in the prebuilt folder in
the archive). The CSV files can also be very large. For example, when fully simulating with
-n 10000, the CSV file reached 3.8 GiB. As such, most CSV viewers are unable to render or
process the data. Instead, we provide a Jupyter notebook here: https://www.cs.unc.edu/
~swali/ecrts24/smlp-eval.7z (also in the prebuilt folder if using the archive).

1. Open Jupyter Notebook https://jupyter.org/.
2. Create a folder for this project.
3. Extract the notebook contents into this folder.
4. Ensure your CSV results are in this folder.
5. Open and run smlp_eval.ipynb.
6. (Optional) Modify the code to generate graphs for other data sets.

A.5 Compiling – Windows

To compile on Windows, we suggest using Microsoft Visual Studios 2022 or newer (https:
//visualstudio.microsoft.com/vs/).

1. Clone the GitHub repo or extract the 7z archive.
2. Open the .sln file in Visual Studios.
3. Ensure the build configuration is set to Release.
4. Compile.

https://www.cs.unc.edu/~swali/ecrts24/p0.5.7z
https://www.cs.unc.edu/~swali/ecrts24/smlp-eval.7z
https://www.cs.unc.edu/~swali/ecrts24/smlp-eval.7z
https://jupyter.org/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

S. W. Ali, Z. Tong, J. Goh, and J. H. Anderson 1:5

A.6 Compiling – Linux
To compile on Linux, we tested using g++14 specifically, and it should work on later versions.

1. Clone the GitHub repo or extract the 7z archive.
2. Ensure g++ is installed (Version 14 or newer).
3. Compile: g++ -o smlpsim main.cpp util.cpp task_gen.cpp

gedf_multisim.cpp gedf_sim.cpp gedf_sim_thread.cpp

B Experiment 2

Either extract from the 7z archive or clone the GitHub repository at https://github.com/
swali-unc/SMLP-ECRTS24. All Experiment 2 files are in the libsmctrlTest folder. This exper-
iment requires access to an NVIDIA GPU capable of using libsmctrl [1]. Additionally, as of
this writing, libsmctrl only works on CUDA versions from 8.1 to 12.2. This experiment was
specifically run on CUDA 12.0.r12 on Ubuntu 22.04. Note, there is currently no Windows version
of libsmctrl.

First, get the latest version of libsmctrl [1] from http://rtsrv.cs.unc.edu/cgit/cgit.
cgi/libsmctrl.git/about/. Compile using make, then store the generated shared object (.so)
file ideally in a location referenced by LD_LIBRARY_PATH.

In the artifact files, run make in the folder with the Makefile. Note that you may have to
modify the Makefile to point to where libsmctrl is located by modifying the LDFLAGS parameter.

This program only generates one pass of results. It can be easily modified to generate multiple
runs and take the worst-observed values. Adding some delay to allow the GPU to “cool off” is
advisable to prevent unnecessary damage.

B.1 Validating Results
This experiment, by default, assumes your GPU has 19 partitionable TPCs (the 3060 Ti has 19
TPCs). This can be modified by first changing TOTAL_TPCs in main.cu, then recompiling. The
goal is to see kernel execution durations that exhibit a step-graph behavior, thus showing that
kernels do not always need all of the full compute capacity of a GPU.

References
1 Joshua Bakita and James H. Anderson. Hardware

compute partitioning on NVIDIA GPUs*. In 2023
IEEE 29th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 54–66,
2023. doi:10.1109/RTAS58335.2023.00012.

2 Bjorn B. Brandenburg and James H. Anderson.
Optimality results for multiprocessor real-time

locking. In 2010 31st IEEE Real-Time Systems
Symposium, pages 49–60, 2010. doi:10.1109/RTSS.
2010.17.

3 P. Emberson, R. Stafford, and R.I. Davis. Tech-
niques for the synthesis of multiprocessor tasksets.
WATERS’10, January 2010.

DARTS

https://github.com/swali-unc/SMLP-ECRTS24
https://github.com/swali-unc/SMLP-ECRTS24
http://rtsrv.cs.unc.edu/cgit/cgit.cgi/libsmctrl.git/about/
http://rtsrv.cs.unc.edu/cgit/cgit.cgi/libsmctrl.git/about/
https://doi.org/10.1109/RTAS58335.2023.00012
https://doi.org/10.1109/RTSS.2010.17
https://doi.org/10.1109/RTSS.2010.17

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Experiment 1
	A.1 Generating Task Sets
	A.2 Single Simulation
	A.3 Full Simulation
	A.4 Validating Results
	A.5 Compiling – Windows
	A.6 Compiling – Linux

	B Experiment 2
	B.1 Validating Results

