
Defining Name Accessibility Using Scope Graphs
(Artifact)
Aron Zwaan #

Delft University of Technology, The Netherlands

Casper Bach Poulsen #

Delft University of Technology, The Netherlands

Abstract
Many programming languages allow programmers
to regulate accessibility; i.e., annotating a declar-
ation with keywords such as export and private
to indicate where it can be accessed. Despite the
importance of name accessibility for, e.g., compilers,
editor auto-completion and tooling, and automated
refactorings, few existing type systems provide a
formal account of name accessibility.

We present a declarative, executable, and
language-parametric model for name accessibility,
which provides a formal specification of name ac-
cessibility in Java, C#, C++, Rust, and Eiffel. We

achieve this by defining name accessibility as a pre-
dicate on resolution paths through scope graphs.
Since scope graphs are a language-independent
model of name resolution, our model provides a
uniform approach to defining different accessibility
policies for different languages.

Our model is implemented in Statix, a logic
language for executable type system specification
using scope graphs. We evaluate its correctness on
a test suite that compares it with the C#, Java,
and Rust compilers, and show we can synthesize
access modifiers in programs with holes accurately.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its engineering
→ Language features; Theory of computation → Program constructs
Keywords and phrases access modifier, visibility, scope graph, name resolution
Digital Object Identifier 10.4230/DARTS.10.2.27

Related Article Aron Zwaan and Casper Bach Poulsen, “Defining Name Accessibility Using Scope
Graphs”, in 38th European Conference on Object-Oriented Programming (ECOOP 2024), LIPIcs,
Vol. 313, pp. 47:1–47:29, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact supports the following contributions from the paper:
We present a specification of (various versions of) accessibility on modules (Section 5), subclasses
(Section 6), and their conjunctive and disjunctive combination (Section 7); and
we extend our specification with accessibility-restricting inheritance (Section 8).

The artifact contains a specification of AML (the language in which these access modifiers are
formalized), written in Statix [3, 2].

We implement our specification in Statix, and compare it with the standard compilers of
Java, C#, and Rust. Moreover, we show access modifiers can be synthesized accurately using
Statix-based Code Completion [1] (Section 10).

Facilities to specify and execute tests are included in the artifact, including scripts to access
them.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Aron Zwaan and Casper Bach Poulsen;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 27, pp. 27:1–27:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:a.s.zwaan@tudelft.nl
https://orcid.org/0000-0002-1818-4245
mailto:c.b.poulsen@tudelft.nl
https://orcid.org/0000-0003-0622-7639
https://doi.org/10.4230/DARTS.10.2.27
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


27:2 Defining Name Accessibility using Scope Graphs (Artifact)

2 Content

The artifact package includes:
The specification of AML (Access Modifier Language) presented in the paper. The specification
is included in the src/statics/access directory, relative to the aml root. Each of the files
corresponds (roughly) to a figure in the paper:

base.stx: Figure 7
public.stx: Figure 7, A-Pub and AP-Pub rules.
auxiliary.stx: Figure 9
internal.stx: Figure 10
private.stx: Figure 14
protected.stx: Figure 15
private-protected.stx: Figure 17
protected-internal.stx: Figure 17
path.stx: Figure 18

A Spoofax language definition that makes it executable.
Tests that validate the specification.

All these are included in the /home/myuser/aml directory of the included docker image.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at Zenodo: https://doi.org/10.5281/zenodo.11179594.

4 Tested platforms

Platform Requirements:
CPU: x86, Intel Core i7/i9 (virtualization)
Memory: 6GB RAM
Disk: 32GB Hard Drive
Software: zip, gzip, docker

Running on an ARM chips (such as Apple Silicon), possibly with virtualization software and
or the --platform linux/amd64 argument to the docker run commands, may work, but is not
tested nor officially supported by the artifact authors.

5 License

The artifact is available under the Apache License 2.0.

6 MD5 sum of the artifact

0ba292c4ccb4f5e844f8133c08085dc3

7 Size of the artifact

2.54 GiB

https://doi.org/10.5281/zenodo.11179594


A. Zwaan and C. Bach Poulsen 27:3

References
1 Daniël A. A. Pelsmaeker, Hendrik van Antwerpen,

Casper Bach Poulsen, and Eelco Visser. Language-
parametric static semantic code completion. Pro-
ceedings of the ACM on Programming Languages,
6(OOPSLA):1–30, 2022. doi:10.1145/3527329.

2 Arjen Rouvoet, Hendrik van Antwerpen,
Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. Knowing when to ask: sound scheduling

of name resolution in type checkers derived from
declarative specifications. Proceedings of the ACM
on Programming Languages, 4(OOPSLA), 2020.
doi:10.1145/3428248.

3 Hendrik van Antwerpen, Casper Bach Poulsen, Ar-
jen Rouvoet, and Eelco Visser. Scopes as types. Pro-
ceedings of the ACM on Programming Languages,
2(OOPSLA), 2018. doi:10.1145/3276484.

DARTS

https://doi.org/10.1145/3527329
https://doi.org/10.1145/3428248
https://doi.org/10.1145/3276484

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

