Compiling with Arrays (Artifact)

David Richter &=

Technische Universitdt Darmstadt, Germany

Timon Bohler &

Technische Universitdt Darmstadt, Germany

Pascal Weisenburger =
University of St. Gallen, Switzerland

Mira Mezini &

Technische Universitdt Darmstadt, Germany

The Hessian Center for Artificial Intelligence (hessian.Al), Darmstadt, Germany

— Abstract

Linear algebra computations are foundational for
neural networks and machine learning, often han-
dled through arrays. While many functional pro-
gramming languages feature lists and recursion, ar-
rays in linear algebra demand constant-time access
and bulk operations. To bridge this gap, some lan-
guages represent arrays as (eager) functions instead
of lists. In this paper, we connect this idea to a for-
mal logical foundation by interpreting functions as
the usual negative types from polarized type theory,
and arrays as the corresponding dual positive ver-
sion of the function type. Positive types are defined
to have a single elimination form whose compu-
tational interpretation is pattern matching. Just
like (positive) product types bind two variables dur-
ing pattern matching, (positive) array types bind
variables with multiplicity during pattern match-
ing. We follow a similar approach for Booleans by
introducing conditionally-defined variables.

The positive formulation for the array type en-
ables us to combine typed partial evaluation and
common subexpression elimination into an elegant
algorithm whose result enjoys a property we call
maximal fission, which we argue can be beneficial
for further optimizations. For this purpose, we
present the novel intermediate representation in-
dezed administrative normal form (A;NF), which
relies on the formal logical foundation of the pos-
itive formulation for the array type to facilitate
maximal loop fission and subsequent optimizations.
A;NF is normal with regard to commuting conver-
sion for both let-bindings and for-loops, leading to
flat and maximally fissioned terms. We mechanize
the translation and normalization from a simple
surface language to A;NF, establishing that the
process terminates, preserves types, and produces
maximally fissioned terms.

2012 ACM Subject Classification Software and its engineering — Domain specific languages

Keywords and phrases array languages, functional programming, domain-specific languages, normal-

ization by evaluation, common subexpression elimination, polarity, positive function type, intrinsic

types
Digital Object Identifier 10.4230/DARTS.10.2.18

Funding Timon Béhler: LOEWE/4a//519/05/00.002(0013)/95
Pascal Weisenburger: Swiss National Science Foundation (SNSF, No. 200429)

Mira Mezini: LOEWE/4a//519/05/00.002(0013)/95; HMWK cluster project The Third Wave of Artificial
Intelligence (3AI).

Related Article David Richter, Timon Bohler, Pascal Weisenburger, and Mira Mezini, “Compiling
with Arrays”, in 38th European Conference on Object-Oriented Programming (ECOOP 2024), LIPIcs,
Vol. 313, pp. 33:1-33:24, 2024.

https://doi.org/10.4230/LIPIcs.ECO0OP.2024.33

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 1620, 2024, Vienna, Austria

Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

© David Richter, Timon Béhler, Pascal Weisenburger, and Mira Mezini;
Bv licensed under Creative Commons License CC-BY 4.0
Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 18, pp. 18:1-18:7
\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl Publishing, Germany

mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:timon.boehler@tu-darmstadt.de
https://orcid.org/0009-0002-9964-7367
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
mailto:mezini@informatik.tu-darmstadt.de
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/DARTS.10.2.18
https://doi.org/10.4230/LIPIcs.ECOOP.2024.33
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

18:2 Compiling with Arrays (Artifact)

1 Scope

This artifact contains the Polara language and AINF intermediate representation implemented as
a DSL in Lean4.

1.1 Relation of Artifact and Paper

Section 4 “Mechanization” is based on the contents of the src/ folder. In particular:
Figure 243: src/Polara/Syntax.lean
Figure 4a: Ty.de in src/Polara/NbE.lean
Figure 4b+c: Const0.de, Constl.de, Const2.de, Tm.de in src/Polara/NbE.lean
Figure 4d: quote, splice, Tm.norm in src/Polara/NbE.lean
Figure 5a: Tm.toAINF in src/Polara/CSE.lean
Figure 5b: AINF.smart_bnd in src/Polara/CSE.lean
Figure 6: AINF.cse in src/Polara/CSE.lean
Theorem 1: Tm.norm in src/Polara/NbE.lean
Theorem 2: Tm.toAINF in src/Polara/CSE.lean

(Remark: Our development uses intrinsic proofs. An extrinsic proof is a separate function
and a proof of a property over the function. An intrinsic proof unifies the function and the proof,
meaning that proof checking is performed by type checking. Therefore, you won’t find theorems
in the source.)

Further, the two examples from Section 3.3 (a dense neural network layer and convolution) are
implemented in src/Polara/Examples.lean as dense and conv.

1.2 Differences to the Paper

Comparing the functions in the paper to those in the artifact, one can see that, in the latter,
functions relating to parametric higher-order abstract syntax (PHOAS) terms as well as the type
constructor for terms itself take an additional argument I'. This represents the denotation of the
variables and is what distinguishes PHOAS from normal HOAS. We omit this technical detail
in the paper. The type of terms Tm features constructors for variables and constants (var, cst0
etc.). In the paper, we do not write these constructors explicitly, so we would write x rather than
var x. In the artifact, the language has a nat type of natural numbers. This is omitted in the
paper for brevity, which means that if-then-else takes a nat as the condition in the artifact, but a
fin 2 in the paper.

The smart_bnd function takes an additional number argument, wrapped inside a reader monad,
which is used for creating fresh variables. In the paper, we leave this out and just stipulate that
the variable is fresh. The same applies to toAINF.

When discussing CSE in the paper, we describe renamings. In the CSE.lean file, the rename
functions define how a renaming is actually applied. CSE also requires us to check equality of
expressions, which is done with the beq functions. The CSE function in the paper also calls
lookup, which is not defined there. It corresponds to the built-in ListMap.lookup.

Not mentioned in the paper are the pretty-printing routines pretty and toString in Syntax.lean
and the functions for generating Lean code from A;NF in Codegen.lean.

Our code also contains a function Env.or, which merges two environments. This is used to
allow CSE to remove redundancies which appear in different, but compatible, environments. In
the paper, this is omitted.

D. Richter, T. Bohler, P. Weisenburger, and M. Mezini

2 Content

The artifact package includes:
Type: Artifact Description
Format: Markdown and PDF
Location: README.md and README. pdf
Type: Docker Image with Dependencies
Format: Docker Image
Location: docker-image.tar
Type: Command Line Interface
Format: Shell Script
Location: lake.sh
Type: Source code
Format: Lean source code
Location: src/*

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/stg-tud/ainf-compiling-with-arrays.

4 Tested platforms

We expect the following tools to be preinstalled:
a .tar.gz extraction tool,
docker or podman,
a shell (tested with bash),
a text editor.

We believe no special hardware is required and any modern laptop or computer is sufficient.

We tested the artifact:
using an i5 (4x 3GHz) CPU 8GB RAM, Linux
using an i7 (12x 4GHz) CPU 32GB RAM, Linux
no GPU is required
3GB space for docker container and extracted content should suffice

Compilation and running the artifact should take less than 5 min.

5 License

The artifact is available under Apache 2.0 License.

6 MD5 sum of the artifact

69424be8cb5101b3294422fda28c8eba

7 Size of the artifact

324.23 MB

18:3

DARTS

https://github.com/stg-tud/ainf-compiling-with-arrays

18:4

Compiling with Arrays (Artifact)

A Quick-Start Guide

1. Load the Docker image. Depending on whether you are using Docker or Podman run:
docker load -i docker-image.tar or
podman load -i docker-image.tar
2. The Docker image contains an instance of the Lean4 compiler and the lake build system. We
provide a thin wrapper for invoking the docker container as if it was a local lake instance,
using the lake.sh file.
Now, you can compile, check proofs, and run the tests:
sh lake.sh exe polara (check proofs)
sh lake.sh exe test (run tests)
This will run the Lean compiler on the provided sources. Verify that no errors appear. The
expected results are described in further detail below.

(Remark: Depending on how you installed and configured docker, you might need to execute
sudo docker load -i and the docker command in the sudo lake.sh instead. Podman does not
require sudo.)

B Expected Behavior (Functional Badge)

To verify the functional badge, perform the following steps:
1) Run sh lake.sh exe polara, the output should look like this:

info: [0/12] Building Polara.Syntax

info: [1/12] Compiling Polara.Syntax

info: [1/12] Building Polara.Codegen

info: [1/12] Building Polara.NbE

info: [1/12] Building Polara.CSE

info: [3/12] Compiling Polara.Codegen

info: [5/12] Compiling Polara.NbE

info: [7/12] Compiling Polara.CSE

info: [7/12] Building Polara

info: [8/12] Compiling Polara

info: [8/12] Building Main

info: stdout:

’Tm.toAINF’ does not depend on any axioms

’AINF.cse’ depends on axioms: [Classical.choice, Quot.sound, propext]
’Tm.norm’ depends on axioms: [Classical.choice, Quot.sound, propext]
info: [10/12] Compiling Main

info: [12/12] Linking polara

Success!

What does this mean? At the end of the src/Main.lean file we print out all assumptions and
axioms used in the development using:

#print axioms Tm.toAINF
#print axioms AINF.cse
#print axioms Tm.norm

D.

C

Richter, T. Bohler, P. Weisenburger, and M. Mezini

You can verify that the only axioms we use are Classical.choice, Quot.sound and propext.

These axioms are built into Lean and almost unavoidable. You can verify that these are exactly
the axioms used, e.g., we did not “cheat” by using additional axioms.

Also, you could verify that all functions defined in the source files do not use noncomputable
def, or sorry. Functions which are not marked as noncomputable are computable, meaning
the compiler generates machine code for them. sorry is an escape hatch to avoid having to
define a function or proof. We believe that usage of noncomputable or sorry would show up
as warnings during compilation.

Run sh lake.sh exe test to run the tests, the output should list the tests, all of which
succeed, e.g:

Running tests
* 0K ...
* 0K ...

x === 16 / 16 tests passed ===

Re-Use Scenario (Reusable Badge)

We give an example of how the artifact can be reused on additional programs. We describe a
simple change to demonstrate how the case studies can be modified and how the new code can be
compiled:

try

1)

Besides the commands above, you can also

compile and check proofs: sh lake.sh exe polara
compile and run tests: sh lake.sh exe tests

To demonstrate that our code is not set in stone, e.g., can be modified and reused, you may
following one or more of the following usage scenarios.

Open the file src/Polara/Test.lean. This file contains tests that print * 0K ... on success
and * ERROR ... on failure.
You can duplicate one of the tests, for example, the file contains a test codegen that creates
an expression using the function egypt, transforms it to A;NF, then generates Lean code from
A;NF, and finally evaluates the Lean code.
In the test, try setting base and expo to other values. This will generate different code
producing different outputs, but the result should still be equal to the reference output from
egyptLean (in Examples.lean) and the test should still pass.
Open the file src/Polara/Examples.lean. This file contains the functions that are tested by
the file above.
In Polara, an expression is either
a constant natural .cstO (.litn n)
a constant floating point .cst0 (.1litf f)
a constant index .cst0 (liti i)
an operator, for example cst2 addn a b or cst2 app f x
an array construction bld fun i : Gamma (idx n) => e. (The array construction con-
structs an array of length n by repeatedly evaluating e, with i bound to the values from 0
to n-1. For example, bld fun i => cst2 muln 10 (i2n i) evaluates to #[0, 10, 20].)
for more info see the inductive Tm in the file src/Polara/Syntax.lean

18:5

DARTS

18:6

Compiling with Arrays (Artifact)

The egyptLean function is defined as a Lean function calculating base ~ (2 ~ n). The egypt
function is defined as a Polara function that calculates the same result, but does so using
multiplication instead of powers. This is a good example of how partial evaluation and common
subexpression elimination together can optimize a function well:

def egyptLean (n: Nat) (x: Nat) :=
n”~ (27 x)

def egypt (n: Nat) {Gamma : Ty -+ Type} : Tm Gamma (Ty.nat ~> Ty.nat) :=
let rec foo’ (x : Gamma Ty.nat) : Nat - Tm Gamma Ty.nat
| 0 =>var x
| ntl => cst2 app (abs fun y => cst2 muln (var y) (var y)) (foo’ x n)
abs fun x => foo’ x n

To simulate writing your own Polara function, you could perform the following steps. We
define a new variant of egyptLean that performs multiplication instead of powering, and an
equivalent variant of the egypt function that performs repeated addition. For this replace the
first of the power functions in egypt by multiplication, and the muln operator in egypt by
addn (in Examples.lean):

def egyptLean2 (n: Nat) (x: Nat) :=
n* (2~ x)

def egypt2 (n: Nat) {Gamma : Ty - Type} : Tm Gamma (Ty.nat ~> Ty.nat) :=
let rec foo’ (x : Gamma Ty.nat) : Nat - Tm Gamma Ty.nat
| 0 =>var x
| ntl => cst2 app (abs fun y => cst2 addn (var y) (var y)) (foo’ x n)
abs fun x => foo’ x n

To test this, we can also duplicate the test function, rewritten such that it invokes egypt2 and
egyptLean? instead, but still compares the two functions for equality (in Test.lean, within
the Test namespace):

def codegen2 : IO Unit := group "codegen" <| do

let base := 3
let expo := 5
let el := (Tm.norm (fun _ => Tm.cst2 Const2.app

(egypt2 base) (.cstO (.litn expo)))).toAINF.cse [] [1 [>.codegen id
let €2 := (Tm.norm (fun _ => (egypt2 base))).toAINF.cse [] [] [|>.codegen
fun x => x ++ s!" {expo}"
let actuall « evalStr el
let actual2 « evalStr e2
let expected := egyptLean2 expo base
assertEq "egypt2: generated code evaluates correctly"
actuall.trim s!"{expected}"
assertEq "egypt2: generated code evaluates correctly"
actual2.trim s!"ok: {expected}"

Do not forget to add the test to the main function in Test.lean:

D. Richter, T. Bohler, P. Weisenburger, and M. Mezini 18:7

def main := do
I0.println ""
I0.println "Running tests"
Test.codegen

Test.codegen2 —- new!

Test.toAINF

Test.CSE

let total := (+ success.get).size + (+ failure.get).size
I0.println s!"=== {(+ success.get).size} / {totall} tests passed"

You can now check that an additional test runs successfully, using sh lake.sh exe test.

3) The implementation of conversion to A;NF i.e., fission, is clean and simple in a few lines. We
envision a usage scenario of this artifact is its purpose as a tutorial reference for people who
would like to reproduce it

DARTS

	1 Scope
	1.1 Relation of Artifact and Paper
	1.2 Differences to the Paper

	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Quick-Start Guide
	B Expected Behavior (Functional Badge)
	C Re-Use Scenario (Reusable Badge)

