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Abstract
We investigate the suitability of caches with ran-
domized placement and replacement in the con-
text of hard real-time systems. Such caches have
been claimed to drastically reduce the amount of
information required by static worst-case execu-
tion time (WCET) analysis, and to be an enabler

for measurement-based probabilistic timing analy-
sis. We refute these claims and conclude that with
prevailing static and measurement-based analysis
techniques caches with deterministic placement and
least-recently-used replacement are preferable over
randomized ones.

2012 ACM Subject Classification Computer systems organization∼Real-time system architecture, The-
ory of computation∼Caching and paging algorithms, Hardware∼Safety critical systems
Keywords and phrases Real-time systems, caches, randomization, WCET analysis
Digital Object Identifier 10.4230/LITES-v001-i001-a003
Received 2013-12-04 Accepted 2014-05-28 Published 2014-06-10

1 Introduction

Recent work has promoted the use of randomized caches in hard real-time systems [4, 20, 22, 23, 21,
7, 5, 25]. Along with randomized microarchitectures, this line of work proposes static probabilistic
timing analysis (SPTA) and measurement-based probabilistic timing analysis (MBPTA). Caches
are a major challenge in the timing analysis of traditional, deterministic microarchitectures. A key
feature of randomized microarchitectures are caches with randomized placement and replacement.
Such caches have been claimed to drastically reduce the amount of information required by WCET
analyses. To quote Kosmidis et al. [23]: “The key benefit of embracing PTA (probabilistic timing
analysis) is that execution timing becomes dramatically less dependent on execution history,
with drastic reduction in the amount of information required to obtain tight WCET estimates in
comparison to other timing analysis approaches.”

In this paper, we critically assess these claims both in the context of static and measurement-
based analysis. Specifically, we compare the precision of static cache analyses for caches with
least-recently-used (LRU) replacement and with randomized replacement provided the same amount
of information, i.e. the information stated to be sufficient for the analysis of randomized caches.
Among deterministic caches we restrict our attention to those with LRU replacement, as it is
widely considered to be the most predictable replacement policy, and it has been demonstrated
to be efficiently implementable [1, 8]. Our analysis demonstrates that, with simple, state-of-the-
art analyses, deterministic LRU replacement is preferable over random replacement. We also
observe that, with its current restrictions, MBPTA is equally applicable to LRU caches as it is to
randomized ones.

Regarding random placement, we show that it is impossible to assign non-zero hit probabilities
to individual memory accesses that are independent of the outcome of other accesses. This means
that caches with random placement are not amenable to the prevailing SPTA approach that
relies on independence, as execution time profiles (ETPs) of individual instructions are convolved.
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Finally, we provide a class of memory access sequences that is problematic for MBPTA under
random placement. On these sequences, which may occur in practice due to loops, MBPTA either
fails, is incorrect, or highly imprecise.

We provide the necessary background about probabilistic timing analysis in Section 2. Then,
we introduce deterministic and randomized caches in Section 3. We assess the suitability of
random placement and replacement for use in hard real-time systems in Sections 4 and 5. Finally,
we briefly summarize our findings in Section 6.

2 Static and Measurement-Based Timing Analysis

The goal of static and measurement-based timing analysis for deterministic microarchitectures is to
compute tight upper bounds on the worst-case execution times (WCET) of programs. The goal of
timing analyses for randomized microarchitectures is slightly different: in such microarchitectures,
very high execution times are possible, but—hopefully—only with a very low probability. Thus,
timing analyses for such microarchitectures compute exceedance functions. These exceedance
functions determine upper bounds on the probability of exceeding any given execution time. From
such a function, and a probability threshold p, an execution time can be obtained that is exceeded
only with a probability of e.g. p = 10−12.

2.1 Static Probabilistic Timing Analysis
The de facto standard approach to static timing analysis (STA) for deterministic microarchitectures
divides analysis into two main parts [31]:
1. Low-level analysis, which determines execution-time bounds for basic blocks (or other small

contiguous program fragments) based on an accurate model of the underlying microarchitecture.
2. Path-level analysis, which determines an upper bound on the execution time of the program as

a whole based on constraints on the control flow, e.g. loop bounds, and the execution-time
bounds for basic blocks determined by low-level analysis.

A critical assumption of this approach is that the bounds obtained for a basic block during
low-level analysis hold for all possible execution histories leading to the respective basic block. As
execution times may depend heavily on the execution history, low-level analysis is often made
context sensitive, e.g. by distinguishing the first iteration of a loop from the following ones.

While so far less studied and thus less developed, static probabilistic timing analysis (SPTA)
follows a similar approach [4]:
1. For each instruction in the program, an execution time profile (ETP), i.e., a discrete probability

distribution over the instruction’s possible execution times, is derived. This step corresponds
to the low-level analysis in STA.

2. To arrive at an ETP for a sequence of instructions the ETPs of all instructions in the sequence
are combined by convolution. If multiple different execution paths are possible, their ETPs can
be merged conservatively [4]. This roughly corresponds to path-level analysis in STA. From an
ETP, a corresponding exceedance function can then be determined easily.

A critical assumption for SPTA to be sound is that the ETPs derived in step one are independent
of each other. Only if they are independent, can they be soundly combined by convolution to
arrive at an ETP for a sequence of instructions.

2.2 Measurement-based Probabilistic Timing Analysis
Measurement-based probabilistic timing analysis (MBPTA) derives exceedance functions for the
execution time of a program from measurements. MBPTA as described by Cucu et al. [5] is
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based on Extreme Value Theory (EVT). In this approach, a series of end-to-end execution-time
measurements is performed. The measurement results are used to estimate the parameters of an
extreme value distribution, the Gumbel distribution. Measurements and estimation of the Gumbel
distribution are interleaved until the distribution is considered to have converged [5]. The thus
obtained Gumbel distribution then immediately induces an exceedance function.

Applicability of this approach relies on two assumptions:
1. The execution-time measurements can be modeled by independent and identically-distributed

(i.i.d.) random variables.
2. The maximum of a sample of these i.i.d. random variables converges in distribution to the

Gumbel distribution.

To satisfy the first assumption, Cucu et al. [5] propose a number of changes to the microarchitec-
ture to eliminate the dependence of execution times on input data. For instance, input-dependent
memory accesses must bypass the cache. They also initially limit their approach to single-path
programs, which they later [5] show how to relax.

The satisfaction of the second assumption is validated during the analysis of a particular
program by statistical tests.

3 Deterministic and Randomized Caches

Caches are fast but small memories that store a subset of the main memory’s contents to bridge
the latency gap between the CPU and main memory. To reduce management overhead and to
profit from spatial locality, data is not cached at the granularity of words, but at the granularity
of so-called memory blocks. To this end, main memory is logically partitioned into the set of
equally-sized memory blocks B = {0, . . . , n}. Blocks are cached as a whole in cache lines of the
same size. The size of a memory block varies from one processor to another, but is usually between
32 and 128 bytes.

When accessing a memory block, the cache logic has to determine whether the block is stored
in the cache (a cache hit) or not (a cache miss). To enable an efficient look-up, each memory
block can only be stored in a small number of cache lines. For this purpose, caches are partitioned
into equally-sized cache sets. The size of a cache set is called the associativity k of the cache.

The placement policy determines the cache set a memory blocks maps to. In Section 3.2 we
describe common deterministic and randomized placement policies.

Since caches are usually much smaller than main memory, a replacement policy must decide
which memory block to replace upon a cache miss. In Section 3.1 we describe common deterministic
and randomized replacement policies.

The performance of a cache depends on the temporal and spatial locality of the memory accesses.
In Section 3.3, we describe two notions of locality that are approximated by state-of-the-art static
(probabilistic) cache analyses.

3.1 Replacement Policies
Usually, replacement policies treat each cache set separately, so that accesses to a particular
cache set do not influence replacement decisions in other cache sets. While exceptions to this rule
exist, they have been identified as particularly unsuitable for real-time systems [17]. Thus, in the
following, we only consider replacement policies treating each cache set separately.

Well-known deterministic replacement policies in this class are least-recently used (LRU),
used in various Freescale processors such as the MPC603E and the TriCore17xx, as well as the
recent Kalray MPPA 256; pseudo-LRU (PLRU), a cost-efficient variant of LRU, used in the
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Freescale MPC750 family and multiple Intel microarchitectures; most-recently used (MRU), also
known as not most-recently used (NMRU), another cost-efficient variant of LRU, used in the
Intel Nehalem; first-in first-out (FIFO), also known as Round Robin, used in several ARM and
Freescale processors such as the ARM922 and the Freescale MPC55xx family

Logically, LRU orders cached memory blocks by the recency of their last use, from most- to
least-recently-used. Upon a miss, the least-recently-used block is evicted. Among deterministic
policies, LRU is generally accepted as the most predictable policy [28]. Thus, in the following,
among deterministic policies, we restrict our attention to LRU, which has been shown to be
efficiently implementable [1], and which is used in the Kalray MPPA 256 [8] for predictability.

Quiñones et al. [25, 20, 21, 4] have promoted the use of randomized caches in real-time systems.
They have focused on a policy, which we will call Random in the following, that was introduced by
Belady [2]. Upon a miss, Random chooses the block to evict randomly and uniformly among the k
cache lines of the cache set. Thus, upon a miss, a cached block—in the cache set that the accessed
block maps to—is evicted with probability 1

k . This policy is also referred to as evict-on-miss in
the literature [7].

Several commercial processors are claimed to employ random replacement, e.g. the ARM720T,
the ARM940T, the ARM11xx, and the Freescale MPC7450. However, most processor documen-
tations are inconclusive about the exact meaning of “random”. Such caches could be based on
hardware random number generators that generate random numbers from a physical process, such
as thermal noise, or they could employ deterministic pseudo-random number generators. The
well-documented MPC7450 [18] allows to choose between two random policies for its second-level
caches [10]: “The simpler one uses a modulo counter that is incremented on each clock cycle and
whose value determines the cache line to replace.”

To achieve independence between cache-miss probabilities, Cazorla et al. [4] have also proposed
the evict-on-access policy, which evicts a block uniformly at random upon each memory access,
rather than upon each cache miss. In the following, we limit our attention to Random, as it
provably dominates evict-on-access in terms of the induced exceedance function on any workload.

Randomized policies have been studied extensively in the context of competitive analysis [3].
Policies such as Mark and Equitable have been shown to have smaller competitive ratios than
any deterministic policy. These results concern the expected performance of a policy, rather than
the performance achieved with high probability, which would be of greater interest in the hard
real-time setting. However, recent results by Komm et al. [19] suggest that randomized policies
can also be shown to be competitive “with high probability”.

3.2 Placement Policies
A placement policy can be formalized as a mapping from memory blocks to cache sets: place :
B → {0, . . . , s− 1}, where s is the number of cache sets.

The most common deterministic placement policy for set-associative caches ismodulo placement:
placemodulo(b) = b mod s. The number of sets s is usually a power of two, so that the cache set of
a block is simply determined by its log s least significant bits.

In random placement the mapping placerandom from memory blocks to cache sets is chosen
randomly from the set of all mappings B → {0, . . . , s − 1}. For static-analysis purposes it is
convenient if the mapping is chosen uniformly at random from this set. Then, the probability of
block b mapping to cache set t, P (placerandom(b) = t), is 1

s . Note, that placerandom needs to be
fixed for the entire execution of a program. Otherwise, it would not be possible to locate memory
blocks that were cached earlier under a different mapping.1

1 Changing the mapping at runtime requires either flushing of cache contents or their migration.
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Kosmidis et al. present an approximation of random placement in hardware [20, 21] based on
a parametric hash function and in software [22] on top of conventional caches with deterministic
placement. The crucial difference between the hardware and the software solution is that the
software solution can only randomize mapping at the granularity of “memory objects”, i.e., memory
entities normally stored in consecutive memory addresses such as functions, basic blocks, or arrays.

3.3 Notions of Locality
Caches rely on locality in the memory access sequences generated by programs. Different ways of
capturing locality have been proposed over time. Two notions of locality particularly relevant to
LRU and Random replacement are the reuse distance and the stack distance of a memory access.

The reuse distance of a memory access to block b is the number of memory accesses between the
current and the previous access to block b. The first access to a block has reuse distance ∞. As an
example, we have annotated each memory access in the following sequence with its reuse distance:

a∞, b∞, b0, a2, c∞, d∞, d0, c2, b5, a5.

In contrast to the reuse distance, the stack distance of an access to block b is defined as the
number of distinct memory blocks accessed between the current and the previous access to block b.
The stack distance of a block is sometimes also referred to as the age of the block. The first access
to a block has stack distance ∞. In the sequence from above, the stack distances are as follows:

a∞, b∞, b0, a1, c∞, d∞, d0, c1, b3, a3.

Note that the stack distance of any access is less than or equal to its reuse distance.
We will see later how hit and miss probabilities of a memory access can be given based on its

reuse and stack distance for both randomized and deterministic caches.

3.4 Cache Analysis in Static (Probabilistic) Timing Analysis
Cache analysis is an important part of low-level analysis. In STA, its purpose is to classify memory
accesses in the program as either definite hits or definite misses. Sometimes, an access may result
in a hit or a miss depending on the execution history leading to the access. As a consequence
of such inherent uncertainty or uncertainty due to analysis imprecision, cache analysis may also
classify an access as “unknown”. Due to timing anomalies [24, 29] it is not always safe to simply
assume a cache miss in case of uncertainty.

Similarly, in SPTA [4], a probability needs to be attached to the hit and the miss case for
each memory access. Current SPTAs assume microarchitectures in which hits and misses have
a fixed, context-independent cost and thus cache-related timing anomalies may not occur. As a
consequence, it is sufficient to determine a lower bound h on the hit probability of an access, which
induces an upper bound of 1 − h on its miss probability. Together with hit and miss latencies
hitlatency and misslatency we get the following ETP for a memory instruction with hit probability h:(

hitlatency misslatency
h 1− h

)
.

The issue of timing anomalies in the pipeline is orthogonal to that of using deterministic or
randomized caches. In order not to mix the two issues, we compare deterministic2 and randomized
caches in the context of SPTA, i.e., in terms of deriving lower bounds on the hit probability of a
memory access.

2 Caches with LRU replacement do not exhibit timing anomalies.
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4 Deterministic versus Random Replacement in Fully-Associative Caches

4.1 In Static Probabilistic Timing Analysis
In a cache with LRU replacement, an access b with stack distance sd(b) less than the associativity k
is a hit, otherwise it is a miss:

P (hitLRU(b)) =
{

1 : sd(b) < k

0 : sd(b) ≥ k
(1)

Note, that the hit probabilities of different memory accesses in a sequence are independent. Static
cache analyses thus determine upper bounds on the stack distance of each memory access to
guarantee cache hits. Such analyses are called must analyses [9]. Analogously, may analyses [9]
determine lower bounds on stack distances to guarantee cache misses.

In the case of a fully-associative cache there are two challenges for may and must analyses:
1. The initial state of the cache is unknown. Thus, must analyses conservatively assume an upper

bound > k on the stack distance of any block at program start. Similarly, may analyses assume
a lower bound of 0.

2. Logically, memory accesses are at the granularity of words, not memory blocks. Thus a value
analysis needs to determine for pairs of memory accesses whether they refer to the same memory
block or not.3 This is trivial for instruction caches, but may be very hard for input-dependent
data accesses.

In a cache with Random replacement the situation is different. In contrast to LRU, the hit
probability of an access cannot be given purely in terms of its stack or reuse distance. Zhou [32]
observes that the hit probability of an access b to a block that has been accessed before is

P (hitRandom(b)) =
(

1− 1
k

)m

(2)

where m is the number of cache misses between access b and the previous access to the same
memory block. Clearly m is bounded from above by b’s reuse distance rd(b), so

P (hitRandom(b)) ≥
(

1− 1
k

)rd(b)
(3)

This formula correctly underestimates the hit probability of an individual access. Unfortunately,
however, hit probabilities computed with the formula above are not independent of each other.
Thus, the convolution of corresponding ETPs may underestimate the probability of observing
a given number of misses. Consider, e.g., the access sequence a, b, c, a, b, c and a cache with
associativity 2. Clearly, at least one miss must occur on the final three accesses of the sequence,
as the first access to c will evict either a or b. Yet, the convolution of the ETPs obtained from
Equation (3) yields a non-zero probability of having no misses on those three accesses, because the
hit probability of each individual access is greater than zero4. As a consequence, the probability of
observing four or more cache misses on the entire sequence, which is 1, would be underestimated.

3 Note, that it is not necessary to determine which memory block is referred to by a memory access. It is
sufficient to determine for pairs of accesses whether they refer to the same block or not. This is exploited by
relational cache analysis [16].

4 According to Equation (3), it is 1
4 .
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Figure 1 Lower bounds on hit probabilities of memory accesses for LRU and Random in terms of reuse
distances for a cache of associativity 8 based on Equations 1 and 4.

Davis et al. [7] provide the following formula, which bounds the hit probability of an access b,
independently of whether preceding accesses hit or miss, in terms of the reuse distance of b:

P (hitRandom(b)) ≥
{(

1− 1
k

)rd(b) : rd(b) < k

0 : rd(b) ≥ k
(4)

The more optimistic formula for hit probabilities given in [20] has been refuted in [6]. Based on
the reuse distance, the above formula is the most precise hit probability that holds independently
of the outcome of previous memory accesses.

For associativity 8, Figure 1 illustrates the hit probabilities of LRU and Random in terms of
reuse distances. Remember that by definition the stack distance sd(b) of an access is less than or
equal to its reuse distance rd(b). With this in mind, comparing the hit probabilities for LRU and
for Random from Equations 1 and 4, we make the following two observations:

I Observation 1. With the same information about an access sequence, i.e. upper bounds on the
reuse distances of accesses, the hit probabilities for LRU are always greater than or equal to the
hit probabilities for Random.

I Observation 2. In case of LRU, and in contrast to Random, current cache analyses can profit
from bounding stack distances, which can be arbitrarily lower than reuse distances.

I Conclusion 1. With simple, state-of-the-art analysis methods, LRU replacement is preferable
over Random replacement in static (probabilistic) timing analysis.

In general, we note that the state (or the state distribution in case of randomized caches) of
any cache is a function of the history of memory accesses. This holds independently of whether
the cache is deterministic or randomized. More precisely, the state of any fully-associative cache
depends, at least, on the suffix of the history of memory accesses containing k distinct blocks,
where k is the associativity of the cache. Among all policies, randomized or deterministic, the
state of an LRU-controlled cache depends on the shortest suffix of the access history. Thus, LRU
requires the least information about the access history to fully determine its state [28].

Other Deterministic Policies: FIFO, PLRU, and MRU. Common deterministic policies such
as FIFO, PLRU, and MRU have been found to be less predictable than LRU [28]. In contrast
to LRU, the exact hit probability of an access cannot be determined in terms of stack or reuse
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distances for these policies. The best lower bounds on hit probabilities that can be given based on
stack distances for FIFO, PLRU, and MRU are:5

P (hitFIFO(b)) ≥
{

1 : sd(b) < 1
0 : sd(b) ≥ 1

(5)

P (hitPLRU(b)) ≥
{

1 : sd(b) < log2 k + 1
0 : sd(b) ≥ log2 k + 1

(6)

P (hitMRU(b)) ≥
{

1 : sd(b) < 2
0 : sd(b) ≥ 2

(7)

Static (probabilistic) timing analyses that are based purely on stack (or reuse) distances thus
yield worse results under FIFO than under Random, MRU, PLRU, or LRU. MRU and PLRU are
incomparable with Random. Depending on the benchmark, and the resulting distribution of reuse
distances, MRU and PLRU may yield better results than Random and vice versa.

It should be noted that there are access sequences (and programs that generate such sequences)
on which Random outperforms LRU and other deterministic policies with a very high probability.
A prime example for such sequences are so-called “payroll sequences”, i.e. sequences of the form
(a1, . . . , ak+1)∗, where k is the associativity of the cache. On such sequences LRU incurs cache
misses only. Similar sequences can be constructed for every deterministic policy.

To profit from Random replacement in such cases, more sophisticated analysis techniques are
required. Such analyses will likely have to derive conditional hit probabilities and combine results
for individual memory accesses in a different way than convolution, which is not required in case
of LRU. Similarly, sophisticated static analyses have recently been proposed for FIFO [11, 12, 15],
PLRU [13], and MRU [14]. Yet, while being more complex than Ferdinand’s analysis for LRU [9],
they still do not quite achieve the same level of precision.

Stack Distance versus Reuse Distance. As an example where reuse and stack distances may
differ a lot, consider instruction accesses following the execution of a small, nested loop:

1 x = 0
2 y = 0
3 for i in [1, 1000]:
4 for j in [1, i]:
5 x = x+1
6 y = y+1

Assume for simplicity that the instructions implementing each line of the program occupy exactly
one memory block. Thus, the program’s instructions occupy exactly six memory blocks. Then,
except for the first access, the stack distance of each instruction access for y = y+1 is three. Yet,
the corresponding reuse distance depends on the value of i. In the last iteration of the outer loop
the reuse distance of the instruction access for y = y+1 is 2001.

In practice, the relation between reuse and stack distances likely varies strongly within
benchmarks and from one benchmark to another. Unfortunately, we were not able to find empirical
data concerning their relation, with one exception: Sen and Wood [30] plot the distribution of
reuse distances for accesses of a given stack distance (Figure 3 in [30]) for an online transaction
processing application.

5 This follows immediately from the competitiveness of the respective policies relative to LRU [26].
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4.2 In Measurement-Based Probabilistic Timing Analysis

MBPTA derives WCET estimates from a series of execution-time measurements. Cache perfor-
mance depends on the initial state of the cache and on the sequence of memory accesses provided
to the cache. Cucu et al. [5] flush the cache upon program start and eliminate all input-dependent
memory accesses from the program. Thus, on a given path through the program, the sequence
of memory accesses is the same for different program inputs. Then, a number of end-to-end
execution-time measurements is performed on each program path. By nature of the approach, the
analysis results apply only to those program paths for which measurements have been performed.

In such a scenario, i.e., flushed cache and no input-dependent memory accesses, the requirements
of MBPTA, namely independence and identical distribution of execution times on a given program
path, are also met by a conventional cache with LRU replacement: the cache behavior will be
identical on each measurement; it follows a degenerate probability distribution. Independence is
thus trivial. In fact, the same argument applies to any deterministic cache replacement policy.

Thus, under the conditions described above, a single measurement will reveal the worst case—in
terms of cache performance. This compares with having to perform hundreds of measurements in
case of a randomized cache [5].

I Conclusion 2. Deterministic replacement yields more efficient MBPTA than Random replacement.

For LRU, the empty state is the worst-case initial state for any memory access sequence [27].
Therefore, measurements obtained starting with a flushed cache yield upper bounds on the number
of cache misses under any initial cache state for LRU. In this case, flushing the cache would only
be required during the measurement-based analysis and could in principle be disabled during
normal operation, assuming the microarchitecture features no timing anomalies [24, 29].

5 Deterministic versus Random Placement in Set-Associative Caches

5.1 In Static Probabilistic Timing Analysis

In a set-associative cache with s cache sets, the placement policy partitions the stream of memory
accesses into s substreams, each of which is processed by one of the s cache sets. For set-
associative caches, it is convenient to define the reuse and the stack distance of an access based on
the subsequence the access belongs to. In other words, the reuse distance of an access to block b
is the number of memory accesses between the current and the previous access to block b within
the same cache set. Let the stack distance be defined analogously for set-associative caches.

Then we get the same hit probabilities in terms of stack and reuse distance for LRU and
Random as in case of a fully-associative cache.

The additional difficulty in static cache analysis with deterministic placement is thus to
determine which memory accesses map to the same cache set. This is again trivial for instruction
accesses, but may be very difficult for data accesses. Note, however, that it is not required
to determine the absolute cache set an access maps to, as demonstrated by relational cache
analysis [16].

Randomized placement [20, 21] promises to reduce the analysis effort for set-associative caches,
as two memory blocks will only collide in the cache with a certain probability. If the placement
function is chosen randomly from a uniform distribution over all possible placement functions, then
the probability of any two blocks to map to the same cache set is 1

s . Based on this assumption,
Kosmidis et al. [20] derive the following hit probability for a direct-mapped cache in terms of the

LITES
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stack distance6 of an access:

P (hitRandom(b)) =
(

1− 1
s

)sd(b)
(8)

This formula is correct. However, as in the case of Zhou’s formula for random replacement, hit
probabilities determined in this way are not independent. Consider the following access sequence:

a, b, a, b, a, b, a, b, a, b

As the placement is chosen randomly at program start and does not change during program
execution, there are only two possibilities: either a and b systematically collide in the cache or they
do not. They collide with probability 1

s . Thus with a probability of 1
s all ten memory accesses

will be cache misses, and with a probability of 1− 1
s only two (compulsory) misses will occur. In

the example, each access’s miss probability is 1− (1− 1
s )1 = 1

s . Assuming independence of these
miss probabilities would incorrectly yield a probability of 1

s8 � 1
s of observing ten misses.

Unfortunately, no non-zero hit probability can be assigned to an access based on its stack
distance that is independent of other whether previous accesses resulted in hits or misses. Yet,
independence is required by the current SPTA approach. To see this, consider arbitrarily long
sequences of the form a, b, a, b, a, b, . . . No matter how long the sequence, with a probability of 1

s

all accesses will miss in a direct-mapped cache. For any non-zero hit probability p assigned to
each individual access there is a length n of the sequence, such that the convolution of the ETPs
based on p will underestimate the probability of incurring n misses.

I Observation 3. In case of random placement, no mutually independent hit probabilities greater
than zero can be assigned to individual memory accesses with stack distances greater than zero.

Observation 3 immediately implies the following conclusion:

I Conclusion 3. Random placement requires complex static analyses that take into account condi-
tional hit probabilities. Random placement is thus not amenable to current analysis approaches.

5.2 In Measurement-Based Probabilistic Timing Analysis
As we have seen in the previous section, with random placement there are cases in which we
observe very few misses with a high probability p and very many misses with a low probability
1− p, with no cases in between the two extremes.

If p is sufficiently close to 1, MBPTA is unlikely to ever observe the case of very many
misses. Then, its observations are indistinguishable from a case in which many misses are in fact
impossible. Consider as an example7 the same sequence σslow = a, b, a, b, a, b, . . . as above, which
may be generated by a loop, and a very large direct-mapped cache with s = 106 cache sets. The
probabilities of the two possible execution times are depicted in Figure 2.

Even 10000 = 104 measurements will only reveal the worst case with a probability of 1− (1−
1/106)104

< 1%. In other words, with a probability greater than 99%, all measurements will yield
exactly two cache misses, and thus the sequence would be indistinguishable from the sequence
σfast = a, b, b, b, b, . . . , which will yield exactly two misses independently of the placement.

6 Here, sd(b) refers to b’s stack distance among all memory accesses, i.e., not to its stack distance among blocks
mapping to the same cache set.

7 While this example is slightly construed, due to the unrealistically high number of cache sets, the sequence
a, b, c, d, a, b, c, d, . . . in a 3-way set-associative cache with a more realistic s = 102 leads to similar results, yet
is more difficult to analyze precisely.
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Figure 2 Execution-time distribution on example sequence with random placement.

MBPTA is used to estimate execution times that are only exceeded with a very low probability,
such as 10−12, ideally without performing 1012 measurements. In our example, with a probability
of 10−6 � 10−12, the execution time for sequence σslow will be very high, as all memory accesses
will result in cache misses.

MBPTA bases its estimates solely on measurement results. It would thus generate the same
execution-time distribution for programs that generate the sequences σslow and σfast with a high
probability. In such a situation there are three possibilities:
1. MBPTA correctly estimates the execution-time distribution for the sequence σslow.
2. MBPTA incorrectly underestimates the execution-time distribution for the sequence σslow.
3. Based on the measurement results, the statistical tests in MBPTA reject such programs.
The two latter cases are clearly undesirable. In the first case, MBPTA’s estimate would have to
be the same for the sequence σfast. However, a correct estimate for σslow is necessarily extremely
pessimistic for σfast, which never exhibits more than two cache misses. This leads us to our final
conclusion:
I Conclusion 4. Random placement is not suitable for MBPTA.

6 Summary

We have critically assessed the suitability of randomized caches for use in hard real-time systems.
We observe that when used in SPTA, state-of-the-art cache analyses deliver better hit probabilities
for LRU than for Random replacement with the same amount of information. With the restrictions
currently imposed upon the use of randomized caches in MBPTA, i.e., no input-dependent memory
accesses, deterministic caches with LRU replacement can also be safely employed in MBPTA.
This comes with the additional benefit of requiring only a single measurement to identify the
worst-case cache performance.

Further, we have shown that non-trivial hit probabilities under random placement are not
independent and can thus not be safely combined by convolution. We have also identified
simple access sequences, which may be generated by simple loops, on which MBPTA must—by
construction—be either unsound, extremely pessimistic, or fail to produce an estimate at all.

Despite the negative results obtained in this paper, we believe that randomization might have
a place in microarchitectures for real-time systems. A benefit over deterministic microarchitec-
tures may be an increase in robustness. It is future work to rigorously analyze the benefits of
randomization in this direction.
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