
Rose: Composable Autodiff for the Interactive Web
(Artifact)
Sam Estep #Ñ

Software and Societal Systems Department, Carnegie Mellon University, Pittsburgh, PA, USA

Wode Ni #Ñ

Software and Societal Systems Department, Carnegie Mellon University, Pittsburgh, PA, USA

Raven Rothkopf #Ñ

Barnard College, Columbia University, New York, NY, USA

Joshua Sunshine #Ñ

Software and Societal Systems Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Reverse-mode automatic differentiation (autodiff)
has been popularized by deep learning, but its abil-
ity to compute gradients is also valuable for interac-
tive use cases such as bidirectional computer-aided
design, embedded physics simulations, visualizing
causal inference, and more. Unfortunately, the
web is ill-served by existing autodiff frameworks,
which use autodiff strategies that perform poorly on
dynamic scalar programs, and pull in heavy depen-
dencies that would result in unacceptable webpage
sizes. This document accompanies the research pa-
per introducing Rose, a lightweight autodiff frame-

work for the web using a new hybrid approach to
reverse-mode autodiff, blending conventional trac-
ing and transformation techniques in a way that
uses the host language for metaprogramming while
also allowing the programmer to explicitly define
reusable functions that comprise a larger differ-
entiable computation. We demonstrate the value
of the Rose design by porting two differentiable
physics simulations, and evaluate its performance
on an optimization-based diagramming application,
showing Rose outperforming the state-of-the-art in
web-based autodiff by multiple orders of magnitude.

2012 ACM Subject Classification Software and its engineering → Compilers; Information systems →
Web applications; Software and its engineering → Domain specific languages; Computing methodologies
→ Symbolic and algebraic manipulation; Software and its engineering → Formal language definitions;
General and reference → Performance; Computing methodologies → Neural networks
Keywords and phrases Automatic differentiation, differentiable programming, compilers, web
Digital Object Identifier 10.4230/DARTS.10.2.7
Funding This material is based upon work supported by the Aqueduct Foundation and by National
Science Foundation under Grant Numbers 1910264, 2119007, and 2150217.

Related Article Sam Estep, Wode Ni, Raven Rothkopf, and Joshua Sunshine, “Rose: Composable
Autodiff for the Interactive Web”, in 38th European Conference on Object-Oriented Programming
(ECOOP 2024), LIPIcs, Vol. 313, pp. 15:1–15:27, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.15

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This section describes the claims in the paper supported by this artifact, along with the steps one
must follow in order to reproduce each such claim. To start, follow the instructions in Section 3
to download the Docker image archive as image.tar, then load it into Docker:

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Sam Estep, Wode Ni, Raven Rothkopf, and Joshua Sunshine;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 7, pp. 7:1–7:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:estep@cmu.edu
https://samestep.com
https://orcid.org/0000-0002-7107-7043
mailto:nimo@cmu.edu
https://www.cs.cmu.edu/~woden/
https://orcid.org/0000-0002-5341-4958
mailto:rgr2124@barnard.edu
https://ravenrothkopf.com/
https://orcid.org/0000-0002-3926-683X
mailto:sunshine@cs.cmu.edu
https://www.cs.cmu.edu/~jssunshi/
https://orcid.org/0000-0002-9672-5297
https://doi.org/10.4230/DARTS.10.2.7
https://doi.org/10.4230/LIPIcs.ECOOP.2024.15
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


7:2 Rose: Composable Autodiff for the Interactive Web (Artifact)

docker load --input image.tar

Then run that Docker image:

docker run -it ghcr.io/rose-lang/ecoop24:latest

The initial working directory should be /root/ecoop24; unless noted otherwise, all commands in
this section should be run within the Docker container from that directory.

The output from Listing 1 can be obtained by running node listing1.js.
The output from Listing 2 can be obtained by running node listing2.js.
The bundle sizes reported in Section 5.2 can be obtained by running these commands:
npm run tfjs-size
npm run rose-size
We note that this produces some minor discrepancies in the gzip sizes compared to the numbers
reported in the paper, which we suspect are just due to running different versions of gzip.
Specifically, we found these commands to report the gzip size of TensorFlow.js to be 86.21
kB, and the gzip size of the Rose Wasm binary and JS wrapper to be 63.78 kB and 8.78 kB
respectively.
Figure 5 can be generated by running ./plots.py. To retrieve the generated PDF, stop the
running Docker image and run the following command from outside of it (alternatively, you
can substitute the actual container ID instead of writing $(docker ps -lq)):
docker cp $(docker ps -lq):/root/ecoop24/plots.pdf .
The same plots.py script also reproduces the quartiles and 10 omitted diagrams reported
in Section 5.3. The script itself does not generate the data for the plots, as that is al-
ready present in tfjs.json and rose.json; to generate those, run ./penrose-tfjs.sh
and ./penrose-rose.sh respectively. The latter should complete in a couple minutes,
while the former may take multiple days. To instead run just the 88 quickest examples
listed in quickest.json, run ./quicken.sh which will copy that to replace the contents of
/root/penrose-tfjs/packages/core/src/registry.json; then run ./penrose-tfjs.sh,
which should now only take about ten minutes.
The paper reports that we found @tensorflow/tfjs-node and @tensorflow/tfjs-node-gpu
to be slower than @tensorflow/tfjs for Penrose. We were unable to package either of those
in our Docker image, due to specific constraints on native dependencies. The code which
we used to run them outside of Docker was nearly identical to the code we already provide
here for TensorFlow.js; we obtained it by applying tfjs-node.diff and tfjs-node-gpu.diff
(respectively) to /root/penrose-tfjs.
To reproduce the performance statistics in Section 5.3 comparing the WebAssembly backend
to an alternative JavaScript backend, run ./js.py. Similar to the plots.py script above, this
does not actually run the benchmarks, and instead reads the data from rose.json and js.json.
To run the benchmarks and generate new timing data for these, run ./penrose-rose.sh or
./penrose-js.sh respectively.
The DiffTaichi timings can be obtained by running the scripts ./taichi-py-billiards.sh
and ./taichi-py-mass-spring.sh, and the Rose port timings can be obtained by running
./taichi-rose-billiards.sh and ./taichi-rose-mass-spring.sh. All these scripts print
timing data to the console.
The Wasm compilation failure noted in Section 5.4.1 can be reproduced by running the script
./taichi-error.sh, which applies less-fn.diff to /root/taichi-rose to get rid of one
key usage of fn in each of the two examples, then tries to run both, demonstrating the V8
engine limits on both function size and local count.



S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 7:3

2 Content

The Docker image is built from the python:3.10 image1; everything on top of that lies underneath
the /root directory. These are all the changes made on top of the base image:

The following Python packages have been installed:
imageio
matplotlib
numpy
opencv-python
scipy
seaborn
taichi>=1.1.0
torch
torchvision

Node.js v20.12.2 and Yarn v1.22.22 have been installed.
Two versions of the Penrose codebase are present:

/root/penrose-tfjs holds a version of the Penrose codebase using TensorFlow.js, with
node_modules already populated.
/root/penrose-rose holds a version of the Penrose codebase using Rose, with node_modules
already populated.
In each case, the Penrose repository structure relevant to this artifact is as follows:
∗ packages/core holds the core Penrose source code.

· packages/core/src/lib holds all the differentiable functions Penrose uses for diagram
layout and optimization.

· packages/core/src/engine/Autodiff.ts holds most of the interface between the
Penrose compiler and the underlying autodiff backend.

∗ packages/solids holds examples using the Penrose API rather than the three Penrose
domain-specific languages.

∗ packages/examples holds the remaining Penrose examples, along with a script to run
all these examples and collect timing data.
· packages/core/src/registry.json lists all the diagrams in the benchmark suite; in

particular, when running the TensorFlow.js part of the evaluation (see below), one
could edit out large parts of this file to produce a subset that completes in a reasonable
amount of time.

· packages/examples/diagrams/data.json is generated by running yarn registry
from the Penrose repository root, and includes all the timing data produced by the
benchmark suite.

/root/taichi-py holds the original DiffTaichi codebase.
experiment.md includes instructions on how to run the two examples that we ported; the
dependency installation step has already been completed.
packages/billiards.py holds the original source code for the billiards example.
packages/mass_spring.py holds the original source code for the robot example.

/root/taichi-rose holds the DiffTaichi examples ported to Rose.
billiards holds the ported billiards example.
mass-spring holds the ported robot example.

/root/ecoop24 holds the remaining files needed for this artifact, described in Section 1.

1 https://hub.docker.com/layers/library/python/3.10/images/sha256-cf5cac6010f4caa5446516c18f4
8369215df2e912a12ff314ceb9a1d95a5fd60

DARTS

https://hub.docker.com/layers/library/python/3.10/images/sha256-cf5cac6010f4caa5446516c18f48369215df2e912a12ff314ceb9a1d95a5fd60
https://hub.docker.com/layers/library/python/3.10/images/sha256-cf5cac6010f4caa5446516c18f48369215df2e912a12ff314ceb9a1d95a5fd60


7:4 Rose: Composable Autodiff for the Interactive Web (Artifact)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://zenodo.org/records/11055122.

4 Tested platforms

The experiments referenced in the paper itself were all run natively on a 2020 MacBook Pro with
M1 chip and 16 GiB RAM. This artifact, however, is packaged to run inside Docker using Linux,
and was checked in WSL2 on an AMD Ryzen 5 3600X with 24 GiB RAM.

Any fairly modern desktop or laptop computer hardware should suffice. The whole evaluation
is fairly quick to complete, except for the TensorFlow.js part, which takes several days to run.
Because of this, we have separated out the TensorFlow.js part into a separate script, and have
provided a copy of the data we originally collected when we ran the experiment natively, so one
can still run our provided scripts to generate our performance plots.

We also attempted to run the Docker image on the same MacBook that was originally used to
run the experiments natively, and while it does run, the Penrose part of the evaluation for some
reason seems to exit before running to completion. We are not sure whether this is an issue with
the CPU architecture being ARM versus x86, or a bug in the Vitest library we use, or something
else.

5 License

The artifact is available under the Creative Commons Attribution 4.0 International license.

6 MD5 sum of the artifact

609d5d4bc6f1182191b303b77dca2d7b

7 Size of the artifact

16.7 GB

https://zenodo.org/records/11055122

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

