
Formalizing, Mechanizing, and Verifying Class-Based
Refinement Types (Artifact)
Ke Sun #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Di Wang1 #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Sheng Chen #

The Center for Advanced Computer Studies, University of Louisiana, Lafayette, LA, USA

Meng Wang #

University of Bristol, UK

Dan Hao #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Abstract
This is the artifact description of an ECOOP pa-
per. A new expressive formalization of class-based
refinement types is proposed in the paper. We en-
rich the formalization by analyzing its meta-theory

and algorithmic verification. The meta-theory and
algorithmic verification have been mechanized and
implemented. We discuss details of the mechaniza-
tion and implementation in this document.

2012 ACM Subject Classification Theory of computation → Type structures; Software and its engineering
→ Formal software verification
Keywords and phrases Refinement Types, Program Verification, Object-oriented Programming
Digital Object Identifier 10.4230/DARTS.10.2.22
Funding This work is sponsored by National Natural Science Foundation of China Grant No. 62232001,
NSF Grant 1750886, and EPSRC Grant EP/T008911/1.
Acknowledgements We thank the anonymous reviewers for their helpful comments.

Related Article Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao, “Formalizing, Mechanizing,
and Verifying Class-Based Refinement Types”, in 38th European Conference on Object-Oriented
Programming (ECOOP 2024), LIPIcs, Vol. 313, pp. 39:1–39:30, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact contains the Coq mechanization of a class-based refinement type calculus (named
RFJ), as well as the Python implementation of a type checker of the calculus. We claim that
calculus enjoys the metaproperty of type soundness and logical soundness. We also claim that
calculus can be implemented as an efficient type checker, which is able to check many interesting
example programs.

1 Corresponding author

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 22, pp. 22:1–22:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:sunke@stu.pku.edu.cn
https://orcid.org/0000-0002-2966-9889
mailto:wangdi95@pku.edu.cn
https://orcid.org/0000-0002-2418-7987
mailto:sheng.chen@louisiana.edu
https://orcid.org/0000-0003-1735-0704
mailto:meng.wang@bristol.ac.uk
https://orcid.org/0000-0001-7780-630X
mailto:haodan@pku.edu.cn
https://orcid.org/0000-0001-8295-303X
https://doi.org/10.4230/DARTS.10.2.22
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

22:2 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types (Artifact)

2 Content

This artifact contains two main components, the Coq mechanization and the Python Implementa-
tion.

Coq Mechanization. The mechanization is in the /home/ecoopsub/Desktop/refpy folder. We list
the structure of the mechanization, which contains about 15K lines of Coq code:
1. Definitions (3K): language definitions as presented in Section 3 of the paper.
2. Lemmas (11K):

a. Basic Lemmas (5K): miscellaneous lemmas concerning basic operations, semantics, and
class/interface definitions (some of which are listed in Section 4.1.

b. Logical Lemmas (2K): lemmas concerning the logical interpretation (c.f., Section 4.2).
c. Typing Lemmas (4K): basic, structural, and crucial lemmas of typing (c.f., Section 4.3).

3. Theorems (1K): type and logical soundness theorems (c.f., Sections 4.4 and 4.5).

To ensure that the calculus and meta-theoretical development described in the paper is actually
the one mechanized in Coq. We give a correspondence between the calculus definition and
lemmas/theorems and the Coq mechanization.
Definitions (Section 3):

Figure 3 Left (Syntax): Definition/Syntax.v
Figure 3 Right and Figure 6 (Subtyping and Logics): Definition/SubDenotation.v
Figure 4 (Auxiliary definitions): Definition/Semantics.v, CTSanity.v
Figure 5 (Small-step semantics of RFJ): Definition/Semantics.v
Figure 7 (Typing relations of RFJ): Definition/Typing.v, CTSanity.v

Meta-theory (Section 4):
Lemma 3: Lemmas/BasicLemmas/LemmasTypeSubstitution.v: tsubBV_invariant and
tsubBV_invariant’
Lemma 4: Lemmas/BasicLemmas/LemmasBigStepSemantics.v: evals_invariant and
evals_invariant’, EvalsTo_BStepEval and BStepEval_EvalsTo
Lemma 5: Lemmas/BasicLemmas/LemmasExactness.v: exact_eval
Lemma 6: Lemmas/BasicLemmas/LemmasExactness.v: exact_type
Lemma 7: Lemmas/LogicalLemmas/LemmasDenotesTyping.v: typing_denotes
Lemma 8: Lemmas/LogicalLemmas/LemmasDenotesTyping.v: denotes_typing
Lemma 9: Lemmas/TypingLemmas/LemmasNarrowing.v: INarrow, narrow_subtyp’,
narrow_typ’
Lemma 10: Lemmas/TypingLemmas/LemmasSubstitutionTyping.v: ISub2,
subst_subtype2’, subst_typ2
Lemma 11: Lemmas/TypingLemmas/LemmasWeakenTyp.v: IWeak, weaken_subtype’,
weaken_typ’
Lemma 12: Lemmas/TypingLemmas/Preservation_Progress.v: progress’
Lemma 13: Lemmas/TypingLemmas/Preservation_Progress.v: preservation’
Lemma 14: Lemmas/TypingLemmas/Closing_Substitution.v: closing_substitution
Corollary 15: Theorems/TypeSoundness.v: type_soundness
Corollary 16: Theorems/LogicalSoundness.v: logical_soundness
Theorem 17: Theorems/LogicalSoundness.v: logical_soundness_closed

In the list above, the underlined words are the lemma/theorem names in the code.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 22:3

Python Implementation. The implementation is in the /home/ecoopsub/Desktop/refpy folder.
The Python implementation of the calculus has a straightforward structure as an AST traverser,
which performs basic type checking and SMT constraint collecting. The SMT.py file implements
the SMT theory described in Section 5 of the paper.

We give a correspondence between the items listed in Figure 1 with the Python examples in
the ref_test folder, with the number in parentheses showing its order in runtests.py.

pizza: pizza.py (Example #1)
pizza_visitor: a_little_Java/lession5_objects_pizza.py (Example #6)
tree: a_little_Java/lession7_overloadingAndgenericVisitor_tree.py (Example #8)
geometry: a_little_Java/lession9_dataExtensionAndfactory_geometry.py (Example #10)
list: list.py (Example #11)
lambda calculus: lambda.py (Example #12)
stlc: stlc.py (Example #13)

To check all the 14 examples together, use the runtests.py script by running “python3
runtests.py” at the root of “refpy” folder, which should print the log (checked constraints, overall
time cost) to the terminal. For the negative version of the 14 examples, please use “python3
runtests_negative.py”, which should find out several injected errors of the 14 examples.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The VM containing the artifact is
available at: https://zenodo.org/records/12683231. You can also get the newest version of
the mechanization at https://github.com/ksun212/RFJCoq, and the implementation at https:
//github.com/ksun212/Refpy.

4 Tested platforms

This VM is tested on an Ubuntu 22.04 virtual machine (VirtualBox), the virtual machine is
granted 8 virtual cores (the host CPU is AMD 5800H), 8G memory, and 20G virtual disk, no other
resource should be needed. We expect the VM to work properly on an AMD-based VirtualBox.
The computation it performs is not resource-intensive, although it would run longer (10 seconds)
on a low-end AMD CPU.

We expect the mechanization to work properly on any platform with Coq 8.17, and the
Implementation on any platform with Python 3.10.

5 License

The artifact is available under license Creative Commons Attribution 4.0 International.

6 MD5 sum of the artifact

d7ac9157fe33c460972f771647ed8d62

7 Size of the artifact

7.6 GiB

DARTS

https://zenodo.org/records/12683231
https://github.com/ksun212/RFJCoq
https://github.com/ksun212/Refpy
https://github.com/ksun212/Refpy

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

