
CtChecker: A Precise, Sound and Efficient Static
Analysis for Constant-Time Programming (Artifact)
Quan Zhou #

Penn State University, University Park, PA, USA

Sixuan Dang #

Duke University, Durham, NC, USA

Danfeng Zhang #

Duke University, Durham, NC, USA

Abstract
This artifact includes the implementation of the
CtChecker analysis toolchain described in the cor-
responding paper. We provide two options to run
CtChecker, building it from source or running the

pre-built tool with Docker. All evaluated bench-
mark source code are provided in the artifact. A
walkthrough of how to reproduce the evaluation
results in the paper is provided in the Appendix.

2012 ACM Subject Classification Security and privacy → Information flow control
Keywords and phrases Information flow control, static analysis, side channel, constant-time programming
Digital Object Identifier 10.4230/DARTS.10.2.26

Related Article Quan Zhou, Sixuan Dang, and Danfeng Zhang, “CtChecker: A Precise, Sound and
Efficient Static Analysis for Constant-Time Programming”, in 38th European Conference on Object-
Oriented Programming (ECOOP 2024), LIPIcs, Vol. 313, pp. 46:1–46:26, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.46

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact is released as a Docker image that includes a pre-built CtChecker. All the benchmark
and evaluation scripts are provided inside the image to help reproduce the evaluation results
presented in the paper.

2 Content

The artifact package includes:

Source code for CtChecker.
Evaluation scripts and benchmarks described in the corresponding paper.

The detailed organization of the artifact is provided in Appendix A.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The artifact is available as a Docker
image at: https://hub.docker.com/r/ctchecker/ctchecker. In addition, the source code and
future development of the project is available at: https://github.com/psuplus/CtChecker.

V1.1

A
rt
ifa

cts Available

ECOOP

© Quan Zhou, Sixuan Dang, and Danfeng Zhang;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 26, pp. 26:1–26:5
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:qfz5074@psu.edu
https://orcid.org/0009-0003-3497-7848
mailto:sd570@duke.edu
https://orcid.org/0000-0002-3241-9530
mailto:danfeng.zhang@duke.edu
https://orcid.org/0000-0003-1942-6872
https://doi.org/10.4230/DARTS.10.2.26
https://doi.org/10.4230/LIPIcs.ECOOP.2024.46
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://hub.docker.com/r/ctchecker/ctchecker
https://github.com/psuplus/CtChecker
https://doi.org/10.4230/DARTS.10.2.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

26:2 CtChecker (Artifact)

4 Tested platforms

We’ve been building the system under Ubuntu 20.04, which provides the best overall compatibility
for the toolchain. Other versions of Linux distributions as well as Mac OS may also work, but
sometimes require extra user effort in setting up the compilation environment for a successful
building process.

5 License

The artifact is available under the MIT License.

6 MD5 sum of the artifact

007ae89b130203f18cde0c467617a72e

7 Size of the artifact

218 MiB

A Directory Layout

The detailed organization of the artifact is shown in Figure 1, where the numbers represent
directory levels.

0 PROJECT_ROOT
1 projects # CtChecker root directory

2 llvm -deps # our information flow analysis
3 include # header files
3 lib # source code for the analysis
3 mod_exp_tests # evaluations for the paper

4 BearSSL0 .6 # BearSSL source code and scripts
4 ct -rewriter -files # benchmarks for rewrites

5 Constantine # rewritten code for Constantine
6 results .csv # Constantine results

5 SC -Eliminator - original # benchmarks for SC - Eliminator
6 results - ctchecker .csv # SC - Eliminator results

4 ct -verif -files # ct -verif comparison benchmarks
4 libgcrypt1 .10.1 # Libgcrypt source code and scripts
4 mbedtls3 .2.1 # mbedTLS source code and scripts
4 openSSL_1_1_1q # OpenSSL source code and scripts
4 results # the results folder for crypto -libs

3 processing_tools # scripts to automate the workflow
3 sensitivity -tests # unit -tests

2 poolalloc # DSA points -to analysis
1 ... # llvm infrastructure

Figure 1 The detailed organization of the artifact.

Q. Zhou, S. Dang, and D. Zhang 26:3

B Using CtChecker

B.1 Building CtChecker from Source
1. Before building, make sure to check:

The default ‘python’ is linked to a python2 executable. Check by python --version.
gcc-9 (preferably) is installed for compiling LLVM 3.7.1. Use gcc -v to check version.
Use update-alternatives to change default python and gcc of the system if versions do
not match.

2. Clone the project.
3. To build the toolchain, run the commands as in Figure 2.

First direct to project ’s root dir
cd / PATH_TO_LLVM_DIR

Configure the project under root and run ’make ’ to build LLVM
./ configure
make

Direct to projects folders , configure and make for each package .
cd projects / poolalloc /
./ configure
make

cd ../ llvm -deps/
./ configure
make

Figure 2 Build script

B.2 Running Pre-built CtChecker with Docker
Make sure Docker has been correctly installed on the test machine. The docker image is available
on DockerHub. Get the container running with the following commands as shown in Figure 3.

Pull Docker image from DockerHub
docker pull ctchecker / ctchecker : latest

Run a container with the image
docker run --name ctchecker -dit ctchecker / ctchecker

Get into the container ’s bash
docker exec -it ctchecker bash

Figure 3 Get CtChecker from Docker

B.3 Running the Cryptographic Library Benchmark
If CtChecker is built from source, PATH_TO_LLVM_DIR refers to the root directory of the source
code. For the container, it refers to /artifact/ctchecker. The cryptographic library benchmarks
can be run as shown in Figure 4.

DARTS

https://hub.docker.com/r/ctchecker/ctchecker

26:4 CtChecker (Artifact)

Direct to the benchmark folder
cd / PATH_TO_LLVM_DIR / projects /llvm -deps/ mod_exp_tests

Running the analysis
This script runs all four crypto libraries and
their variations for comparison with ct -verif
./ runall .sh

Figure 4 Running the crypto-lib benchmarks

The results for this benchmark are generated under the directory .../mod_exp_tests/results,
where four sub-folder will be created. The full folder is for full source versions, min for
the minimal source versions, ct_verif_files for ct-verif’s minimal source code versions, and
ct_verif_files_full for ct-verif’s full source code version.

B.4 Running the Benchmark on Rewritten Code by Constantine
Run Constantine [1] benchmarks as shown in Figure 5.

Direct to the benchmark folder
cd / PATH_TO_LLVM_DIR / projects /llvm -deps/ mod_exp_tests /
cd ct -rewriter -files/ Constantine

Running the analysis
This script runs all algorithms that are
successfully translated back to C source file
./ test.sh

Figure 5 Running Constantine benchmarks

The results for Constantine rewritten code are located under each algorithm’s own folder. The
aggregated result will be created under Constantine root folder with name results.csv.

B.5 Running the Comparison with SC-Eliminator on Their Benchmarks
Run SC-Eliminator [2] benchmarks as shown in Figure 6.

Direct to the benchmark folder for SC - Eliminator
cd / PATH_TO_LLVM_DIR / projects /llvm -deps/ mod_exp_tests /
cd ct -rewriter -files/SC -Eliminator - original

Running the analysis
This script runs benchmarks in SC - Eliminator paper
./ test.sh

Figure 6 Running SC-Eliminator benchmarks

The results are collected under the SC-Eliminator-original folder, in the file named
results-ctchecker.csv.

Q. Zhou, S. Dang, and D. Zhang 26:5

References
1 Pietro Borrello, Daniele Cono D’Elia, Leonardo

Querzoni, and Cristiano Giuffrida. Constantine:
Automatic side-channel resistance using efficient
control and data flow linearization. In Proceedings
of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 715–
733, 2021.

2 Meng Wu, Shengjian Guo, Patrick Schaumont, and
Chao Wang. Eliminating timing side-channel leaks
using program repair. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 15–26, 2018.

DARTS

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Directory Layout
	B Using CtChecker
	B.1 Building CtChecker from Source
	B.2 Running Pre-built CtChecker with Docker
	B.3 Running the Cryptographic Library Benchmark
	B.4 Running the Benchmark on Rewritten Code by Constantine
	B.5 Running the Comparison with SC-Eliminator on Their Benchmarks

