
A Language-Based Version Control System for
Python (Artifact)
Luís Carvalho #

NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

João Costa Seco #

NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

Abstract
We extend prior work on a language-based approach
to versioned software development to support ver-
sioned programs with mutable state and evolving
method interfaces. Unlike the traditional approach
of mainstream version control systems, where a tex-
tual diff represents each evolution step, we treat
versions as programming elements. Each evolution
step, merge operation, and version relationship is
represented explicitly in a multifaceted code repres-
entation. This provides static guarantees for safe
code reuse from previous versions and forward and

backwards compatibility between versions, allowing
clients to use newly introduced code without need-
ing to refactor their program manually. By lifting
versioning to the language level, we pave the way
for tools that interact with software repositories to
have more insight into a system’s behavior evolution.
We instantiate our work in the Python program-
ming language and demonstrate its applicability
regarding common evolution and refactoring pat-
terns found in different versions of popular Python
packages.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation →
Program semantics
Keywords and phrases Software evolution, type theory
Digital Object Identifier 10.4230/DARTS.10.2.3
Funding This work is supported by EU Horizon Europe under Grant, Agreement no. 101093006
(TaRDIS), NOVA LINCS UIDB/04516/2020 (https://doi.org/10.54499/UIDB/04516/2020) and
UIDP/04516/2020 (https://doi.org/10.54499/UIDP/04516/2020) with financial support of FCT.IP.

Related Article Luís Carvalho and João Costa Seco, “A Language-Based Version Control System for
Python”, in 38th European Conference on Object-Oriented Programming (ECOOP 2024), LIPIcs,
Vol. 313, pp. 9:1–9:27, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.9

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact includes a custom code editor with an extension to manage Python versioned programs.
It allows the editing, slicing, and type checking of such programs.

2 Content

The artifact package includes:
A code editor to edit and run versioned Python programs.
Example files demonstrating such programs.

V1.1

A
rt
ifa

cts Available

ECOOP

© Luís Carvalho and João Costa Seco;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 3, pp. 3:1–3:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:la.carvalho@campus.fct.unl.pt
https://orcid.org/0000-0003-3445-939X
mailto:jrcs@fct.unl.pt
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/DARTS.10.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2024.9
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


3:2 A Language-Based Version Control System for Python

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/ecoop108/ecoop-artifact.

4 Tested platforms

Works on any operating system where Docker can run.

5 License

The artifact is available under Creative Commons license.

6 MD5 sum of the artifact

6c42e04e945d3c9685ba71ab7102f6c8

7 Size of the artifact

2 GiB

https://github.com/ecoop108/ecoop-artifact

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

