
Mutation-Based Lifted Repair of Software Product
Lines (Artifact)
Aleksandar S. Dimovski #

Mother Teresa University, Skopje, North Macedonia

Abstract
In this work, we describe the installation, usage,
and evaluation results of the tool SPLAllRepair,
which is introduced by the paper “Mutation-based
Lifted Repair of Software Product Lines”. We
provide step-by-step instructions on how to down-
load, run, and compare the tool’s outputs to out-
puts described in the paper. The tool implements
a novel lifted repair algorithm for program families
(Software Product Lines – SPLs) based on code
mutations. The inputs of our algorithm are an erro-
neous SPL and a specification given in the form of
assertions. We use variability encoding to transform
the given SPL into a single program, called family
simulator, which is translated into a set of SMT

formulas whose conjunction is satisfiable iff the sim-
ulator (i.e. the input SPL) violates an assertion.
We use a predefined set of mutations applied to
feature and program expressions of the given SPL.
The algorithm repeatedly mutates the erroneous
family simulator and checks if it becomes (bounded)
correct. The outputs are all minimal repairs in the
form of minimal number of (feature and program)
expression replacements such that the repaired SPL
is (bounded) correct with respect to a given set
of assertions. We present the experimental results
showing that our approach is able to successfully
repair various interesting #ifdef-based C SPLs.

2012 ACM Subject Classification Software and its engineering → Software product lines; Theory of
computation → Abstraction
Keywords and phrases Program repair, Software Product Lines, Code mutations, Variability encoding
Digital Object Identifier 10.4230/DARTS.10.2.5

Related Article Aleksandar S. Dimovski, “Mutation-Based Lifted Repair of Software Product Lines”,
in 38th European Conference on Object-Oriented Programming (ECOOP 2024), LIPIcs, Vol. 313,
pp. 12:1–12:24, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.12

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

In this work, we present a tool, called SPLAllRepair, for lifted (SPL) repair [6] of program
families (SPLs) in C [3, 4, 5, 8, 9]. Our proof-of-concept implementation is built on top of the
AllRepair tool [11] for repairing single programs. The pre-processor VarEncode procedure,
which tranforms program families to single programs (called family simulators), is implemented in
Java, while the translation and mutation procedures are implemented by modifying the CBMC
model checker [1] written in C++, where variability-specific mutations are defined. Moreover,
we have experimented by defining various mutations to other types of program expressions (see
below). The repair phase is implemented by calling the AllRepair tool [11] written in Python.
We also call the MiniCard SAT solver [10] and the Z3 SMT solver [2]. The altered CBMC
(plus ∼1K LOC) takes as input a family simulator, and generates a gsmt2 file containing SMT
formulas for all possible mutations of the corresponding statements in the input program. The
AllRepair (∼2K LOC) takes as input a gsmt2 file, generates formulas for SAT and SMT solving,
and handles all calls to them.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Aleksandar S. Dimovski;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 5, pp. 5:1–5:5
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:aleksandar.dimovski@unt.edu.mk
https://orcid.org/0000-0002-3601-2631
https://doi.org/10.4230/DARTS.10.2.5
https://doi.org/10.4230/LIPIcs.ECOOP.2024.12
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

5:2 Mutation-Based Lifted Repair of Software Product Lines (Artifact)

The tool accepts programs written in C with #ifdef/#if directives [3, 4, 5, 8, 9]. It uses three
main parameters: mutation level that defines the kind of mutations that will be applied to feature
and program expressions; unwinding bound b that shows how many times loops and recursive
functions will be inlined; and repair size r that specifies how many mutations will be applied at
most to buggy programs. We use two mutation levels: level 1 contains simpler mutations that are
often sufficient for repairment, while level 2 contains all possible mutations we apply. For example,
for arithmetic operators in mutation level 1 we have two sets {+, −} and {∗, %, ÷}, which means
that + is replaced with − and vice versa, and ∗, %, ÷ can be replaced with each other. On the
other hand, in mutation level 2 we have one set {+, −, ∗, %, ÷}, which means that any arithmetic
operator from the set can be replaced with any other.

We compare three approaches for SPL repair:
SPLAllRepair1 that uses mutation level 1 (a predefined set of simpler mutations applied to
feature and program expressions).
SPLAllRepair2 that uses mutation level 2 (a predefined set of richer mutations applied to
feature and program expressions).
Brute-force approach that applies the single-program repair tool AllRepair to all individual
variants of a program family one by one.

The evaluation is performed on 64-bit Intel®CoreT M i7-1165G7 CPU@2.80GHz, VM Ubuntu
22.04.3 LTS, with 8 GB memory.

2 MD5 sum of the artifact

f2ecaff1a457cd1f62a152186750634e

3 Content

The artifact package includes:
xubuntu.ova is a Virtual Machine image containing the tool already installed. Username: tool,
Password: tool. Enter ’SPLAllRepair’ subfolder of the ’home’ folder and follow instructions
for using the tool.
SPLAllRepair.tar.gz contains the tool and instructions how to install and use it. To install it
by using step-by-step written commands see HowToInstall.txt.

4 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at [7]: https://zenodo.org/record/12588017.

5 Tested platforms

All experiments are executed on a 64-bit Intel®CoreT M i7-1165G7 CPU@2.80GHz, VM Ubuntu
22.04.3 LTS, with 8 GB memory.

6 License

The artifact is available under license "CC-BY"; http://creativecommons.org/licenses/by/3.0/.

https://zenodo.org/record/12588017

A. S. Dimovski 5:3

Table 1 Performance results of SPLAllRepair1 vs. SPLAllRepair2 vs. Brute-force. All times in
sec.

Benchmarks |F| LOC
SPLAllRepair1 SPLAllRepair2 Brute-force

Fix Space Time Fix Space Time Fix Space Time

intro1 2 20 ✓ 7 0.252 ✓ 25 0.304 ✓ 5 0.981
feat-inter 3 20 × 7 0.254 ✓ 25 0.315 × 9 2.110
feat_power 1 20 ✓ 16 0.722 ✓ 403 7.79 × 8 0.882
factorial 2 50 ✓ 86 2.540 ✓ 1603 107.3 ✓ 81 4.196
sum 2 30 ✓ 17 0.376 ✓ 266 2.656 ✓ 18 1.147
sum_mton 1 20 ✓ 32 0.770 ✓ 681 15.22 × 10 0.556
4-A-Codeflaws 2 95 × 52 0.426 ✓ 1390 2.578 × 36 1.180
651-A-Codeflaws 2 85 ✓ 180 3.394 ✓ 2829 38.53 ✓ 237 5.78
tcas_spl1 1 305 × 37 0.99 ✓ 158 6.10 × 37 1.41
tcas_spl2 1 305 × 38 1.19 ✓ 164 8.94 × 38 1.47
Qlose_multiA 3 32 × 122 0.711 ✓ 5415 69.21 × 65 5.781
Qlose_iterPower 2 30 × 9 0.973 ✓ 38 2.921 × 16 1.391
MinePump_spec1 6 730 ✓ 38 300.0 ✓ - timeout ✓ - timeout

MinePump_spec3 6 730 ✓ 39 291.0 ✓ - timeout ✓ - timeout

7 Size of the artifact

9.37 GiB

A Performance results

For step-by-step execution of all test cases of the tools follow: ExperimentalResultsTable1.txt
and ExperimentalResultsTable2.txt.
Enter the folder that contains the tool:
cd SPLAllRepair/scripts

A.1 Table 1
We first present results shown in Table 1 on pp. 16 in the paper [6] (here reproduced in Table 1).
Table 1 shows performance results of running SPLAllRepair1, SPLAllRepair2, and the
Brute-force approach on the given benchmarks. We use mutation level 1 for Brute-force. Note
that the Brute-force approach calls translation, mutation, and repair procedures for each variant
separately, whereas SPLAllRepair1 and SPLAllRepair2 call these procedures only once per
program family. For each approach, there are three columns: “Fix” that specifies with ✓ (resp.,
×) whether the given approach finds (resp., does not find) a correct repair for a given benchmark;
“Space” that specifies how many mutants have been inspected (explored); and “Time” that specifies
the total time (in seconds) needed for the given tasks to be performed.

A.1.1 SPLAllRepair1
To run SPLAllRepair1, we write the following commands.
$./spl1.sh
$./SPLAllRepair.sh Examples/minepump -m 1 -u 5 -s 1 2>&1 | ./ParseResults.sh

DARTS

5:4 Mutation-Based Lifted Repair of Software Product Lines (Artifact)

Table 2 Performance results of SPLAllRepair1 for different values of the unwinding bound u = 2, 5, 8.
All times in sec.

Benchmarks
u = 2 u = 5 u = 8

Fix Time Fix Time Fix Time

feat_power × 0.254 ✓ 0.722 ✓ 0.978
factorial × 1.231 ✓ 3.540 ✓ 6.524
sum × 0.304 ✓ 0.376 ✓ 0.456
sum_mton × 0.589 ✓ 0.770 ✓ 0.922
651-A-Codeflaws ✓ 1.814 ✓ 3.394 ✓ 6.828

Output of the script for each benchmark are two files: a csv file with results summarized in a
table, and a text file with all found repairs and the elapsed time until each of them was found. The
files can be found in the “RepairResults” folder created under the “scripts” folder. The filename of
the results csv and text files will be Repair_results_<settings>_<current_date_and_time>.csv
and Repair_results_<settings>_<current_date_and_time>.
▶ Remark. If we want results for all benchmarks from Table1 to be given in one .csv and .txt file,
then the files from “minepump” folder: minepump_spec1.c and minepump_spec3.c should be
copied to the folder “Table1” and we run the script: $./spl1.sh

A.1.2 SPLAllRepair2
To run SPLAllRepair2, we write the following commands.
$./spl2.sh
$./SPLAllRepair.sh Examples/minepump -m 2 -u 5 -s 1 -t 360 2>&1 |
./ParseResults.sh

The files can be found in the “RepairResults” folder created under the “scripts” folder.
▶ Remark. If we want results for all benchmarks from Table1 to be given in one .csv and .txt file,
then the files from “minepump” folder: minepump_spec1.c and minepump_spec3.c should be
copied to the folder “Table1” and we run the script: $./spl2.sh

A.1.3 Brute force approach
To run the Brute force approach on the examples from the paper [6] (see Table 1), we write the
following commands.
$./spl3.sh
$./SPLAllRepair.sh Examples/minepumpall --brute-force -m 1 -u 5 -s 1 -t 360
2>&1 | ./ParseResults.sh

The files can be found in the “RepairResults” folder created under the “scripts” folder.
▶ Remark. If we want results for all benchmarks from Table1 to be given in one .csv and .txt file,
then the subfolders from the “minepump” folder: minepump_spec1 and minepump_spec3 should
be copied to the folder “Table1all” and we run the script: $./spl3.sh

A.2 Table 2
We now present results shown in Table 2 on pp. 17 in the paper [6] (here reproduced in Table 2).
Table 2 shows performance results of running SPLAllRepair1 on a selected set of benchmarks
for different unwinding bounds u. Recall that our approach reasons about loops by unrolling
(unwinding) them, so it is sensitive to the chosen unwinding bound. By choosing larger bounds

A. S. Dimovski 5:5

u, we will obtain more precise results (more genuine repairs), but we will also obtain longer
SMT formulas and slower speeds of the repairing tasks. We can see that the running times
of all repairing tasks grow with the number of bound u. Of course, we will also obtain more
precise results for bigger values of u, and less precise results (i.e., some genuine repairs will not
be reported) for smaller values of u. Hence, there is a preision/speed tradeoff when choosing the
unwinding bound b. We obtain similar results for SPLAllRepair2 and the Brute-force.

We run SPLAllRepair1 and compare three unwinding bounds: u = 2, u = 5 (default used
in Table 1), u = 8.

A.2.1 u=2
$./SPLAllRepair.sh Examples/Table2 -m 1 -u 2 -s 2 2>&1 | ./ParseResults.sh
See the results in “RepairResults” folder.

A.2.2 u=5
$./SPLAllRepair.sh Examples/Table2 -m 1 -u 5 -s 2 2>&1 | ./ParseResults.sh
See the results in “RepairResults” folder.

A.2.3 u=8
$./SPLAllRepair.sh Examples/Table2 -m 1 -u 8 -s 2 2>&1 | ./ParseResults.sh
See the results in “RepairResults” folder.

References
1 Edmund M. Clarke, Daniel Kroening, and Fla-

vio Lerda. A tool for checking ANSI-C pro-
grams. In Tools and Algorithms for the Con-
struction and Analysis of Systems, 10th Inter-
national Conference, TACAS 2004, Proceedings,
volume 2988 of LNCS, pages 168–176. Springer,
2004. doi:10.1007/978-3-540-24730-2_15.

2 Leonardo Mendonça de Moura and Nikolaj Bjørner.
Z3: an efficient SMT solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008. Proceedings,
volume 4963 of LNCS, pages 337–340. Springer,
2008. doi:10.1007/978-3-540-78800-3_24.

3 Aleksandar S. Dimovski. Symbolic game semantics
for model checking program families. In Model
Checking Software - 23nd International Symposium,
SPIN 2016, Proceedings, volume 9641 of LNCS,
pages 19–37. Springer, 2016.

4 Aleksandar S. Dimovski. Lifted static analysis us-
ing a binary decision diagram abstract domain. In
Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on GPCE 2019, pages 102–114.
ACM, 2019. doi:10.1145/3357765.3359518.

5 Aleksandar S. Dimovski. Ctl⋆ family-based model
checking using variability abstractions and modal
transition systems. Int. J. Softw. Tools Tech-
nol. Transf., 22(1):35–55, 2020. doi:10.1007/
s10009-019-00528-0.

6 Aleksandar S. Dimovski. Mutation-based lif-
ted repair of software product lines. In 38th
European Conference on Object-Oriented Program-

ming, ECOOP 2024, volume 313 of LIPIcs, pages
36:1–36:24. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2024. doi:10.4230/LIPIcs.ECOOP.
2024.36.

7 Aleksandar S. Dimovski. Tool artifact for
“mutation-based lifted repair of software product
lines”. Zenodo, 2024. doi:10.5281/zenodo.
12588017.

8 Aleksandar S. Dimovski, Sven Apel, and Axel Legay.
Several lifted abstract domains for static analysis
of numerical program families. Sci. Comput. Pro-
gram., 213:102725, 2022. doi:10.1016/J.SCICO.
2021.102725.

9 Aleksandar S. Dimovski and Andrzej Wasowski.
From transition systems to variability models and
from lifted model checking back to UPPAAL. In
Models, Algorithms, Logics and Tools, volume
10460 of LNCS, pages 249–268. Springer, 2017.
doi:10.1007/978-3-319-63121-9_13.

10 Mark H. Liffiton and Jordyn C. Maglalang. A
cardinality solver: More expressive constraints for
free – (poster presentation). In Theory and Ap-
plications of Satisfiability Testing – SAT 2012
– 15th Int. Conf., Proceedings, volume 7317 of
LNCS, pages 485–486. Springer, 2012. doi:10.
1007/978-3-642-31612-8_47.

11 Bat-Chen Rothenberg and Orna Grumberg. Sound
and complete mutation-based program repair.
In FM 2016: Formal Methods – 21st Inter-
national Symposium, Proceedings, volume 9995
of LNCS, pages 593–611, 2016. doi:10.1007/
978-3-319-48989-6_36.

DARTS

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://doi.org/10.5281/zenodo.12588017
https://doi.org/10.5281/zenodo.12588017
https://doi.org/10.1016/J.SCICO.2021.102725
https://doi.org/10.1016/J.SCICO.2021.102725
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-642-31612-8_47
https://doi.org/10.1007/978-3-642-31612-8_47
https://doi.org/10.1007/978-3-319-48989-6_36
https://doi.org/10.1007/978-3-319-48989-6_36

	1 Scope
	2 MD5 sum of the artifact
	3 Content
	4 Getting the artifact
	5 Tested platforms
	6 License
	7 Size of the artifact
	A Performance results
	A.1 Table 1
	A.1.1 SPLAllRepair1
	A.1.2 SPLAllRepair2
	A.1.3 Brute force approach

	A.2 Table 2
	A.2.1 u=2
	A.2.2 u=5
	A.2.3 u=8

