
Constrictor: Immutability as a Design Concept
(Artifact)
Elad Kinsbruner1 #Ñ

Technion, Haifa, Israel

Shachar Itzhaky #Ñ

Technion, Haifa, Israel

Hila Peleg #Ñ

Technion, Haifa, Israel

Abstract
Many object-oriented applications in algorithm
design rely on objects never changing during their
lifetime. This is often tackled by marking object ref-
erences as read-only, e.g., using the const keyword
in C++. In other languages like Python or Java
where such a concept does not exist, programmers
rely on best practices that are entirely unenforced.
While reliance on best practices is obviously too
permissive, const-checking is too restrictive: it is
possible for a method to mutate the internal state
while still satisfying the property we expect from an
“immutable” object in this setting. We would there-
fore like to enforce the immutability of an object’s
abstract state.

We check an object’s immutability through a

view of its abstract state: for instances of an immut-
able class, the view does not change when running
any of the class’s methods, even if some of the
internal state does change. If all methods of a
class are verified as non-mutating, we can deem
the entire class view-immutable. We present an
SMT-based algorithm to check view-immutability,
and implement it in our linter/verifier, Constrictor.

We evaluate Constrictor on 51 examples of
immutability-related design violations. Our evalu-
ation shows that Constrictor is effective at catching
a variety of prototypical design violations, and does
so in seconds. We also explore Constrictor with two
real-world case studies.

2012 ACM Subject Classification Software and its engineering → Software design engineering; Software
and its engineering → Software defect analysis
Keywords and phrases Immutability, Design Enforcement, SMT, Liskov Substitution Principle, Object-
oriented Programming
Digital Object Identifier 10.4230/DARTS.10.2.9

Related Article Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg, “Constrictor: Immutability as a
Design Concept”, in 38th European Conference on Object-Oriented Programming (ECOOP 2024),
LIPIcs, Vol. 313, pp. 22:1–22:29, 2024.
https://doi.org/10.4230/LIPIcs.ECOOP.2024.22

Related Conference 38th European Conference on Object-Oriented Programming (ECOOP 2024),
September 16–20, 2024, Vienna, Austria
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2024 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact allows for the reproduction of tables 1, 2, 3, 4 from the paper.

1 Corresponding author.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 10, Issue 2, Artifact No. 9, pp. 9:1–9:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:kinsbruner@cs.technion.ac.il
http://kinsbruner.cswp.cs.technion.ac.il
https://orcid.org/0000-0003-1314-0945
mailto:shachari@cs.technion.ac.il
https://csaws.cs.technion.ac.il/~shachari/
https://orcid.org/0000-0002-7276-7644
mailto:hilap@cs.technion.ac.il
https://hilap.cswp.cs.technion.ac.il
https://orcid.org/0000-0002-0107-5659
https://doi.org/10.4230/DARTS.10.2.9
https://doi.org/10.4230/LIPIcs.ECOOP.2024.22
https://2024.ecoop.org/track/ecoop-2024-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


9:2 Constrictor: Immutability as a Design Concept (Artifact)

1.1 Table 1

Table 1 contains the results of running Constrictor on the Inheritance benchmark set. This bench-
mark set is divided into four hierarchies: lists, points, sets, and shapes. In order to reproduce these
results, run ./create_table1.sh. This should take less than 10 minutes. It is also possible to only
run some of the hierarchies: ./create_table1.sh [–lists] [–points] [–sets] [–shapes]. More
than one argument can be provided. The created table can be found at results/table1.md.
The script runs each benchmark 10 times (unless it times out) and the given table contains the
average time for each benchmark.

Running the script on the Lists hierarchy takes 5 seconds on our computer. Points takes 30
seconds, Sets takes 348 seconds (5 minutes, 48 seconds) and Shapes takes 30 seconds.

1.2 Table 2

Table 2 contains the results of running Constrictor on the Non-inheritance benchmark set and the
Aspects & Limitations benchmark set. In order to reproduce these results, run ./create_table2.sh.
This should take less than 20 minutes. The created table can be found at results/table2.md.
The script runs each benchmark 10 times (unless it times out) and the given table contains the
average time for each benchmark.

Note: Due to a strange bug in Z3, this script may crash in rare cases due to an assertion failure
here, which may appear as a segmentation fault. In such cases, rerunning the script should work,
and in any case this issue has not been observed when running the script on a specific benchmark
as described below.

Clarification: The precision and recall given in the paper refer only to the Non-inheritance set,
while the ones generated by the artifact refer to both sets.

Running the script takes 1136 seconds (18 minutes, 56 seconds) on our computer.
Both of the above scripts can also be used to directly run Constrictor on a specific benchmark

from the relevant set by using the –prog option: ./create_table[1|2].sh –prog <BENCHMARK_NAME>.
In this case, the result is printed to stdout including specific details regarding which method
caused a violation flag.

1.3 Table 3

Table 3 contains the results of the experiments described in Section 6.3, relating to the first RQ2
case study. In order to reproduce these results, run ./create_table3.sh. This should take less
than 5 minutes. The created table can be found at results/table3.md. It is also possible to
recreate just one half of Table 3: ./create_table3.sh –part [a|b].

Running the script takes 103 seconds (1 minute, 43 seconds) on our computer. Reproducing
just the first part of Table 3 takes 89 seconds (1 minute, 29 seconds) and reproducing just the
second part of Table 3 takes 25 seconds.

1.4 Table 4

Table 4 contains the results of the experiments described in Section 6.4, relating to the second
RQ2 case study. In order to reproduce these results, run ./create_table4.sh. This should take
less than one minute. The created table can be found at results/table4.md.

Running the script takes 2 seconds on our computer.

https://github.com/Z3Prover/z3/blob/master/src/ast/ast.cpp#L406


E. Kinsbruner, S. Itzhaky, and H. Peleg 9:3

2 Content

This artifact is an Ubuntu x86-64 Docker container containing the following folders at /root:

benchmarks: Contains the benchmarks described in the paper. The benchmark sets are divided
into four folders:

inheritance_benchmarks contains the benchmarks from the Inheritance set described in the
paper, split by hierarchy.
non_inheritance_benchmarks contains the benchmarks from the Non-inheritance set de-
scribed in the paper.
kotlin_stdliblike_case_study contains the classes comprising the Kotlin collections hier-
archy discussed in Section 6.3 and shown in Figure 6(a), along with the relevant annotations
as described.
kotlin_stdliblike_case_study_fixed contains the fixed hierarchy after applying the fix
described in Section 6.3 and changing the hierarchy to that shown in Figure 6(b).
red_green_trees_case_study contains the three versions of the tree with bidirectional refer-
ences described in Section 6.4.

constrictor: Contains the implementation of the tool. This folder contains config.py which
can be modified accordingly to change the number of program steps used in path unrolling
(see Section 5). The location of the CVC5 executable used can also be configured here.
py2smt: Contains the Py2Smt toolchain. It is an implementation component discussed in
Section 5 and does not need to be changed for the operation of this artifact.
runners: Contains the implementations of the scripts used to generate the tables for this
artifact.
create_table{i}.sh, for i ∈ {1, 2, 3, 4}: Scripts that can be used to easily run Constrictor
on the provided benchmark sets in order to reproduce the three tables from the paper. The
operation of these scripts is described below.
cvc5: The binary for the CVC5 solver used for Constrictor (see Section 5). This is part of the
Docker container but is not part of the artifact itself.
CVC5_LICENSE.txt: The license by which CVC5 is made available.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://doi.org/10.5281/zenodo.10568857.

4 Tested platforms

We ran the artifact for the figures in the paper on a 2022 MacBook Pro with an M2 processor and
16 GB of RAM. There is no significant disk usage and no need for a GPU. No other hardware
resources are needed. The artifact is an Ubuntu x86-64 Docker container. We expect it to be
runnable on any computer that can run such containers. The total run time for the reproduction
of all four tables should be less than 90 minutes.

5 License

The artifact is available under Creative Commons License CC-BY 4.0.

DARTS

https://doi.org/10.5281/zenodo.10568857


9:4 Constrictor: Immutability as a Design Concept (Artifact)

6 MD5 sum of the artifact

1ce4f00b8fdd44404b88eb293f18f05d

7 Size of the artifact

0.87 GiB


	1 Scope
	1.1 Table 1
	1.2 Table 2
	1.3 Table 3
	1.4 Table 4

	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

