
Dynamically Generating Callback Summaries for
Enhancing Static Analysis (Artifact)
Steven Arzt #

Fraunhofer SIT | ATHENE – National Research Center for Applied Cybersecurity, Darmstadt, Germany

Marc Miltenberger #

Fraunhofer SIT | ATHENE – National Research Center for Applied Cybersecurity, Darmstadt, Germany

Julius Näumann #

TU Darmstadt | ATHENE – National Research Center for Applied Cybersecurity, Darmstadt, Germany

Abstract
Interprocedural static analyses require a complete
and precise callgraph. Since third-party libraries are
responsible for large portions of the code of an app,
a substantial fraction of the effort in callgraph gener-
ation is therefore spent on the library code for each
app. For analyses that are oblivious to the inner
workings of a library and only require the user code
to be processed, the library can be replaced with a
summary that allows to reconstruct the callbacks
from library code back to user code. To improve
performance, we propose the automatic generation
and use of precise pre-computed callgraph summar-
ies for commonly used libraries. Reflective method
calls within libraries and callback-driven APIs pose
further challenges for generating precise callgraphs

using static analysis. Pre-computed summaries can
also help analyses avoid these challenges.

We present CGMiner, an approach for auto-
matically generating callgraph models for library
code. It dynamically observes sample apps that
use one or more particular target libraries. As we
show, CGMiner yields more than 94% of correct
edges, whereas existing work only achieves around
33% correct edges. CGMiner avoids the high false
positive rate of existing tools. We show that CG-
Miner integrated into FlowDroid uncovers 40 %
more data flows than our baseline without callback
summaries.

This artifact description describes how the arti-
facts can be build.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis
Keywords and phrases dynamic analysis, callback detection, java, android
Digital Object Identifier 10.4230/DARTS.10.2.2
Funding This research work has been funded by the German Federal Ministry of Education and Research
and the Hessian Min- istry of Higher Education, Research, Science and the Arts within their joint
support of the National Research Center for Applied Cybersecurity ATHENE.

Related Article Steven Arzt, Marc Miltenberger, and Julius Näumann, “Dynamically Generating
Callback Summaries for Enhancing Static Analysis”, in 38th European Conference on Object-Oriented
Programming (ECOOP 2024), LIPIcs, Vol. 313, pp. 4:1–4:27, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.4

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact allows to reproduce the data in the paper. It furter allows the user to conduct own
analyses to identify callback edges in libraries that were not used in our experiments for the paper.

Note that reproducing all experimental results from the paper is computationally expensive
due to the size of the experiments. It further requires setting up a proper dynamic analysis
environment as well as the VUSC code scanner on which out analysis is built. We therefore

V1.1

A
rt
ifa

cts Available

ECOOP

© S. Arzt, M. Miltenberger, and J. Näumann;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 2, pp. 2:1–2:5
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:Steven.Arzt@sit.fraunhofer.de
https://orcid.org/0000-0002-5807-9431
mailto:Marc.Miltenberger@sit.fraunhofer.de
https://orcid.org/0000-0002-3806-0522
mailto:Julius.Naeumann@tu-darmstadt.de
https://orcid.org/0000-0002-5162-3334
https://doi.org/10.4230/DARTS.10.2.2
https://doi.org/10.4230/LIPIcs.ECOOP.2024.4
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

2:2 Artifact desc. for Callback Summary Generation

provide an option to run downscaled version of the experiments that uses pre-computed callback
summariees and conducts the downstream FlowDroid analysis based on these results. This smaller
version of the experiments does not require VUSC and does not requires phones or emulators for
the dynamic analysis.

2 Content

The artifact package includes:
Code for the scaled-down evaluation. Can be found at Code/ReplicateNumbers
Code to automatically generate artifical apps as mentioned in RQ1. Can be found at Code/C-
allbackGeneration
Code for the FlowDroid evaluation. Can be found at Code/JobSubmissionTool
Code for test cases. Can be found at Code/AndroidStudioProjects
Manually annotated results of the dynamic analysis (Summary).
Can be found at Results/Summaries/virtualedgesummaries-dcid-complete-annotated.xml
Manually annotated Edgeminer summaries.
Can be found at Results/Summaries/edgeminer-annotated.xml
Results for different RQs - partially precomputed to allow for the scaled-down evaluation to
run even if the dynamic analysis was skipped. Can be found at Results/

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

Ubuntu 24.04 LTS x64

5 License

The artifact is available under the LGPL2 license.

6 MD5 sum of the artifact

029ab0d1f181d7e1405e081027af44cb

7 Size of the artifact

346.4 MiB

A

A.1 Running the fast evaluation
For the fast evaluation, the approach is simple: Build the docker container and run it, e.g. using

docker run --rm -it $(docker build -q .) /bin/bash Code/RQ-FastEval.sh

S. Arzt, M. Miltenberger, and J. Näumann 2:3

The values in the text of the paper are custom LaTeX macros. These defintions for these
macros, i.e., the mapping between the LaTeX command and the value that shall be inserted, is
created automatically while running the fast evaluation. In other words, the artifact was also used
to genetare the data in the paper. In addition to the macros in the continuous text, the data in
“Table 1” and “Table 2” is also generated during the run.

The docker container runs the Code present in Code/ReplicateNumbers/, which prints out the
values in standard output. You can search in the output for

*** RQ 4: Prevalence of transfer functions ***
*** RQ 5: Comparison with EdgeMiner ***
*** RQ 7: FlowDroid client analysis ***

A.2 Complete Evaluation
For the computationally expensive full evaluation, the process is a bit more elaborate. We used
a specialized Eclipse distribution (VUSC Development Environment (VDE)) which can be used
to develop VUSC plug-ins. VDE can be obtained from us under either a free VUSC Academic
License for non-profit research organizations or a commercial VUSC license for companies 1. We
provide the Eclipse project of our VUSC-Plugin used to generate Callbacks, which can only be
build using this special Eclipse build environment, since it has dependencies to VUSC components
in order to manage communication between the app and the computer and as an instrumentation
framework [2].

A.2.1 Data Set
Note that the dataset is only needed for a complete evaluation including the dynamic analysis
and FlowDroid. We used the dataset from AndroZoo [1] as a data source for our apps. Due to
licensing restrictions, we cannot share the raw apps, but we provide md5 sums of the used apps
in Datasets/*-subset-md5.txt corresponding to each research question that uses real-world apps.
Datasets/*-subset.txt correspond to the files containing absolute file names to the actual apps and
are used by the evaluation scripts for the large, expensive evaluation.

A.2.2 VUSC Setup
The VUSC/server.conf.needsadaption file can be used as a template for the VUSC configuration.
Furthermore, the VUSC folder contains screenshots of the launch configuration we used in the
VUSC Development Environment.

A.2.3 Verifying Claims
First, we show how to compute the numbers for RQ1, which is an time consuming process (Sec-
tion A.2.3.1). We then elaborate on how to generate the numbers for RQ4 to RQ7 (Section A.2.3.2).

A.2.3.1 Baseline over the Dataset, obtain the summaries from RQ1 & generate RQ1
numbers [very expensive]

The paragraph “Baseline over the Dataset” uses the data set for RQ1 (Datasets/RQ1-Callback-
Generation-subset.txt is needed). You will also need an Android SDK with android.jar files
in the platforms/platform-NUMBER directory, with the Number standing for a SDK version. We
have the Android SDK 34 installed.

1 https://www.sit.fraunhofer.de/en/offers/projekte/vusc/

DARTS

https://www.sit.fraunhofer.de/en/offers/projekte/vusc/

2:4 Artifact desc. for Callback Summary Generation

In order to regenerate the summaries, the dynamic analysis has to be performed using VUSC.
VUSC is needed since we have dependencies on VUSC core plugins. The easiest approach to
build research plugins against VUSC is to use the VUSC Development Environment (VDE). VDE
already comess equipped with the VUSC core plugins. You only need to import the plugins for
this research project from Code/CallbackAnalysis.

Note that VDE does not come with a Maven plugin. If you want to modify the Replicate
Numbers, JobSubmission or CallbackCodeGeneration projects, which do not depend on VUSC
and are meant to run outside the scanner, you can either use a different IDE of your choice, or
simply install the Maven support into VDE using Eclipse’s normal software installation features.

We have provided screenshots in the VUSC folder which show how the launch configuration
should be configured. Adjust the -Xmx VM option on the arguments tab to provide a substantial
maximum heap size. Note that the heap must always fit into your (free) system memory. For
development, we used 16 GiB of memory. For a mass evaluation, that won’t be sufficient. VUSC
normally requires a minimum 32 GB of memory with 64 GB being recommended. Especially for
large analyes with many apps, we recommend using as much memory as you can so that VUSC
can parallelize scanning tasks.

The program arguments must include the path to the config file using --configfile PATH-
TO-SERVER-server.conf. We have attached a sample configuration filee at VUSC/server.conf.
needsadaption. Make sure to change the values in there according to the instructions inside. We
cannot publicly redistribute the Android SDK due to their terms of use (https://developer.
android.com/studio/terms), i.e., this needs to be downloaded and installed manually. The path
to the Android SDK must be set specified in the server.conf file.

Once VUSC is started, the scanner is accessible via its web interface. You need to enter
your license key (which you can find on your licensing documents or inside the customer
portal) on http://127.0.0.1:18080/settings/license-management and set-up a device on
the Device Management on http://127.0.0.1:18080/settings/device-management. Select
Android device as device type. We really recommend to use a real device as we found emulators
to be rather sluggish (and consume quite a bit of system memory themselves). The serial number
can be found using adb get-serialno (use the adb that lies within the Android SDK referenced
in the server.conf). Please do not use your private phone due to security concerns (we do not
recommend installing random apps). For the test data set, we set the Dynamic Analysis Runtime
Seconds to 15 seconds.

You can then start the analysis by either loading apps into the scanner using drap&drop on
the web-based UI or using the JobSubmission tool that we provide for mass analysis.

Alternatively, you can set up a dedicated VUSC server with the research plugins installed.
This makes sense if you want to run the experiments on a (headless) server machine that does not
have VDE installed, or if you want seperate development from execution. For this approach, you
first run the normal VUSC installer, equivalently to how a productive VUSC scanner installation
would be set up. The /etc/ci/server.conf file should then be modified to use part of our config
in Content/VUSC/server.conf.needsadaption. This is important, as it restricts the analyses
to the research plugins. Otherwise, many unrelated analyses will run when we later submit the
target apps as VUSC will conduct its normal security scan.

Afterwards, the research plugin must be installed into the scanner instance. The easiest way
is to export the plugin from VDE is to export the entire OSGI feature. This can be done via
the main menu in VDE: Select File/Export. . . /Deployable plug-ins and fragments and select the
both reproduce.* plugins. Export the feature to a directory, for example /tmp/abc. Run sudo ci
installplugin file:///tmp/abc reproduce.callbackevaluation in order install the plugin.
Note that the VUSC server can also run on a different machine, you then only need to copy your

https://developer.android.com/studio/terms
https://developer.android.com/studio/terms

S. Arzt, M. Miltenberger, and J. Näumann 2:5

directory to the other machine. Then run ci restart to restart VUSC. The new plugin will be
picked up during this restart. You can then submit your analysis jobs as normal, i.e., either via
the scanner’s web UI or via the JobSubmission tool.

When “Device with ID 1 doesn’t exist” appears in the log file during the analysis, the device
has not been configured. Make sure your device is unlocked when using the dynamic analysis.

If you do not have the data set, you can use test cases from Datasets/TestAPKs/ (the code
for these is in Code/AndroidStudioProjects/). In the folder you can also find the ground truth
as returned by the tool.

The code in Code/CallbackAnalysis/Evaluation is used to generate the numbers for RQ1.

A.2.3.2 RQ4, RQ5, RQ7: Generating all the numbers

In order to reproduce these numbers, there are two different ways. There is a fast approach that is
shown in Section A.2.3.2. Alternatively, there is am evaluation from scratch that is computationally
expensive (see Section A.2.3.2).

Recompute precomputed results (dataset needed). Note that the implementation checks
whether precomputed results are available in Results/RQ4-TransferFunctionsPrevalence. We
provide these precomputed results so that the raw dataset is not needed in order to compute the
values from the paper. If you want to recompute those results, make sure that you have valid
paths to all apps in the Datasets/RQ4-PrevalenceTransferFunctions-subset.txt file. Then
delete the contents of the folder Results/RQ4-TransferFunctionsPrevalence.

Rerun FlowDroid evaluation (dataset needed, expensive). We already provide precomputed
FlowDroid results, thus this step is optional.

In order to recompute the FlowDroid evaluation, the data set Datasets/RQ7-FlowDroid-
ClientAnalysis-subset.txt is needed, which we cannot redistribute, but is obtainable from
AndroZoo (Allix et al, ACM MSR, IEEE, 2016). When you are using the docker container,
you can mount the path to the data set, in our example below we have the dataset in in
/opt/dataset on the host computer. You also need to have the Android SDK installed,
which must have at least one android.jar in the platforms directory. docker run --rm -v
path-to-android-sdk-linux/platforms:/opt/android-sdk-linux/platforms -v
/opt/dataset:/path/to/ -it $(docker build -q .) /bin/bash

In the resulting bash prompt, make sure that ls /path/to/appinventor.ai_blasetaze.-
ScottPilgrim.apk returns a file. Then run /bin/bash Code/RQ7-FlowDroidEval.sh. The
script will take days to complete. Since the script file explictly specifies 250 GB heap size, Java
will terminate without results when you do not have enough RAM. When the script is complete,
do not exit the bash as this would delete all results, but run the evaluation directly in the same
docker container: /bin/bash Code/RQ-FastEval.sh

References
1 Kevin Allix, Tegawendé F. Bissyandé, Jacques

Klein, and Yves Le Traon. Androzoo: collecting
millions of android apps for the research community.
In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR ’16, pages
468–471, New York, NY, USA, 2016. Association

for Computing Machinery. doi:10.1145/2901739.
2903508.

2 Marc Miltenberger and Steven Arzt. Extensible
and scalable architecture for hybrid analysis. In
Proceedings of the 12th ACM SIGPLAN Interna-
tional Workshop on the State Of the Art in Program
Analysis, pages 34–39, 2023.

DARTS

https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A
	A.1 Running the fast evaluation
	A.2 Complete Evaluation
	A.2.1 Data Set
	A.2.2 VUSC Setup
	A.2.3 Verifying Claims

