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Abstract
Following the needs of industrial applications, vir-
tualization has emerged as one of the most ef-
fective approaches for the consolidation of mixed-
criticality systems while meeting tight constraints
in terms of space, weight, power, and cost (SWaP-
C). In embedded platforms with homogeneous pro-
cessors, a wealth of works have proposed designs
and techniques to enforce spatio-temporal isola-
tion by leveraging well-understood virtualization
support. Unfortunately, achieving the same goal
on heterogeneous MultiProcessor Systems-on-Chip
(MPSoCs) has been largely overlooked. Modern
hypervisors are designed to operate exclusively on
main cores, with little or no consideration given
to other co-processors within the system, such as
small microcontroller-level CPUs or soft-cores de-
ployed on programmable logic (FPGA). Typically,
hypervisors consider co-processors as I/O devices
allocated to virtual machines that run on primary
cores, yielding full control and responsibility over
them. Nevertheless, inadequate management of
these resources can lead to spatio-temporal isolation
issues within the system. In this paper, we propose

the Omnivisor model as a paradigm for the hol-
istic management of heterogeneous platforms. The
model generalizes the features of real-time static
partitioning hypervisors to enable the execution of
virtual machines on processors with different In-
struction Set Architectures (ISAs) within the same
MPSoC. Moreover, the Omnivisor ensures temporal
and spatial isolation between virtual machines by in-
tegrating and leveraging a variety of hardware and
software protection mechanisms. The presented
approach not only expands the scope of virtual-
ization in MPSoCs but also enhances the overall
system reliability and real-time performance for
mixed-criticality applications. A full open-source
reference implementation of the Omnivisor based
on the Jailhouse hypervisor is provided, target-
ing ARM real-time processing units and RISC-V
soft-cores on FPGA. Experimental results on real
hardware show the benefits of the solution, in terms
of the seamless launch of virtual machines on differ-
ent ISAs, and spatial/temporal isolation, enhanced
with regulation policies.
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1 Scope

The Omnivisor is a model that extends the partitioning hypervisor to enable the utilization of
heterogeneous cores over MultiProcessor Systems-on-Chip. Specifically, it provides the ability to
transparently start VMs on asymmetric cores (e.g. ARM64, ARM32, and RISC-V) while assuring
temporal and spatial isolation between VMs.
The artifact associated with our paper aims to provide transparency and reproducibility to our
research findings, specifically focusing on three experiments presented in our paper:

1. Boot Times: Measure the boot times of VMs on different cores.
2. Isolation Experiments: Evaluate isolation properties of Omnivisor.
3. Taclebench Experiments: Benchmarking using Taclebench on different cores.

Boot Times, Isolation Experiments, and Taclebench Experiments are presented in Figures 4, 6,
and 7 of our paper.

1.1 Detailed Experiments Description
1. Boot Times. The experiments measure the time needed to run a simple bare-metal application

of different sizes as a VM on different processing cores, specifically on Cotex-a53(APU),
Cortex-R5F(RPU), and Pico32 (RISC-V soft-core). To do it, first, we compile 10 images of
different sizes (1MB, 10MB, 20MB, 30MB, 40MB, 50MB, 60MB, 70MB, 80MB, 90MB) for
each processor (APU, RPU, RISC-V) using the compiling tools we have integrated into the
Omnivisor repository. Then, we use the Jailhouse command line interface (create, load, and
start) and the Omnivisor extension functionalities to launch these VM Images on the cores,
and we leverage the global timers in the platform to capture the boot times. Each VM Image
is launched 100 times in order to have a statistically significant number of experiments.

2. Isolation Experiments. The experiments measure the execution time of a simple periodic
task implemented in a VM that runs on remote cores (RPU and RISC-V). We consider various
scenarios where, while the VM under test is running, a disturbance code is executed on different
cores (APU, RPU1, FPGA). To do so, first, we compile the VM under test for RPU and
RISC-V using the compiling tools we have integrated in the Omnivisor repository. Then, we
start the VM under test on one of the cores (RPU, RISC-V) and after a few seconds we start
the disturbance application on one of the other cores (APU, RPU1, FPGA). After repeating
the experiments for each combination of core under test and disturbance core, we recompile
the Omnivisor adding the spatial isolation features (XMPUs) and we repeat the tests. Finally,
we enabled the Omnivisor with both temporal (QoS) and spatial (XMPUs) isolation features
and repeated the tests again.

3. Taclebench Experiments. The experiments measure the execution time of the entire
Taclebench suite executed on both the remote cores (RPU and RISC-V) while changing the
QoS configuration using the Omnivisor interface to reach controlled degradation. We first
compile the Taclebench suite for both the cores using the compiling tools integrated in the
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Omnivisor repository. For the RISC-V core we removed the test that requires a floating point
extension since the PICO32 RISC-V core used doesn’t have it. After that, we launch the
entire suite on the cores under test (RPU, RISC-V) both in isolation and when the other
cores (APU, RPU1, FPGA) cause interference running membomb applications. We repeated
the tests 30 times to produce statistically significant results. Then we run a binary search
algorithm that modifies the memory bandwidth assigned to the disturbance cores to reach a
controlled slowdown on the application of the 20

1.2 Experimental Findings
1. Boot Times:

We demonstrate that booting a VM on a remote core using Omnivisor is comparable in
time to booting a VM via Jailhouse on a main core.

2. Isolation Experiments:
We first demonstrate that without the Omnivisor protection mechanism enabled, the
disturbance cores are able to crash the VM under test in most cases.
Then, we demonstrate that if only spatial isolation is provided, even if the VM doesn’t crash
anymore, the disturbance cores are able to delay the execution time of the VM under test.
Finally, we demonstrate that using the Omnivisor complete implementation of spatial and
temporal isolation, the VM under test presents only a negligible delay in execution time.

3. Taclebench Experiments:
The objective of these experiments is twofold: first, to demonstrate how the Omnivisor
can induce controlled degradation in the execution time of a VM running on remote cores,
and second, to elucidate how the Omnivisor streamlines the parameter tuning process for
achieving an acceptable performance degradation level.

2 Content

2.1 Repositories
The Repositories used for this artifact are the following:

Omnivisor [4]: The repository containing the building system for Omnivisor. The purpose of
this repository is to automate the building of a working environment to use/test Omnivisor.
Jailhouse-Omnivisor [5]: The repository containing the features included in the Jailhouse
hypervisor to manage remote cores using the Omnivisor model.
Test Omnivisor Host [3]: The repository containing the scripts that run on the Host PC linked
to the board under test. It contains all the scripts to start the experiments and visualize the
results
Test Omnivisor Guest [2]: The repository containing the scripts that run directly on board
(guest).

2.2 Software Artifacts
The following software artifacts are produced for the board:

Linux Image: Linux v5.15, compiled with jailhouse_kria_buildroot_defconfig configura-
tion file you can find in the following directory: [4] Omnivisor/environment/kria/jailhouse/
custom_build/linux/arch/arm64/configs/. Essential configurations required for Jailhouse
compatibility include CONFIG_OF_OVERLAY, CONFIG_KALLSYMS_ALL, and CONFIG_KPROBES, while
the rest remain as per the default configuration provided by Xilinx for its board.

DARTS
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BOOT.BIN: The BOOT.BIN file is the binary file used to boot the board. It is composed by
several files, most of them have been retrieved from the Board Support Package (BSP) of the
used platform, and are used unmodified, while others are procued ad-hoc for Omnivisor:

ARM-Trused-Firmware (bl31.elf): The Arm Trusted Firmware have been slightly modify
to give the Omnivisor the capability to access power management of the cores. The used
version can be found in [1].
The PMU Firmware (pmufw.elf): The PMU firmware is unmodified. It is taken from the
BSP of the board.
The ZynqMP Firmware (zynqmp_fsbl.elf): The ZynqMP firmware is unmodified. It is
taken from the BSP of the board.
Device Tree (system.dtb): The device tree has been slightly modified as required by the Jail-
house Hypervisor to reserve a section of the memory for the Hypervisor (see reserved-memory
field) in: [4] Omnivisor/environment/kria/jailhouse/output/boot/sources/system.dts.
FPGA bitstream (system.bit): The bitstream used in the test comprehends a Pico32 and
three AXI Traffic generators.

Root Filesystem: The filesystem is generated using the Buildroot project, with the con-
figuration file jailhouse_kria_buildroot_defconfig in: [4] Omnivisor/environment/kria
/jailhouse/custom_build/buildroot/configs/

The jailhouse_Omnivisor [5] is included under the /root directory.
The test_omnivisor_guest repository [2] is included under /root/tests. The latter contains
the scripts enabling the host to orchestrate the experiments.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

3.1 Environment Setup
All the software needed to launch the experiments is included in the provided artifact link. Once
downloaded, set up the environment by following these steps:
1. Uncompress the artifact files on your host machine.
2. Copy all the files in the SD_Board directory to an SD card and insert the card into the board

(Sec. 4).
3. Connect the board to the host machine using a USB cable, and to the network using a LAN

cable. Power on the board.
4. Once the board is running, obtain its IP address and insert it into the kria-jailhouse.sh

configuration file (configure a static IP to avoid repeating this step). This file is located in the
following directory on the host machine:
omnivisor_artifact/environment/kria/jailhouse/environment_cfgs/.

5. Configure the board-specific information in the board_info.sh file, located in the host machine
directory:
omnivisor_artifact/tests/test_omnivisor_host/utility

6. Update the directory information (check the OMNIVISOR_DIR variable) in the
default_directories.sh file, located in the following host machine directory:
omnivisor_artifact/tests/test_omnivisor_host/utility

7. Navigate to the test directory:
cd /home/reviewer/omnivisor_artifact/tests/test_omnivisor_host

8. To recreate the plots with new data, activate the Python virtual environment .venv by typing:
source .venv/bin/activate
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3.2 Building from Scratch
Alternatively, starting from the Omnivisor repository [4], all the necessary artifacts can be produced
and tested on a different server+board environment from scratch. Refer to the README.md file in
the repository [4] for detailed instructions on generating all the files discussed in Sec. 2.2 for the
supported boards.

3.3 Usage Instructions
Once the environment is set up, for detailed information on starting the experiments read the
README.md file at [3]. The documentation also provides results claims, and a step-by-step guide to
reproduce the experiments.
If you downloaded the artifact the images used for the tests are already integrated in the board’s
file system and the fastest way to reproduce the experiments is by using these images. For your
convenience, we provide one script for each experiment, which replicates exactly the steps needed
to achieve the results shown in the paper:
1. test_omnnivisor_host/experiments/boot_exp/ecrts_boot_tests.sh
2. test_omnnivisor_host/experiments/isolation_exp/ecrts_isolation_tests.sh
3. test_omnnivisor_host/experiments/taclebench_exp/ecrts_taclebench_tests.sh [-p] [-b]

Experiment Args Expected time
Boot 40 minutes

Isolation 14 minutes
Taclebench 90 minutes
Taclebench -p > 40 hours
Taclebench -f > 3 days

To accommodate the time-intensive nature of the complete Taclebench experiment, we offer three
versions for evaluation. The first version prioritizes speed by bypassing binary search, utilizing
pre-determined memory bandwidth allocation values as depicted in Figure 7 of our paper, and
conducting single-run executions without repetitions. (time = 35min):

test_omnnivisor_host/experiments/taclebench_exp/ecrts_taclebench_tests.sh

The second version mirrors the first but incorporates 30 repetitions for each benchmark to enhance
statistical robustness. For running each benchmark (on both RPU and RISCV) with 30 repetitions
(time = 18 hours):

test_omnnivisor_host/experiments/taclebench_exp/ecrts_taclebench_tests.sh -p

Lastly, the third version encompasses the binary search component to optimize memory bandwidth
allocation. This version is the most comprehensive but also the most time-consuming, requiring
approximately 4 days for completion. For running each benchmark (on both RPU and RISCV)
with 30 repetitions and integrating the binary search, execute: (time = 4 days)

test_omnnivisor_host/experiments/taclebench_exp/ecrts_taclebench_tests.sh -b

The raw results are located in the ./result directory and can be visualized using the notebook
./notebooks/Omnivisor_test_plots.ipynb. Alternatively, you can generate the images using
the Python scripts located in the ./notebooks/ directory, specifically plot_boot_exp.py,
plot_isolation_exp.py, and plot_taclebench_exp.py. The resulting images will be stored in
./notebooks/imgs.

If instead, you want to re-compile the images from scratch, load them on the board, and
replicate the test step-by-step, follow these instructions:

DARTS
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3.4 Step-by-Step Instructions
3.4.1 Boot Times (Figure 4)
1. Setup: To re-compile the images used in the boot experiments, move to the following directory:

./experiments/boot_exp/. Here you can find a README.md explaining the procedure to
compile the images.

2. Execution: To calculate the boot times you can use the script
start_boot_exp.sh. The README.md explains in detail how to use it.

3. Analysis: After running the experiments, compare the boot times obtained with those reported
in Figure 4 of our paper. The images can be visualized in the notebook:
./notebooks/Omnivisor_test_plots.ipynb or via the python script:
./notebooks/plot_boot_exp.py.

3.4.2 Isolation Experiments (Figure 6)
1. Setup: To re-compile the images used in the isolation experiments, move to the following

directory: ./experiments/isolation_exp/. Here you can find a README.md explaining the
procedure to compile the images.

2. Execution: Run the provided scripts or commands in the README.md to conduct the Isolation
Experiments.

3. Analysis: After completing the experiments, analyze the isolation metrics obtained and
compare them with the results presented in Figure 6 of our paper. The images can be
visualized in the notebook
./notebooks/Omnivisor_test_plots.ipynb or via the python script
./notebooks/plot_isolation_exp.py.

3.4.3 Taclebench Experiments (Figure 7)
1. Setup: To re-compile the images for all the benchmarks used in the Taclebench experiments,

move to the following directory:
./experiments/taclebench_exp/. Here you can find a README.md explaining the procedure
to compile the images.

2. Execution: Run the provided scripts or commands in the README.md to conduct the Taclebench
Experiments. Given that the experiment may require a significant amount of time to complete,
we offer a version of the script that bypasses the binary search process to determine the optimal
configuration. Instead, it directly utilizes the configuration identified in our paper, streamlining
the replication process.

3. Analysis: Analyze the performance metrics obtained from the Taclebench Experiments and
compare them with the results reported in Figure 7 of our paper. The images can be visualized
in the notebook
./notebooks/Omnivisor_test_plots.ipynb or via the python script
./notebooks/plot_taclebench_exp.py.

4 Tested platforms

The board tested is the Xilinx KriaTM KV260 equipped with:
quad-core ARM Cortex-A53 (APUs)
dual-core ARM Cortex-R5F (RPUs)
16nm FinFET + Programmable Logic (FPGA)
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5 License

All the repositories of the artifacts are licensed under the GNU General Public License v3.0 and v2

6 MD5 sum of the artifact

1dfddc064f61577892e471bc2f15f835

7 Size of the artifact

12.52 GiB
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