
Refinements for Multiparty Message-Passing
Protocols: Specification-Agnostic Theory and
Implementation (Artifact)
Martin Vassor #

University of Oxford, UK

Nobuko Yoshida #

University of Oxford, UK

Abstract
Multiparty message-passing protocols are notori-
ously difficult to design, due to interaction mis-
matches that lead to errors such as deadlocks. Ex-
isting protocol specification formats have been de-
veloped to prevent such errors (e.g. multiparty ses-
sion types (MPST)). In order to further constrain
protocols, specifications can be extended with re-
finements, i.e. logical predicates to control the

behaviour of the protocol based on previous values
exchanged. Unfortunately, existing refinement the-
ories and implementations are tightly coupled with
specification formats.

This artifact accompanies [1]. It presents an
implementation of the framework presented in this
paper.

2012 ACM Subject Classification Software and its engineering → Specification languages; Theory of
computation → Assertions; Theory of computation → Concurrency
Keywords and phrases Message-Passing Concurrency, Session Types, Specification
Digital Object Identifier 10.4230/DARTS.10.2.23
Funding Work supported by: EPSRC EP/T00006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462, EP/X015955/1n NC-
SS/EPSRC VeTSS, and Horizon EU TaRDIS 101093006.
Acknowledgements We thank Burak Ekici, Marco Giunti, Ping Hou, Amrita Suresh, and Fangyi Zhou
for their insightful suggestions

Related Article Martin Vassor and Nobuko Yoshida, “Refinements for Multiparty Message-Passing
Protocols: Specification-Agnostic Theory and Implementation”, in 38th European Conference on Object-
Oriented Programming (ECOOP 2024), LIPIcs, Vol. 313, pp. 41:1–41:29, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact allows to run the set of examples presented in Section 7.2 if the related article. It
also contains scripts to run the evaluation benchmarks presented in the said section.

2 Content

The artifact package includes a virtual machine containing:
the source code of Rumpsteak extended with refinements
the source code of the three additional programs written for the verification of the conditions
for decentralised refinement assertion (scr2dot, mpst_unroll and dynamic_verify).

V1.1

A
rt
ifa

cts Available

ECOOP

© Martin Vassor and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 23, pp. 23:1–23:5
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:martin@vassor.org
https://orcid.org/0000-0002-2057-0495
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/DARTS.10.2.23
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

23:2 Refinements for Multiparty Message-Passing Protocols (Artifact)

benchmark scripts
a copy of the related article
a README file explaining how-to use the artifact
the source of 3rd-party programs needed to compile our tools.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://zenodo.org/records/11173622. The latest update of the artifact (fixing bugs), is
available at https://zenodo.org/doi/10.5281/zenodo.10535050.

The md5sum and the size (see below) refer to version 1.0.5, the latest at time of publishing.

4 Tested platforms

The provided virtual machine was run with VirtualBox 6.1.50 on a Ubuntu 22.04 machine (Intel
i7-6700 @ 3.40GHz × 8 with 16 GiB of memory).

5 License

The artifact is available on CC-BY-SA-NC license. The CC-BY-SA-NC license only regards the
content of the folder “refinement-automata-benchmarks” in the virtual machine.

This virtual machine contains software licensed under the MIT license (rumpsteak), GPL3
(nuscr), and others (c.f. ubuntu operating system). Please refer to each software component to
learn about their respective license.

6 MD5 sum of the artifact

8ef53937b5b645043e52feebff85092a

7 Size of the artifact

12.6 GiB

A Running the benchmarks

A.1 Table 1b
Open a terminal an go to “~/Desktop/refinement-automata-benchmarks”
run the script dynamic_verify.sh, which will sample a set of micro benchmarks
for each micro benchmark, the script outputs something like the following, which corresponds
to the values reported in Table 1b, for the said benchmark:

A.2 Table 1c
Open a terminal an go to “~/Desktop/refinement-automata-benchmarks”
run the script compare.sh, which will same a set of micro benchmarks
for each micro benchmark, the script outputs something like the following, which corresponds
to the values reported in Table 1c, for the said benchmark:

https://zenodo.org/records/11173622
https://zenodo.org/doi/10.5281/zenodo.10535050

M. Vassor and N. Yoshida 23:3

********* Analysis NAME_OF_BENCHMARK **********
***** 1st quartile, median, 3rd quartile (vanilla) *******
[3 lines with the values]
***** 1st quartile, median, 3rd quartile (refinements) *******
[3 lines with the values]
***** 1st quartile, median, 3rd quartile (difference) *******
[3 lines with the values, showing the empirical overhead]
****** Mann-Whitney test (null-hypothesis: refinement is greater than vanilla) ******
MannwhitneyuResult(statistic=[...], pvalue=[The p-value])

B Adding a new example

To implement a new example, the easiest way is to add the example in the Rumpsteak folder (it is
also possible to create a standalone project and include Rumpsteak as a dependency).

The example is to be added in the examples/Running\ examples subfolder:

$ cd ~/Desktop/rumpsteak-refined_mpst
$ cd examples/Running\ examples/
$ mkdir my_project
$ cd my_project

The first part to create a new example is to write a Scribble file, representing the protocol.
For instance, let’s Copy/Paste the ping-pong example, and add refinements:

(*# RefinementTypes #*)

global protocol PingPong(role A, role B)
{

rec t {
Ping(x: int {x > 0}) from A to B;
Pong(x: int {x > 0}) from B to A;
continue t;

}
}

Following Figure 7, we first want to verify the localisation of the variables. First, we unpack
and build the tools (scr2dot, mpst_unroll and dynamic_verify), and their dependencies:

$ cd /tmp
$ unzip ~/Desktop/scr2dot-main.zip
$ unzip ~/Desktop/mpst_unroll-main.zip
$ unzip ~/Desktop/dynamic_verify-main.zip
$ cd scr2dot-main
$ dune build
$ cd ..
$ unzip ~/Desktop/dot-parser-v0.1.zip # dependency for mpst_unroll
$ mv dot-parser-v0.1 dot-parser
$ cd mpst_unroll-main
$ cargo build
$ cd ../dynamic_verify-main
$ cargo build

DARTS

23:4 Refinements for Multiparty Message-Passing Protocols (Artifact)

We can finally check the validity of our example:

$ cd ~/Desktop/rumpsteak-refined_mpst/examples/Running\ examples/my_project
$ /tmp/scr2dot-main/_build/default/scr2dot.exe my_project.nuscr \
| /tmp/mpst_unroll-main/target/debug/mpst_unroll \
| /tmp/dynamic_verify-main/target/debug/parser
Refinements can be dynamically checked.

(Of course, if you want to see the intermediate steps, you can run the 3 commands one after
each other.)

Now that we now the protocol can be dynamically checked, we can implement it. First, we
need to obtain the local types of the participants, obtained from nuscr. We also do a bit of
renaming (naming the generated automata with the name of the participant, and using rust types
for integers):

$ nuscr --fsm A@PingPong my_project.nuscr | sed "s/digraph G/digraph A/" \
| sed s/int/i32/ > A.dot
$ nuscr --fsm B@PingPong my_project.nuscr | sed "s/digraph G/digraph B/" \
| sed s/int/i32/ > B.dot

We now generate the Rust API. We first need to build the generator:

$ cd ~/Desktop/rumpsteak-refined_mpst/generate
$ cargo build
$ cd ../examples/Running\ examples/my_project
$../../../target/debug/rumpsteak-generate --name PingPong \
A.dot B.dot > my_project.rs

We finally need to implement the protocol, by filling the file my_project.rs.
For the sake of this example, let’s countdown from 10 to 0. This will eventually violate the

refinement and halt the process.

async fn a(role: &mut A) -> Result<(), Box<dyn Error>> {
try_session(role, HashMap::new(), |s: PingPongA<’_, _>| async {

let mut x = 10;
let mut s = s;
loop {

let cont_rec = s.0.send(Ping(x)).await?;
let (Pong(y), cont) = cont_rec.receive().await?;
s = cont;
x = y-1;

println!("Role A received {}", y);
}

})
.await

}

async fn b(role: &mut B) -> Result<(), Box<dyn Error>> {
try_session(role, HashMap::new(), |s: PingPongB<’_, _>| async {

let mut s = s;

M. Vassor and N. Yoshida 23:5

loop {
let (Ping(x), cont_snd) = s.0.receive().await?;
println!("Role B received {}", x);
s = cont_snd.send(Pong(x-1)).await?;

}
})
.await

}

fn main() {
let mut roles = Roles::default();
executor::block_on(async {

try_join!(a(&mut roles.a), b(&mut roles.b)).unwrap();
});

}

We can now run the example, which, as expected, halts when the refinement is violated.

$ cp my_project.rs ~/Desktop/rumpsteak-refined_mpst/examples/
$ cd ~/Desktop/rumpsteak-refined_mpst
$ cargo run --example my_project
Role B received 10
Role A received 9
Role B received 8
Role A received 7
Role B received 6
Role A received 5
Role B received 4
Role A received 3
Role B received 2
Role A received 1
thread ’main’ panicked at /home/rmpst/Desktop/rumpsteak-refined_mpst/src/lib.rs:
192:14:
called ‘Result::unwrap()‘ on an ‘Err‘ value: ()
note: run with ‘RUST_BACKTRACE=1‘ environment variable to display a backtrace

References
1 Martin Vassor and Nobuko Yoshida. Refine-

ments for multiparty message-passing protocols:
Specification-agnostic theory and implementation.
In 38th European Conference on Object-Oriented

Programming (ECOOP 2024), September 16–20,
2024, Vienna, Austria, pages 41:1–41:29, 2024.
doi:10.4230/LIPIcs.ECOOP.2024.41.

DARTS

https://doi.org/10.4230/LIPIcs.ECOOP.2024.41

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Running the benchmarks
	A.1 Table 1b
	A.2 Table 1c

	B Adding a new example

