
Runtime Instrumentation for Reactive Components
(Artifact)
Luca Aceto #

Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Duncan Paul Attard #

University of Glasgow, UK

Adrian Francalanza #

University of Malta, Msida, Malta

Anna Ingólfsdóttir #

Reykjavik University, Iceland

Abstract
Reactive software calls for instrumentation meth-
ods that uphold the reactive attributes of systems.
Runtime verification sets another demand on the
instrumentation, namely that the trace event se-
quences it reports to monitors are sound, i.e., they
reflect actual executions of the system under scru-
tiny. Our companion paper, “Runtime Instrument-
ation for Reactive Components”, presents RIARC,
a novel decentralised instrumentation algorithm for
outline monitors that meets these two demands.
RIARC uses a next-hop IP routing approach to re-
arrange and report events soundly to monitors des-
pite the potential trace event loss or reordering

stemming from the asynchrony of reactive systems.

The companion paper shows our correspond-
ing RIARC Erlang implementation to be correct
through rigorous systematic testing. We also assess
RIARC via extensive empirical experiments, sub-
jecting it to large realistic workloads in order to
ascertain its reactiveness. This artefact packages
the RIARC Erlang implementation, systematic tests
that demonstrate its correctness, data sets obtained
from our original empirical experiments detailed in
the companion paper, and the scripts to rerun and
replicate these results under lower workloads.

2012 ACM Subject Classification Software and its engineering → Software verification and validation
Keywords and phrases Runtime instrumentation, decentralised monitoring, reactive systems
Digital Object Identifier 10.4230/DARTS.10.2.1
Funding This work is supported by the Reykjavik University Research Fund, the Doctoral Student
Grant (No: 207055) and the MoVeMnt project (No: 217987) under the IRF, and the STARDUST project
(No: EP/T014628/1) under the EPSRC.
Acknowledgements We thank our reviewers and the Artefact Evaluation Committee for their feedback.
Thanks also to Keith Bugeja, Simon Fowler, Simon Gay, and Phil Trinder for their input.

Related Article Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir, “Runtime
Instrumentation for Reactive Components”, in 38th European Conference on Object-Oriented Program-
ming (ECOOP 2024), LIPIcs, Vol. 313, pp. 2:1–2:33, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.2

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 1, pp. 1:1–1:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0002-2197-3018
mailto:duncan.attard@glasgow.ac.uk
https://orcid.org/0000-0002-2448-5394
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:annai@ru.is
https://orcid.org/0000-0001-8362-3075
https://doi.org/10.4230/DARTS.10.2.1
https://doi.org/10.4230/LIPIcs.ECOOP.2024.2
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


1:2 Runtime Instrumentation for Reactive Components (Artifact)

1 Scope

Our artefact packages the Erlang implementation of inline and RIARC monitoring, together with
the experiment set-up and scripts required to launch them. We omit the centralised monitoring
experiments discussed in our companion paper since it was shown that they are liable to failure,
making them hard to automate. Interested readers are referred to the extended version of our
companion paper [1, fig. 14 in app. C.6.1] for details on centralised monitoring.

Distribution. The artefact is packaged as two Docker images: ecoop-77:1.0.tar, built for
Apple M1 machines, and ecoop-77-amd64:1.0.tar, built for Linux/amd64 machines. Both images
are preloaded with experiments that reproduce our inline and RIARC monitoring results discussed
in Secs. 5.4.2, 5.4.3, and 5.5 in the companion paper. The images can be downloaded from Zenodo,
including the instructions guiding users to launch the Docker container. These instructions are
also found in app. A.

Experiment set-up. Both the ecoop-77:1.0.tar and ecoop-77-amd64:1.0.tar Docker images
provide two experiment configurations:
High concurrency scenarios perform short-lived tasks to induce maximum stress in experiments

(emulate systems such as web apps). These use 100k workers and 100 work requests/worker.
Moderate concurrency scenarios engage in long-running, computationally-intensive tasks (emu-

late systems such as Big Data stream processing). These use 1k workers and 10k work
requests/worker.

The high and moderate concurrency scenarios each generate ≈ 20M send and receive messages,
producing ≈ 40M analysable trace events. Every experiment consists of 10 benchmarks, which are
performed in steps of progressively-increasing workload. Each benchmark generates 100 seconds
of workload on the system under these three workload shapes:
Steady models the system under stable workload (Poisson-shaped)
Pulse models the system under gradually rising and falling workload (Normal distribution-shaped)
Burst models the system under instant workload spikes (Log-normal distribution-shaped)

Experiment execution. The instructions included in our distribution focus on the high concur-
rency scenarios, as these results capture the major part of the plots in Sec. 5 of the companion
paper. Our experiments induce the worst-case workload scenarios on the reactive system models
generated by attaching one dedicated monitor to every system component. We include optional
instructions to run the empirical experiments for the moderate concurrency scenario. The scripts
that run the systematic tests can be launched by typing make test.

2 Content

Our distribution packages the following:
1. Erlang implementation of the inline and RIARC instrumentation algorithms;
2. Erlang monitors we use to evaluate these implementations in our companion paper;
3. Python scripts for launching and performing the empirical experiments;
4. Makefile to run the systematic tests that validate our RIARC implementation.
The distribution defaults to the /ecoop/scripts directory at startup. The /ecoop home directory
is organised as shown in tbl. 1.

https://doi.org/10.5281/zenodo.10634182


L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 1:3

Table 1 Organisation of the /ecoop home directory.

Directory Sub-directory Description

data/ Data set from experiments in .csv format
paper/ Original data sets reported in our paper
hc/ Default data directory for high concurrency scenario experiments
mc/ Default data directory for moderate concurrency scenario experiments

plots/ Plots from experiments
paper/ Original plots included in our companion paper
hc/ Default data directory for high concurrency scenario plots
mc/ Default data directory for moderate concurrency scenario plots

src/ Erlang code
benchcrv/ Master-worker model and workload generation supporting libraries
experiments/ Experiments launcher
examples/ Examples used in reusability evaluation
riarc/ Inline and RIARC monitoring libraries
tools/ Offline tracing supporting libraries

ebin/ Default compiled Erlang code directory
scripts/ Python code

simulate/ecoop/ Python front-end for executing experiments and generating plots

3 Getting the artefact

The artefact endorsed by the Artefact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The artefact can also be downloaded
from Zenodo, https://doi.org/10.5281/zenodo.10634182.

4 Tested platforms

We compiled, tested, and ran our distribution on the following machines:
Intel Core i7 M620, 8GB of memory, with Ubuntu 18.04 LTS and Erlang/OTP 22.2.1 4 threads

Intel Core i9 9880H, 16GB of memory, with macOS 12.3.1 and Erlang/OTP 25.0.3 16 threads

Apple M1, 16GB of memory, with macOS 12.7 and Erlang/OTP 26.2.1 10 threads

5 License

Our distribution is available under the GNU General Public License v3.0 or later.

6 MD5 sum of the artefact

5b2ed7ae10ce4f7c966f9c2aafee00bb

7 Size of the artefact

1.3GB ecoop-77:1.0.tar

1.3GB ecoop-77-amd64:1.0.tar

DARTS

https://doi.org/10.5281/zenodo.10634182


1:4 Runtime Instrumentation for Reactive Components (Artifact)

A Installation instructions

A.1 Set up
1. Download and install Docker.
2. Download the ecoop-77:1.0.tar M1 or ecoop-77-amd64:1.0.tar Linux/amd64 image from

Zenodo.

A.2 Launching the Docker container from the terminal
1. Change your directory to ~/Downloads.
2. Load the image by typing the following on the terminal, depending on your system:

sudo docker load -i "ecoop-77_1.0.tar" M1

sudo docker load -i "ecoop-77-amd64_1.0.tar" Linux/amd64

3. Verify that the image has been loaded by typing:
docker images

The ecoop-77 (or ecoop-77-amd64) with tag 1.0 should be listed.
4. Run the image in a Docker container using the name ecoop by typing:

docker run –name ecoop -p 8080:8080 -it ecoop-77:1.0 ←↩

bash -c "../run.sh; bash" M1

docker run –name ecoop -p 8080:8080 -it ecoop-77-amd64:1.0 ←↩

bash -c "../run.sh; bash" Linux/amd64

This launches the Docker container in interactive mode, enabling users to run the evaluation
scripts. The name ecoop is used to retrieve experiment results from outside the container.

A.3 Running the experiments
1. Ensure the that current home directory is /ecoop/scripts.
2. Run experiments:

python -m simulate.ecoop.main run all
run all should take around 3 hours to complete and requires no intervention from users.

3. Plot results:
python -m simulate.ecoop.main plot all

plot all should take around 1 minute to complete.

The artefact evaluation instructions can be accessed locally at http://localhost:8080 after
completing apps. A.1 and A.2. A copy of these instructions is included in the site.tar archive
on Zenodo. This can be extracted using tar xvf site.tar if required.

References
1 Luca Aceto, Duncan Paul Attard, Adrian Fran-

calanza, and Anna Ingólfsdóttir. Runtime In-
strumentation for Reactive Components. CoRR,
abs/2406.19904, 2024. arXiv:2406.19904.

https://www.docker.com/products/docker-desktop/
https://doi.org/10.5281/zenodo.10634182
http://localhost:8080
https://doi.org/10.5281/zenodo.10634182
https://arxiv.org/abs/2406.19904

	1 Scope
	2 Content
	3 Getting the artefact
	4 Tested platforms
	5 License
	6 MD5 sum of the artefact
	7 Size of the artefact
	A Installation instructions
	A.1 Set up
	A.2 Launching the Docker container from the terminal
	A.3 Running the experiments


