
Type Tailoring (Artifact)
Ashton Wiersdorf #Ñ

University of Utah, Salt Lake City, UT, USA

Stephen Chang #Ñ

University of Massachusetts Boston, MA, USA

Matthias Felleisen #Ñ

Northeastern University, Boston, MA, USA

Ben Greenman # Ñ

University of Utah, Salt Lake City, UT, USA

Abstract
Type systems evolve too slowly to keep up with
the quick evolution of libraries – especially libraries
that introduce abstractions. Type tailoring offers
a lightweight solution by equipping the core lan-
guage with an API for modifying the elaboration
of surface code into the internal language of the
typechecker. Through user-programmable elabora-
tion, tailoring rules appear to improve the precision
and expressiveness of the underlying type system.
Furthermore, type tailoring cooperates with the
host type system by expanding to code that the
host then typechecks. In the context of a hygienic
metaprogramming system, tailoring rules can even

harmoniously compose with one another.
Type tailoring has emerged as a theme across

several languages and metaprogramming systems,
but never with direct support and rarely in the
same shape twice. For example, both OCaml and
Typed Racket enable forms of tailoring, but in quite
different ways. This paper identifies key dimensions
of type tailoring systems and tradeoffs along each di-
mension. It demonstrates the usefulness of tailoring
with examples that cover sized vectors, database
queries, and optional types. Finally, it outlines a
vision for future research at the intersection of types
and metaprogramming.

2012 ACM Subject Classification Software and its engineering → Extensible languages
Keywords and phrases Types, Metaprogramming, Macros, Partial Evaluation
Digital Object Identifier 10.4230/DARTS.10.2.24

Related Article Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman, “Type
Tailoring”, in 38th European Conference on Object-Oriented Programming (ECOOP 2024), LIPIcs,
Vol. 313, pp. 44:1–44:27, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The purpose of this artifact is to provide running code to support the claims in section 2 and
subsection 3.8 of the paper. The programs demonstrate type tailoring in a variety of languages
and settings.

2 Content

The artifact package includes:
README file containing instructions on how to replicate the claims in the paper.
Folder claims containing subdirectories for different categories of claims.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 24, pp. 24:1–24:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:research@wiersdorfmail.net
https://lambdaland.org/
https://orcid.org/0000-0001-5524-7930
mailto:stephen.chang@umb.edu
https://www.cs.umb.edu/~stchang/
https://orcid.org/0000-0002-4760-0658
mailto:matthias@ccs.neu.edu
https://www.khoury.northeastern.edu/home/matthias/
https://orcid.org/0000-0001-6678-1004
mailto:benjaminlgreenman@gmail.com
https://cs.utah.edu/~blg
https://orcid.org/0000-0001-7078-9287
https://doi.org/10.4230/DARTS.10.2.24
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


24:2 Type Tailoring (Artifact)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact and associated
instructions are also available at: https://zenodo.org/doi/10.5281/zenodo.10578596. On
Zenodo we also provide a Docker image as a tarball which packages up all of the dependencies for
the artifact. We recommend using this where possible.

4 Tested platforms

The artifact is known to work on the following platforms:

AMD Ryzen 5 machine with 16 GB of RAM running Debian 12 (source & Docker container)
Apple M1 Pro machine with 32 GB of RAM and running macOS 14 (source only)

16 GB of RAM is likely overkill for this artifact.
We recommend the Docker container (available on Zenodo and DockerHub), as it includes

all dependencies, but because we built the Docker on an x86 machine it may not run on Apple
Silicon. When we tested on an Apple M1 Pro, the Julia section failed. Everything else was okay,
but ran relatively slowly.

5 License

The artifact is available under the MIT license.

6 MD5 sum of the artifact

06f8aa83ea549c491b1bc58ee78a9ac4

7 Size of the artifact

1.4 MB

https://zenodo.org/doi/10.5281/zenodo.10578596

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

