
Volume 1 | Issue 1 | June 2014

Vol. 1, Issue 1 ISSN 2199-2002 http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites

ISSN 2199-2002

Published online and open access by
the European Design and Automation Association
(EDAA) / EMbedded Systems Special Interest Group
(EMSIG) and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik GmbH, Dagstuhl Publishing, Saar-
brücken/Wadern, Germany.
Online available at
http://www.dagstuhl.de/dagpub/2199-2002.

Publication date
June 2014

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons At-
tribution 3.0 Germany license (CC BY 3.0 DE): http:
//creativecommons.org/licenses/by/
3.0/de/deed.en.

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier
10.4230/LITES-v001-i001

Aims and Scope
LITES aims at the publication of high-quality schol-
arly articles, ensuring efficient submission, reviewing,
and publishing procedures. All articles are published
open access, i.e., accessible online without any costs.
The rights are retained by the author(s).

LITES publishes original articles on all aspects of em-
bedded computer systems, in particular: the design,
the implementation, the verification, and the testing
of embedded hardware and software systems; the
theoretical foundations; single-core, multi-processor,
and networked architectures and their energy con-
sumption and predictability properties; reliability
and fault tolerance; security properties; and on
applications in the avionics, the automotive, the
telecommunication, the medical, and the production
domains.

Editorial Board
Alan Burns (Editor-in-Chief)
Bashir Al Hashimi
Karl-Erik Arzen
Neil Audsley
Sanjoy Baruah
Samarjit Chakraborty
Marco di Natale
Martin Fränzle
Steve Goddard
Gernot Heiser
Axel Jantsch
Florence Maraninchi
Sang Lyul Min
Lothar Thiele
Mateo Valero
Virginie Wiels

Editorial Office
Michael Wagner (Managing Editor)
Marc Herbstritt (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
LITES, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
lites@dagstuhl.de
http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/dagpub/2199-2002
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://dx.doi.org/10.4230/LITES-v001-i001
http://www.dagstuhl.de/lites

Contents

Foreword
Alan Burns . 00:1–00:2

Regular Papers

A Comparison between Fixed Priority and EDF Scheduling accounting for Cache
Related Pre-emption Delays

Will Lunniss, Sebastian Altmeyer, Robert I. Davis . 01:1–01:24

TLM.open: a SystemC/TLM Frontend for the CADP Verification Toolbox
Claude Helmstetter . 02:1–02:18

Randomized Caches Considered Harmful in Hard Real-Time Systems
Jan Reineke . 03:1–02:13

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/en/about-dagstuhl/

Foreword
Alan Burns

University of York, UK
alan.burns@york.ac.uk

Digital Object Identifier 10.4230/LITES-v001-i001-a000
Published 2014-06-10

I would like to welcome all readers to the first issue of this new not-for-profit open access journal:
the Leibniz Transactions on Embedded Systems (LITES). Unless you have come across this journal
by accident then you will already understand the key role that embedded systems have in modern
life. One can hardly think of a single human activity that is not underpinned by such systems;
transport, entertainment, supply lines for supermarkets, health care and drug production, energy
production and transmission, robotic manufacturing, control systems and communication media
of all kinds are now dependent on the fusion of embedded hardware and software. For researchers
in this domain this provides great opportunities but also responsibilities. We need to make sure
that society can justifiable rely on technology that is increasing beyond the understanding of most
ordinary people. Computer-based technologies have been described as modern magic; it follows
that we are therefore magicians. But the spells we cast must be based on sound principles, solid
theory and demonstrable performance.

One of the influences that embedded and other IT technology has had in the last decade is in
publishing itself. Online services are now the norm. And early and open access to publicly funded
research is now rightly demanded by Government bodies and related funding councils. This new
journal has been created to meet this challenge. All papers are open access, with copyright being
retained by the authors. Moreover, only a small fee is charged to authors due to low operational
overheads and the support of Google and the Klaus Tschira Stiftung. But the lack of a physical
page limit in an online-only journal does not mean that quality is undermined. All papers are
thoroughly reviewed, with only the best work, in terms of originality and rigour, being accepted.
Our aim is to evolve an excellent and effective venue for publish scholarly articles. To help achieve
this aim LITES benefits greatly from having the name and reputation of Schloss Dagstuhl behind
it.

The volume of research material produced world-wide relating to embedded systems has lead to
the spawning of many conferences and workshops, special issues and focused publications. In LITES
we intend to cater for the broadest collection of relevant topics. We currently have subject editors
to cover: the design, implementation, verification, and testing of embedded hardware and software
systems; the theoretical foundations; single-core, multi-processor and networked architectures and
their energy consumption and predictability properties; reliability and fault tolerance; security
properties; applications in the avionics, automotive, telecommunication, medical and production
domains; cyber-physical systems; high performance and real-time embedded systems; and hybrid
systems. This is an impressive list, but it is not exhaustive. New areas will emerge and new
editors will be appointed.

LITES obtains its governance from EDAA (European Design and Automation Association) and
EMSIG (Embedded Systems Special Interest Group) as a joint endeavour with Schloss Dagstuhl.
EDAA/EMSIG appoint the Editor-in-Chief (EiC) and the subject area editors. The terms for
editors is four years, renewable once. All editorial work is done voluntarily.

The first few issues of the journal will contain standard papers that have been through the
review process. Later, comments on previously published papers will be allowed and commentaries

© Alan Burns;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 1, Article No. 0, pp. 00:1–00:2
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i001-a000
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

00:2 Foreword

included that will help the reader trace forward the influence of each paper. Comments will be
reviewed; commentaries will just need to be passed by the EiC.

I hope that as a reader you will find the papers in this journal of interest and often inspirational.
As a researcher I hope you will consider it as a worthy place to entrust your work. All the editorial
team will work towards building up the reputation of the journal. I hope the community at large
will be part of that journey.

I am proud to be the founding EiC of this journal, but I promise not to include editorials in
future issues. The papers are quite capable of introducing themselves.

Alan Burns

A Comparison between Fixed Priority and EDF
Scheduling accounting for Cache Related
Pre-emption Delays
Will Lunniss1, Sebastian Altmeyer2, and Robert I. Davis1

1 Department of Computer Science
University of York
York, UK
{wl510,rob.davis}@york.ac.uk

2 Computer Systems Architecture Group
University of Amsterdam
Amsterdam, The Netherlands
altmeyer@uva.nl

Abstract
In multitasking real-time systems, the choice of
scheduling algorithm is an important factor to en-
sure that response time requirements are met while
maximising limited system resources. Two popular
scheduling algorithms include fixed priority (FP)
and earliest deadline first (EDF). While they have
been studied in great detail before, they have not
been compared when taking into account cache
related pre-emption delays (CRPD). Memory and
cache are split into a number of blocks containing
instructions and data. During a pre-emption, cache
blocks from the pre-empting task can evict those
of the pre-empted task. When the pre-empted task
is resumed, if it then has to re-load the evicted
blocks, CRPD are introduced which then affect the
schedulability of the task.

In this paper we compare FP and EDF schedul-
ing algorithms in the presence of CRPD using the
state-of-the-art CRPD analysis. We find that when
CRPD is accounted for, the performance gains
offered by EDF over FP, while still notable, are
diminished. Furthermore, we find that under scen-
arios that cause relatively high CRPD, task layout
optimisation techniques can be applied to allow FP
to schedule tasksets at a similar processor utilisation
to EDF. Thus making the choice of the task layout
in memory as important as the choice of scheduling
algorithm. This is very relevant for industry, as
it is much cheaper and simpler to adjust the task
layout through the linker than it is to switch the
scheduling algorithm.

2012 ACM Subject Classification Software and its engineering, Software organization and properties,
Software functional properties, Correctness, Real-time schedulability
Keywords and phrases Real-Time Systems, Fixed Priority, EDF, Pre-emptive, Scheduling, Cache Related
Pre-emption Delays
Digital Object Identifier 10.4230/LITES-v001-i001-a001
Received 2013-08-22 Accepted 2014-03-03 Published 2014-04-14

1 Introduction

Today’s real-time applications are complex systems built up of a large number of interacting
tasks running on hardware with non-deterministic performance enhancing features such as caches,
pipelines and out-of-order execution. To manage the available resources efficiently, scheduling
algorithms are used to determine which task should run and at which time in order to fulfil
the functional and temporal requirements of the system. The scheduling algorithms are often
pre-empting, in that they allow important tasks to interrupt less important tasks before they have
finished. Two popular scheduling algorithms for real-time systems are fixed priority (FP) and

© Will Lunniss, Sebastian Altmeyer, and Robert I. Davis;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 1, Article No. 1, pp. 01:1–01:24
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i001-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

earliest deadline first (EDF). FP scheduling uses statically defined priorities to run the task with
the highest priority first. In comparison, EDF is a dynamic scheduling algorithm that schedules
the task with the earliest absolute deadline first. EDF is an optimal scheduling algorithm without
pre-emption costs, whereas FP is not, and is therefore typically able to schedule tasksets at a
higher processor utilisation than FP [20]. However, despite the significant performance benefits
over FP, EDF is not widely used in commercial real-time operating systems.

In real-time systems, and especially hard real-time systems, the schedulability of each task must
be known in order to verify that the timing requirements will be met. The schedulability of a taskset
is determined using information about the scheduling algorithm, the arrival pattern of tasks and
the tasks’ worst-case execution times. Worst-case execution times are typically obtained assuming
no pre-emption. However, in pre-emptive multi-tasking systems, caches introduce additional
cache related pre-emption delays (CRPD) caused by the need to re-fetch blocks belonging to
the pre-empted task which were evicted from the cache by the pre-empting task. These CRPD
effectively increase the worst-case execution time of the tasks. It is therefore important to be able
to calculate, and therefore account for, CRPD when determining if a system is schedulable or not.

In 2005, Buttazzo [13] performed a detailed study of FP and EDF scheduling. This work
covered both schedulability under a variety of scenarios, in addition to practical implementation
considerations. Results showed that the FP scheduling algorithm introduces more pre-emptions
than EDF, especially at high processor utilisation levels. This leads to FP performing worse
than EDF. Yet, FP has an advantage over EDF, in that it is generally simpler to implement in
commercial kernels which do not provide explicit support for timing constraints. Despite being
a very detailed study, these comparisons where done under the assumption that there were no
pre-emption costs due to CRPD.

In this paper we build on the work by Buttazzo [13] and use state of the art CRPD analysis for
FP [3] and EDF [22] to perform a comprehensive study of these two popular scheduling algorithms
when accounting for CRPD.

1.1 Related Work on CRPD
Analysis of CRPD uses the concept of useful cache blocks (UCBs) and evicting cache blocks (ECBs)
based on the work by Lee et al. [18]. Any memory block that is accessed by a task while executing
is classified as an ECB, as accessing that block may evict a cache block of a pre-empted task. Out
of the set of ECBs, some of them may also be UCBs. A memory block m is classified as a UCB
at program point P, if (i) m may be cached at P and (ii) m may be reused at program point Q
that may be reached from P without eviction of m on this path. In the case of a pre-emption
at program point P, only the memory blocks that are (i) in cache and (ii) will be reused, may
cause additional reloads. The maximum possible pre-emption cost for a task is determined by the
program point with the highest number of UCBs. For each subsequent pre-emption, the program
point with the next smallest number of UCBs can be considered. Altmeyer and Burguière [1]
presented a tighter definition of UCBs however, we only need the basic concept for this paper.

Depending on the approach used, the CRPD analysis combines the UCBs belonging to the
pre-empted task(s) with the ECBs of the pre-empting task(s). Using this information, the total
number of blocks that are evicted, which must then be reloaded after the pre-emption, can be
calculated and combined with the cost of reloading a block to then give the CRPD.

A number of approaches have been developed for calculating the CRPD when using FP
pre-emptive scheduling. They include Lee et al. [18] UCB-Only approach, which considers just
the pre-empted task(s), and Busquets et al. [12] ECB-Only approach which considers just the pre-
empting task. Approaches that consider the pre-empted and pre-empting task(s) include Tan and
Mooney [26] UCB-Union approach, Altmeyer et al. [2] ECB-Union approach, and an alternative

W. Lunniss, S. Altmeyer, and R. I. Davis 01:3

approach by Staschulat et al. [25]. Finally, there are advanced multiset based approaches that
consider the pre-empted and pre-empting task(s) by Altmeyer et al. [3], ECB-Union Multiset,
UCB-Union Multiset, and a combined multiset approach.

There has been less work towards developing CRPD analysis for EDF pre-emptive scheduling.
In 2007, Ju et al. [17] considered the intersection of the pre-empted task’s UCBs with the
pre-empting task’s ECBs. However, this method for handling nested pre-emptions can lead to
significant pessimism as each pair of tasks is considered separately. In 2013, Lunniss et al. [22]
adapted a number of approaches for calculating CRPD for FP to work with EDF. Including the
ECB-Only, UCB-Only, UCB-Union, ECB-Union, ECB-Union Multiset, UCB-Union Multiset and
combined multiset CRPD analysis for FP given by Busquets et al. [12], Lee et al. [18], Tan and
Mooney [26], and Altmeyer et al. [2, 3].

A different methodology was used by Bastoni et al. [8]. Instead of focusing on how to calculate
an upper bound on the CRPD, they used measurements on real hardware to estimate a lower
bound on the CRPD and cache related migration delays for data caches in a multi-processor
system.

CRPD can have a significant effect on schedulability, and can also vary dramatically depending
on a number of factors. In particular, the CRPD is highly dependent on how tasks are placed in
cache. As the layout of tasks in memory determines how they are positioned in cache, choosing a
sensible layout can have a big impact on the CRPD caused due to pre-emptions. In 2012, Lunniss
et al. [21] presented an approach that uses a Simulated Annealing algorithm to optimise the layout
of tasks to increase system schedulability when using FP scheduling.

1.2 Organisation
The paper is organised as follows. Section 2 introduces the system model, terminology and
notation used. Existing schedulability tests and CRPD analysis are outlined in Section 3 for
FP scheduling, and in Section 4 for EDF scheduling. Section 5 briefly covers optimising task
layout to reduce CRPD. Section 6 compares FP and EDF with CRPD analysis using a set of case
studies. In Section 7, we investigate the effect of a variety of configuration parameters in a series
of evaluations using synthetic tasksets. Finally, we conclude in Section 8.

2 System Model, Terminology and Notation

This section describes the system model, terminology, and notation used in the rest of the paper.
We assume a single processor system, running a statically defined taskset under either pre-

emptive FP or pre-emptive EDF scheduling. The system comprises a taskset Γ made up of a
fixed number of tasks (τ1, . . . , τn) where n is a positive integer. In the case of FP, each task has a
unique fixed priority and the priority of task τi, is i, where a priority of 1 is the highest and n is
the lowest. Each task, τi may produce a potentially infinite stream of jobs that are separated by a
minimum inter-arrival time or period Ti. Each task has a relative deadline Di, and each job of a
task has an absolute deadline di which is Di after it is released. In the case of EDF, each task
has a unique task index ordered by relative deadline from smallest to largest. In the case of a tie
when assigning the unique task indices, an arbitrary choice is made. Each task also has a worst
case execution time Ci (determined for non-pre-emptive execution). In this paper, we consider
tasks with constrained deadlines. (Task deadlines may be referred to as constrained deadlines,
i.e. Di ≤ Ti or implicit i.e. Di = Ti). We assume a discrete time model. We define Tmax as the
largest period of any task in the taskset, and similarly Dmax as the largest relative deadline of
any task in the taskset. Each task has a utilisation Ui, where Ui = Ci/Ti, and each taskset has a
utilisation U which is equal to the sum of its tasks’ utilisations.

LITES

01:4 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

A taskset is said to be schedulable with respect to a scheduling algorithm if all valid sequences of
jobs generated by the taskset can be scheduled by the algorithm without any missed deadlines. A
taskset is feasible if there exists some scheduling algorithm that can schedule all possible sequences
of jobs that may be generated by the taskset without any missed deadlines. A scheduling algorithm
is said to be optimal with respect to a task model if it can schedule all of the feasible tasksets
that comply with the task model.

Each task τi has a set of UCBs, UCBi and a set of ECBs, ECBi represented by a set of integers.
If for example, task τ1 contains 4 ECBs, where the second and fourth ECBs are also UCBs, these
can be represented using ECB1 = {1, 2, 3, 4} and UCB1 = {2, 4}. The block reload time (BRT) is
the time taken to load a block from memory into cache. This cost is incurred every time that a
UCB has to be reloaded after a pre-emption. We assume that the remaining context switch costs,
i.e., pipeline and scheduler related costs are subsumed in the execution time bound of each task.
Furthermore, we assume that the OS resides in a different cache partition and therefore scheduler
operations do not cause CRPD.

We use the term cache utilisation to describe the ratio of the total size of the tasks to the size
of the cache. A cache utilisation of 1 means that the tasks fit exactly in the cache, whereas a
cache utilisation of 5 means the total size of the tasks is 5 times the size of the cache.

We focus on instruction only caches. In the case of data caches, the analysis would either
require a write-through cache or further extension in order to be applied to write-back caches. We
assume that tasks do not share any code. We also assume a direct mapped cache, but the work
extends to set-associative caches with the LRU replacement policy1. In the case of set-associative
LRU caches, a single cache-set may contain several UCBs. For example, UCB1 = {2, 2, 4} means
that task τ1 has two UCBs in cache-set 2 and one UCB in cache set 4. As one ECB suffices to evict
all UCBs of the same cache-set, multiple accesses to the same set by the pre-empting task do not
appear in the set of ECBs. A bound on the CRPD in the case of LRU caches due to task τj directly
pre-empting τi is thus given by the intersection UCBi ∩′ ECBj = {m|m ∈ UCBi : m ∈ ECBj},
where the result is a multiset that contains each element from UCBi if it is also in ECBj . A
precise computation of CRPD in the case of LRU caches is given in Altmeyer et al. [4]. The
equations provided in this paper can be applied to set-associative LRU caches with the above
adaptation to the set-intersection.

3 CRPD Analysis for FP Scheduling

In this section, we give an overview of FP scheduling and schedulability analysis for it. We then
cover the state of the art CRPD analysis for FP scheduling, by Altmeyer et al. described in detail
in [3].

Under FP scheduling, the sets of tasks that can pre-empt each other are based on the statically
assigned fixed task priorities. Using the fixed priorities, we can define the following sets of tasks
for determining which tasks can pre-empt each other. hp(i) and lp(i) are the sets of tasks with
higher and lower priorities than task τi, and hep(i) and lep(i) are the sets containing tasks with
higher or equal and lower or equal priorities to task τi. Additionally, aff(i, j) = hep(i) ∩ lp(j) is
used to represent all tasks that can have CRPD caused by task τj pre-empting them, which affects
the response time of task τi. In other words, it is the set of tasks that may be pre-empted by task
τj and have at least the priority of task τi.

1 The concept of UCBs and ECBs cannot be applied to the FIFO or PLRU replacement policies as shown by
Burguière [11].

W. Lunniss, S. Altmeyer, and R. I. Davis 01:5

Schedulability tests are used to determine if a taskset is schedulable, i.e. all the tasks will meet
their deadlines given the worst-case pattern of arrivals and execution. For a given taskset, the
response time Ri for each task τi, can be calculated and compared against the tasks’ deadline, Di.
If every task in the taskset meets its deadline, then the taskset is schedulable. The equation used
to calculate Ri is defined as [5]:

Rα+1
i = Ci +

∑
∀j∈hp(i)

⌈
Rαi
Tj

⌉
(Cj) . (1)

Equation (1) can be solved using fixed point iteration. Iteration continues until either
Rα+1
i > Di in which case the task is unschedulable, or until Rα+1

i = Rαi in which case the
task is schedulable and has a worst-case response time of Rαi .

Note the convergence of (1) may be speeded up using the techniques described in [14].

3.1 CRPD Analysis
To account for the CRPD, a component γi,j is introduced into (1). There are a number of different
methods that can be used to compute γi,j described by Altmeyer et al. in [3]. Depending on
the method used, γi,j represents either a single pre-emption, or multiple pre-emptions and is
calculated using the cost incurred when reloading a block, the block reload time (BRT), multiplied
by the number of blocks which may need to be reloaded after each pre-emption.

We will now summarise the combined multiset approach, which has been shown to dominate all
other approaches [3]. For worked examples of the analysis, see Section 4 ECB-Union and Multiset
Approaches of Altmeyer et al. [3].

In the combined multiset approach, γi,j represents the total cost of all pre-emptions due to
jobs of task τj executing within the response time of task τi. Incorporating γi,j into (1) gives a
revised equation for Ri:

Rα+1
i = Ci +

∑
∀j∈hp(i)

(⌈
Rαi
Tj

⌉
Cj + γi,j

)
. (2)

γi,j is then calculated using two separate approaches, the UCB-Union multiset, and ECB-Union
multiset which are described below. The key concept behind them is to calculate the cost of
each individual pre-emption by jobs of task τj that could occur within the response time of task
τi. By calculating the cost of each pre-emption, the analysis is able to account for the fact that
intermediate tasks in a nested pre-emption will often be pre-empted less than the lowest priority
task. Consider the following example with three tasks shown in Figure 1.

In the example, the total cost of all jobs of task τ1 pre-empting task τ3 within the response
time of task τ3 is equal to the cost of task τ1 pre-empting task τ2 and task τ3 once (nested
pre-emption), and task τ3 on its own twice. It is therefore important to recognise that the cost of
one task pre-empting another is highly dependent on any intermediate tasks that may be involved
in a nested pre-emption. To calculate the number of pre-emptions, we use Ej(Ri) to denote the

0 1 2 3 4 5 6 7 8 9 10

τ1
τ2
τ3

Figure 1 The pre-emption cost of all jobs of task τ1 pre-empting task τ2 can only contribute once to
the total pre-emption cost of task τ1 pre-empting τ3 during the response time of τ3.

LITES

01:6 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

maximum number of jobs of task τj that can execute during the response time, Ri, of task τi. For
our model, Ej(Ri) = dRi/Tje.

3.1.1 ECB-Union Multiset
The ECB-Union multiset approach computes the union of all ECBs that may affect a pre-empted
task during a pre-emption by task τj . Specifically, it accounts for nested pre-emptions by assuming
that task τj has already been pre-empted by all tasks of a higher priority.

The first step is to calculate the number of UCBs that task τj could evict when pre-empting an
intermediate task, τk. This is given by calculating the intersection of the UCBs of the pre-empted
task, task τk, with the set of ECBs belonging to the pre-empting tasks

⋃
h∈hp(j)∪{j} ECBh to give:

∣∣∣∣∣∣UCBk ∩
 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣ . (3)

Note h ∈ hp(j) ∪ {j} is used to account for the case when tasks can share priorities.
The ECB-Union multiset approach recognises that task τj cannot pre-empt each intermediate

task τk more than Ej(Rk)Ek(Ri) times during the response time of task τi. Therefore, the next
step is to form a multiset Mi,j that contains the cost of task τj pre-empting task τk (3) repeated
Ej(Rk)Ek(Ri) times, for each task τk ∈ aff(i, j) hence:

Mi,j =
⋃

k∈aff(i,j)

 ⋃
Ej(Rk)Ek(Ri)

∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣
 . (4)

As only Ej(Ri) jobs of task τj can execute during the response time of task τi, the maximum
CRPD is obtained by summing the Ej(Ri) largest pre-emptions, i.e. the Ej(Ri) largest values in
Mi,j :

γecb-mi,j = BRT ·
Ej(Ri)∑
l=1

M l
i,j , (5)

where M l
i,j is the lth largest integer value from the multiset Mi,j .

3.1.2 UCB-Union Multiset
The UCB-Union multiset approach accounts for the effects of nested pre-emptions by assuming
that the UCBs of any tasks that could be pre-empted, including nested pre-emptions, by task
τj are evicted by the ECBs of task τj . The first step is to form a multiset Mucb

i,j containing
Ej(Rk)Ek(Ri) copies of the UCBk of each task τk ∈ aff(i, j) that could be pre-empted by task τj
and has at least the priority of task τi. This multiset reflects the fact that jobs of task τj cannot
evict the UCBs of jobs of task τk within the response time of task τi more than Ej(Rk)Ek(Ri)
times. Hence:

Mucb
i,j =

⋃
k∈aff(i,j)

 ⋃
Ej(Rk)Ek(Ri)

UCBk

 . (6)

The second step is to form a separate multiset Mecb
i,j containing Ej(Ri) copies of the ECBj

of task τj . This multiset reflects the fact that there can be no more than Ej(Ri) jobs of task τj

W. Lunniss, S. Altmeyer, and R. I. Davis 01:7

Schedulable Tasksets

Combined

ECB
Only

UCB-Union

UCB
Only

ECB-Union

UCB-U. Mult. ECB-U. Mult.

Figure 2 Venn diagram showing the relationship between different approaches for CPRD analysis
under FP scheduling.

within the response time of task τi, each of which can evict cache blocks in the set ECBj :

Mecb
i,j =

⋃
Ej(Ri)

(ECBj) . (7)

γucb-mi,j is then given by the size of the multiset intersection between Mucb
i,j and Mecb

i,j :

γucb-mi,j = BRT ·
∣∣∣Mucb

i,j ∩Mecb
i,j

∣∣∣ . (8)

3.1.3 Combined Multiset
The ECB-Union multiset and UCB-Union multiset approaches are incomparable, meaning that
each approach can find different sets of tasksets schedulable. Because of this property, they can
be combined together to form a combined approach:

Ri = min(Rucb-m
i , Recb-m

i) . (9)

The response time for every task is calculated using each approach and then the minimum is
taken, because of this, the combined approach can deem some tasksets schedulable that are not
schedulable by either approach on its own.

3.2 Comparison of Approaches
Figure 2 shows a Venn diagram that conveys the relationship between a number of different
approaches for calculating CRPD under FP scheduling [3]. However, it does not include the
method by Staschulat et al. [25] because it is incomparable to them. Specifically, while it typically
deems a lower number of tasksets schedulable, it could potentially find a taskset schedulable that
is not schedulable by any of the other approaches. Aside from the approach by Staschulat et
al. [25], it can be seen that the combined multiset approach dominates all other approaches. See
Altmeyer et al. [3] for a detailed comparison between each approach.

4 CRPD Analysis for EDF Scheduling

In this section, we give an overview of EDF scheduling and schedulability analysis for it. We then
cover the state of the art CRPD analysis for EDF scheduling, by Lunniss et al. [22].

LITES

01:8 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

EDF is a dynamic scheduling algorithm which always schedules the job with the earliest
absolute deadline first. In pre-emptive EDF, any time a job arrives with an earlier absolute
deadline than the current running job, it will pre-empt the current job. When a job completes
its execution, the EDF scheduler chooses the pending job with the earliest absolute deadline to
execute next.

In 1973, Liu and Layland [20] gave a necessary and sufficient schedulability test that indicates
whether a taskset is schedulable under EDF iff U ≤ 1, under the assumption that all tasks have
implicit deadlines (Di = Ti). In the case where Di ≤ Ti this test is still necessary, but is no longer
sufficient.

In 1974, Dertouzos [15] proved EDF to be optimal among all scheduling algorithms on a
uniprocessor, in the sense that if a taskset cannot be scheduled by pre-emptive EDF, then this
taskset cannot be scheduled by any algorithm.

In 1980, Leung and Merrill [19] showed that a set of periodic tasks is schedulable under EDF
iff all absolute deadlines in the interval [0,max{si}+ 2H] are met, where si is the start time of
task τi, min{si} = 0, and H is the hyperperiod (least common multiple) of all tasks’ periods.

In 1990 Baruah et al. [6, 7] extended Leung and Merrill’s work [19] to sporadic tasksets. They
introduced h(t), the processor demand function, which denotes the maximum execution time
requirement of all tasks’ jobs which have both their arrival times and their deadlines in a contiguous
interval of length t. Using this they showed that a taskset is schedulable iff ∀t > 0, h(t) ≤ t where
h(t) is defined as:

h(t) =
∑
i=1

max
{

0, 1,+
⌊
t−Di

Ti

⌋}
Ci . (10)

Examining (10), it can be seen that h(t) can only change when t is equal to an absolute
deadline, which restricts the number of values of t that need to be checked. In order to place
an upper bound on t, and therefore the number of calculations of h(t), the minimum interval in
which it can be guaranteed that an unschedulable taskset will be shown to be unschedulable must
be found. For a general taskset with arbitrary deadlines t can be bounded by La [16]:

La = max
{
D1, . . . , Dn,

∑n
i=1(Ti −Di)Ui

1− U

}
. (11)

Spuri [24] and Ripoll et al. [23] showed that an alternative bound Lb, given by the length of
the synchronous busy period can be used. Where Lb is computed by solving the following equation
using fixed point iteration:

wα+1 =
n∑
i=1

⌈
wα

Ti

⌉
Ci . (12)

There is no direct relationship between La and Lb, which enables t to be bounded by L =
min(La, Lb). Combined with the knowledge that h(t) can only change at an absolute deadline, a
taskset is therefore schedulable under EDF iff U ≤ 1 and:

∀t ∈ Q : h(t) ≤ t , (13)

where Q is defined as:

Q = {dk | dk = kTi +Di ∧ dk < min(La, Lb), k ∈ N} . (14)

In 2009, Zhang and Burns [27] presented their Quick convergence Processor-demand Analysis
(QPA) algorithm which exploits the monotonicity of h(t). QPA determines schedulability by
starting with a value of t that is close to L, and then iterating back towards 0 checking a
significantly smaller number of values of t than would otherwise be required.

W. Lunniss, S. Altmeyer, and R. I. Davis 01:9

0 1 2 3 4 5 6 7 8 9 10

τ1
τ2
τ3

Figure 3 Example schedule showing how the scheduler chooses which task should execute. Task τ3

is released at t = 0. At t = 5, task τ2 is released, pre-empting τ3 as although it has the same absolute
deadline, it has a lower task index. At t = 6, task τ1 is released, pre-empting task τ2. At t = 7, τ1

completes, the scheduler then chooses to resume task τ2 as although it has the same absolute deadline as
task τ3, it has the lower task index.

4.1 CRPD Analysis
Due to the undefined behaviour of EDF when two or more jobs have the same absolute deadline,
an assumption needs to be made before we can tightly calculate CRPD for EDF. In the case
where two or more jobs have the same absolute deadline, Lunniss et al. [22] assume the scheduler
always picks the job belonging to the task with the lowest unique task index, see Figure 3. This
has the benefit of minimising the number of pre-emptions. In the case where jobs of two tasks
have the same absolute and relative deadlines, it ensures that they cannot pre-empt each other.
Furthermore, it ensures that after a pre-emption, the task that was pre-empted last is resumed
first.

Following the analysis of Lunniss et al. [22], we now define a number of terms with respect
to EDF scheduling. Some of the terms are also present in the analysis for FP, but have slightly
different meanings under EDF. Assuming any task τj with a relative deadline Dj < Di can
pre-empt task τi, the set of tasks that may have a higher priority, and can pre-empt task τi, under
EDF is:

hp(i) = {τj ∈ Γ | Dj < Di} . (15)

The set of tasks that can be pre-empted by jobs of task τj in an interval of length t, aff(t, j) is
based on the relative deadlines of the tasks. It captures all of the tasks whose relative deadlines
are greater than the relative deadline of task τj excluding tasks whose deadlines are larger than t
as they do not need to be included when calculating h(t). This gives:

aff(t, i) = {τj ∈ Γ | t ≥ Di > Dj} . (16)

To determine how many pre-emptions can occur, we use Pj(Di) to denote the maximum
number of jobs of task τj that can pre-empt a single job of task τi:

Pj(Di) = max
(

0,
⌈
Di −Dj

Tj

⌉)
. (17)

Finally, we also use Ej(t) to denote the maximum number of jobs of task τj that can have
both their release times and their deadlines in an interval of length t:

Ej(t) = max
(

0,
⌊
t−Dj

Tj

⌋)
. (18)

We now summarise CRPD analysis for EDF by Lunniss et al. [22] using the combined multiset
approach as it has been shown to dominate all other approaches for calculating CRPD for EDF.
This approach is based on the combined multiset approach for FP as described in Section 3.1,
and as such the equations and the intuition behind them are similar. The difference is to do with

LITES

01:10 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

which tasks pre-empt each other and the timeframe used to determine which jobs to include in
the calculation.

CRPD analysis can be integrated into the EDF schedulability test by introducing an additional
parameter, γt,j to represent the CRPD. In this case, γt,j represents the cost of the maximum
number Ej(t) of pre-emptions by jobs of task τj that have their release times and absolute deadlines
in an interval of length t. It is therefore included in (10) as follows:

h(t) =
n∑
j=1

(
max

{
0,
⌊
t−Dj

Tj

⌋}
Cj + γt,j

)
. (19)

γt,j can then be calculated using two different methods and the lowest value of the two used
to calculate the processor demand. These methods calculate the cost of each possible individual
pre-emption by task τj that could occur during an interval of length t.

4.1.1 ECB-Union Multiset
The ECB-Union multiset approach computes the union of all ECBs that may affect a pre-empted
task during a pre-emption by task τj . Specifically, it accounts for nested pre-emptions by assuming
that task τj has already been pre-empted by all other tasks that may pre-empt it. The first step
is to form a multiset Mt,j that contains the cost:∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣ (20)

of task τj pre-empting task τk repeated Pj(Dk)Ek(t) times, for each task τk ∈ aff(t, j). Hence:

Mt,j =
⋃

k∈aff(t,j)

 ⋃
Pj(Dk)Ek(t)

∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣
 . (21)

As there are only Ej(t) jobs of task τj with release times and deadlines in an interval of length
t, the maximum CRPD is obtained by summing the Ej(t) largest values in Mt,j :

γecb-mt,j = BRT ·
Ej(t)∑
l=1

M l
t,j , (22)

where M l
t,j is the lth largest integer value from the multiset Mt,j .

4.1.2 UCB-Union Multiset Approach
The UCB-Union multiset approach accounts for the effects of nested pre-emptions by assuming
that the UCBs of any tasks that could be pre-empted, including nested pre-emptions, by task
τj are evicted by the ECBs of task τj . The first step is to form a multiset Mucb

t,j containing
Pj(Dk)Ek(t) copies of the UCBk of each task τk ∈ aff(t, j). This multiset reflects the fact that
jobs of task τj cannot evict the UCBs of jobs of task τk that have both their release times and
deadlines in an interval of length t more than Pj(Dk)Ek(t) times. Hence:

Mucb
t,j =

⋃
k∈aff(t,j)

 ⋃
Pj(Dk)Ek(t)

UCBk

 . (23)

W. Lunniss, S. Altmeyer, and R. I. Davis 01:11

The second step is to form a separate multiset Mecb
t,j containing Ej(t) copies of the ECBj of

task τj . This multiset reflects the fact that there are at most Ej(t) jobs of task τj that have their
release times and deadlines in an interval of length t, each of which can evict cache blocks in the
set ECBj :

Mecb
t,j =

⋃
Ej(t)

(ECBj) . (24)

γucb-mt,j is then given by the size of the multi-set intersection between Mucb
t,j and Mecb

t,j :

γucb-mt,j = BRT ·
∣∣∣Mucb

t,j ∩Mecb
t,j

∣∣∣ . (25)

4.1.3 Combined Multiset Approach
The ECB-Union Multiset and UCB-Union Multiset approaches provide upper bounds that are
incomparable, therefore, h(t) can be calculated at each stage of the QPA algorithm using both
approaches and the minimum value taken to form a combined approach:

h(t) = min
(
h(t)ucb-m, h(t)ecb-m

)
. (26)

As the processor demand is calculated using each approach, for each interval t, the combined
approach can deem some tasksets schedulable that are not schedulable by either approach on its
own.

4.1.4 Effect on Task Utilisation and h(t) Calculation
As the multiset approaches effectively inflate the execution time of task τj by the CRPD that it
can cause in an interval of length t, the upper bound L, used for calculating the processor demand
h(t), must be adjusted. This is achieved by calculating an upper bound on the utilisation due to
CRPD that is valid for all intervals of length greater than some value Lc. This CRPD utilisation
value is then used to inflate the taskset utilisation and thus compute an upper bound Ld on the
maximum length of the synchronous busy period. This upper bound is valid provided that it is
greater than Lc, otherwise the actual maximum length of the busy period may lie somewhere in
the interval [Ld, Lc], hence we can use max(Lc, Ld) as a bound.

The first step is to assign t = Lc = 100Tmax which limits the overestimation of the CRPD
utilisation Uγ = γt/t to at most 1%. Next, γt is calculated using (22) for ECB-Union Multiset
and (25) for UCB-Union Multiset. However, in (21) and (23) & (24), Emax

x (t) is substituted for
Ex(t) to ensure that the computed value of Uγ is a valid upper bound for all intervals of length
t ≥ Lc:

Emax
x (t) = max

(
0, 1 +

⌈
t−Dx

Tx

⌉)
. (27)

If U + Uγ ≥ 1, then the taskset is deemed unschedulable, otherwise an upper bound on the
length of the busy period can be computed via a modified version of (12):

wα+1 ≤
∑
∀j

(
wα

Tj
+ 1
)
Cj + wαUγ (28)

rearranged to give:

w ≤ 1
(1− (U + Uγ))

∑
∀j

UjTj . (29)

LITES

01:12 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

Schedulable Tasksets

Combined

ECB
Only

UCB-Union

UCB
Only

ECB-Union

JCR

UCB-U. Mult. ECB-U. Mult.

Figure 4 Venn diagram showing the relationship between different approaches for CPRD analysis
under EDF scheduling.

Then, substituting in Tmax for each value of Tj the upper bound is given by:

Ld = U · Tmax

(1− (U + Uγ)) . (30)

Finally, L = max(Lc, Ld) can then be used as the maximum value of t to check in the EDF
schedulability test.

4.2 Comparison of Approaches

Figure 4 shows a Venn diagram that conveys the relationship between the different approaches for
calculating CRPD under EDF scheduling [22]. Note that JCR represents the approach of Ju et
al. [17]. It can be seen that the combined multiset approach dominates all other approaches, see
Lunniss et al. [22] for detailed comparisons of each approach.

5 Task Layout

The layout of tasks in memory determines how they are positioned in cache, which then affects
the CRPD that occurs during pre-emptions. Figure 5 shows an example layout of five tasks in
cache. If scheduled under FP, task τ1 has the highest priority, so its UCBs can never be evicted as
it cannot be pre-empted. Task τ2 and τ3’s UCBs are safe from eviction as they are not mapped
to the same location in cache as higher priority task’s ECBs. However, task τ4’s UCBs could be
evicted by task τ1, and τ5’s UCBs could be evicted by task τ1, τ2 or τ4. This layout could be
improved by shifting task τ5 so that its UCBs can only be evicted by task τ3.

In 2012, Lunniss et al. [21] presented an approach that uses Simulated Annealing to optimise
the layout of tasks to increase system schedulability. It does so by changing the order of tasks in
memory, which can be implemented in practice by presenting the tasks to the linker in the desired
order. The approach is driven by the schedulability of the taskset, favouring layouts that allow
the taskset to be scheduled at a higher utilisation. While this approach was originally used for FP
scheduling, it can also be applied to the EDF scheduling algorithm by switching the schedulability
test used. We therefore use this approach to optimise the layout of the tasksets to make each
scheduling algorithm as competitive as possible.

W. Lunniss, S. Altmeyer, and R. I. Davis 01:13

ECBs UCBs UCBs that could be evicted

τ1

τ2

τ3

τ4

τ5

Cache size

Tasks ordered by priority

0
#Cache Sets

-1

Figure 5 Example layout showing how the position of tasks in cache affects whether their UCBs could
be evicted during a pre-emption.

6 Case Studies

In this section we compare the different approaches for calculating CRPD using a set of case studies
based on PapaBench2, the Mälardalen3 benchmark suite and a set of SCADE4 tasks (partially
provided by SCADE, partially from our own SCADE models). In all cases the system was set up
to model an ARMv75 processor clocked at 100 MHz with a 2 KB direct-mapped instruction cache
and a line size of 8 Bytes, giving 256 cache sets, 4 Byte instructions, and a BRT of 8 µs.

6.1 Single Taskset Case Study
PapaBench is a real-time embedded benchmark based on the software of a GNU-license UAV,
called Paparazzi. PapaBench contains two sets of tasks, fly-by-wire and autopilot. In this paper
we used the autopilot tasks, for which the WCETs, periods, UCBs, and ECBs were collected using
aiT6 – see Table 1. We made the following assumptions in our evaluation to handle the interrupt
tasks:

Interrupts have higher priority than the normal tasks, but they cannot pre-empt each other
Interrupts can occur at any time
All interrupts have the same deadline which must be greater than or equal to the sum of their
execution times in order for them to be schedulable
The cache is disabled whenever an interrupt is executing and enabled again after it completes

In the case of FP scheduling, the interrupts can be modelled as normal tasks with no UCBs or
ECBs. Due to the interrupts having the same deadline which is large enough to accommodate the
interrupts execution times, no other changes need to be made to the analysis. For EDF scheduling,
a number of adjustments must be made to correctly account for the interrupts not being able to
pre-empt each other. First we modify equation (19) to exclude interrupts when calculating the
processor demand, h(t). We then calculate the execution time of each interrupt in the interval t
using equation (2) of [10]. The result of which is then added onto the result of the modified version

2 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
3 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
4 Esterel SCADE http://www.esterel-technologies.com/
5 http://www.arm.com/products/processors/cortex-m/cortex-m3.php
6 AbsInt http://www.absint.com/ait/

LITES

http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.esterel-technologies.com/
http://www.arm.com/products/processors/cortex-m/cortex-m3.php
http://www.absint.com/ait/

01:14 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

of (19), giving the processor demand for both tasks and interrupts. We then adjust the upper
bound L used when checking h(t). This is implemented by substituting U = U tasks + U interrupts

into equation (30). Note that we leave Uγ to represent the utilisation of the CRPD caused by just
tasks as we assume that the cache is disabled while the interrupts are executing and as such they
cannot cause any CRPD.

We assigned a deadline of 2 ms to all of the interrupt tasks, and implicit deadlines i.e. Di = Ti,
to the normal tasks. We then calculated the total utilisation for the system and then effectively
scaled the clock speed in order to reduce the total utilisation to the target utilisation for the
system. We used the number of UCBs and ECBs obtained via analysis, placing the UCBs in a
group at a random location in each task.

In each evaluation, the taskset utilization not including pre-emption cost was varied from 0.025
to 1 in steps of 0.001. For each utilization value, the schedulability of the taskset was determined
under both FP and EDF. Specifically, we compared each scheduling algorithm (i) assuming no
pre-emption cost, (ii) using CRPD analysis using the standard task layout, and (iii) using CRPD
analysis after optimising the task layout using Simulated Annealing as described in [21]. The
standard task layout is obtained by ordering tasks sequentially in memory based on their unique
task indices.

Table 2 shows the breakdown utilisation for the single taskset based on PapaBench. There
are a few interesting points to note. Firstly the breakdown utilisation is very high for both FP
and EDF, this is due to the nearly harmonic periods and small range of task periods, with EDF
outperforming FP. Secondly, the CRPD is very low when scheduled using either FP or EDF due
to the small number of UCBs. As the CRPD is very low, the layout optimisation makes little to
no difference.

6.2 Multiple Taskset Case Studies
The single taskset case study provides one specific example based on the PapaBench tasks and
their periods. The remaining case studies used tasksets generated by randomly selecting tasks
from a set of benchmarks. In the case of the PapaBench tasks, we treated the interrupts as
normal tasks. We obtained tasksets by randomly selecting 10 tasks from Table 1 (PapaBench
benchmarks), or 10 tasks from Table 3 (Mälardalen and SCADE benchmarks) or 15 tasks from the
two tables (Mixed benchmarks). Using the UUnifast algorithm [9], we calculated the utilisation,
Ui of each task so that the utilisations added up to the desired utilisation level for the taskset.
Based on the target utilisation and task execution times, Ti was calculated such that Ci = UiTi.
We used Di = y + x(Ti − y) to generate the constrained deadlines, where x is a random number
between 0 and 1, and y = max(Ti/2, 2Ci). This generates constrained deadlines that are no less
than half the period of the tasks. Note, allowing deadlines to be as small as Ci would result in
tasks that were unschedulable once CRPD were introduced. We used the number of UCBs and
ECBs obtained using aiT, placing the UCBs in a group at a random location in each task.

We generated 1000 tasksets for the multiple taskset case studies, and evaluated them using
the same method as the single taskset case study, except that we varied the utilisation excluding
pre-emption costs from 0.025 to 1 in steps of 0.0125.

6.2.1 PapaBench Benchmark
The tasks in the PapaBench benchmarks are simple, short control tasks with limited computations
and data accesses. Figure 6 shows the percentage of tasksets that were deemed schedulable by
each approach for the 1000 tasksets of cardinality 10 that we randomly selected from Table 1. The
results are similar to those obtained using the single taskset PapaBench case study. Specifically,

W. Lunniss, S. Altmeyer, and R. I. Davis 01:15

Table 1 Execution times, periods and number of UCBs and ECBs for the tasks from PapaBench.
(ms = milisecond)

Task Name UCBs ECBs WCET Period
I4 interrupt_modem 2 10 0.303 ms 100 ms
I5 interrupt_spi_1 1 10 0.251 ms 50 ms
I6 interrupt_spi_2 1 4 0.151 ms 50 ms
I7 interrupt_gps 3 26 0.283 ms 250 ms
T5 altitude_control 20 66 1.478 ms 250 ms
T6 climb_control 1 210 5.429 ms 250 ms
T7 link_fbw_send 1 10 0.233 ms 50 ms
T8 navigation 10 256 4.432 ms 250 ms
T9 radio_control 0 256 15.681 ms 25 ms

T10 receive_gps_data 22 194 5.987 ms 250 ms
T11 reporting 2 256 12.222 ms 100 ms
T12 stabilization 11 194 5.681 ms 50 ms

Table 2 Breakdown utilisation under the different approaches for the single PapaBench taskset.

Breakdown
Utilisation

EDF – No Pre-emption Cost 0.999
FP – No Pre-emption Cost 0.977
EDF – Optimised Layout 0.985
EDF – Standard Layout 0.985
FP – Optimised Layout 0.970
FP – Standard Layout 0.969

Table 3 Execution times and number of UCBs and ECBs for the largest benchmarks from the
Mälardalen Benchmark Suite (M), and SCADE Benchmarks (S). (s = second, ms = milisecond)

Source Description UCBs ECBs WCET
M adpcm 24 226 5.541 s
M compress 25 114 3.664 s
M edn 56 98 244.9 ms
M fir 28 50 21.53 ms
M jfdctinit 40 162 62.53 ms
M ns 17 26 73.38 ms
M nsichneu 53 256 149.6 ms
M statemate 3 256 77.96 ms
S cruise control system 25 107 1.959 s
S flight control system 70 256 2.138 s
S navigation system 45 82 1.409 s
S stopwatch 58 130 3.786 s
S elevator simulation 40 114 1.586 s
S robotics systems 68 256 4.311 s

LITES

01:16 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

Table 4 Weighted schedulability measures for the mixed case study shown in Figure 8. The higher the
weighted schedulability measure, the more tasksets deemed schedulable by the approach.

Weighted
Schedulability

EDF – No Pre-emption Cost 0.922
FP – No Pre-emption Cost 0.855
EDF – Optimised Layout 0.830
EDF – Standard Layout 0.771
FP – Optimised Layout 0.784
FP – Standard Layout 0.747

EDF outperformed FP as it deemed a higher number of tasksets schedulable at each utilisation
level. Because the range of execution times is relatively small, so is the typical range of task periods
for the generated tasksets, hence the number of pre-emption is also relatively small. Further, the
number of UCBs is small, resulting in low CRPD. Therefore, the task layout optimisation was
only able to make a small improvement, but did so for both FP and EDF.

6.2.2 Mälardalen and SCADE Benchmarks
The second multiple taskset case study was based on tasks from the Mälardalen and SCADE
benchmarks, shown in Table 3. Compared to the tasks from PapaBench, these tasks have higher
execution times, high amounts of computation, and a larger number of UCBs. Figure 7 shows
the percentage of tasksets that were deemed schedulable by each approach for the 1000 tasksets
of cardinality 10 that we randomly selected from Table 3. As with the PapaBench benchmarks,
EDF outperformed FP scheduling as it has a higher percentage of schedulable tasksets at each
utilisation level. Likewise, because the range of task periods was also relatively small, CRPD is
minimised.

6.2.3 Mixed Benchmarks
The third multiple taskset case study was based on a mixture of the small and short PapaBench
tasks, and the large and long Mälardalen and SCADE tasks. Here the tasksets had 15 tasks each,
and represent systems with background tasks combined with short control tasks. As we mixed
tasks from both tables, it also allowed us to generate tasksets with a higher number of tasks.

The results, shown in Figure 8, show that when a taskset contains tasks with a wide range of
periods, CRPD can become a significant factor in the schedulability of the taskset. This is because
short high priority tasks are able to pre-empt long running low priority tasks multiple times.

While EDF still outperformed FP, the gain in schedulability of using EDF over FP was
diminished once CRPD was taken into account. Optimising the task layout resulted in a significant
improvement for both FP and EDF, showing the task layout optimisation can be effectively
applied to both EDF and FP scheduling. Furthermore, by optimising the task layout, FP was
able to schedule a similar number of tasksets to EDF with the standard layout. In other words, in
cases where the CRPD is relatively high, selecting an optimised task layout can be as effective
as changing the scheduling algorithm. The results are summarised in Table 4 using weighted
schedulability measures [8], see Section 7.2 for details. They show that for these tasksets, FP with
an optimised layout achieved a weighted measure of 0.784, outperforming EDF with the standard
layout as it achieved a weighted measure of 0.771.

W. Lunniss, S. Altmeyer, and R. I. Davis 01:17

0 %

20 %

40 %

60 %

80 %

100 %

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s
(%

)

Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 6 Percentage of schedulable tasksets at each utilisation level for the PapaBench benchmark for
tasksets of cardinality 10.

0 %

20 %

40 %

60 %

80 %

100 %

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s
(%

)

Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 7 Percentage of schedulable tasksets at each utilisation level for the Mälardalen and SCADE
benchmarks for tasksets of cardinality 10.

0 %

20 %

40 %

60 %

80 %

100 %

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s
(%

)

Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 8 Percentage of schedulable tasksets at each utilisation level for the mixed case study with
tasks randomly selected from both the PapaBench and Mälardalen and SCADE benchmarks (taskset
cardinality 15).

LITES

01:18 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

7 Evaluation

In addition to the case studies based on the PapaBench, Mälardalen and SCADE benchmarks, we
evaluated FP and EDF with CRPD analysis using synthetically generated tasksets. This enabled
us to investigate the effect of varying key parameters under each scheduling algorithm.

The UUnifast algorithm [9] was again used to calculate the utilisation, Ui of each task so that
the utilisations added up to the desired utilisation level for the taskset. Task periods Ti, were
generated at random between 5 ms and 500 ms according to a log-uniform distribution. Ci was
then calculated via Ci = UiTi.

We generated two sets of tasksets, one with implicit deadlines and one with constrained
deadlines. In the following section, we present the results for constrained deadline tasksets. In
general, the results for implicit deadline tasksets gave a higher number of schedulable tasksets for
every approach compared to the constrained deadline tasksets. Additionally, the task layout had
a similar or slightly larger effect on schedulability in relation to the chosen scheduling algorithm.

The UCB percentage for each task was based on a random number between 0 and a maximum
UCB percentage specified for the evaluation. UCBs were split into N groups (where N was chosen
at random between 1 and 5), and placed at a random starting point within the task’s ECBs.

7.1 Baseline Configuration
To investigate the effect of key cache and taskset configurations we varied the following parameters:

Cache utilisation (default of 10)
Maximum UCB percentage (default of 30%)
Number of tasks (default of 15)
Block Reload Time (BRT) (default of 8 µs)
Period range (default of [5, 500] ms)

We used 1, 000 randomly generated tasksets for the evaluation.
In addition to testing the different analyses as done for the case study, we also performed a

simulation of the schedule for the tasksets7. For FP, the simulation tested each task τi in turn
by releasing it at time t = 0. It then released all of the other tasks that have a higher priority
than task τi, sorted by lowest to highest priority, at t = 1, t = 2, t = 3, etc. If all tasks were
schedulable it also performed the same test but instead of staggering the other tasks, released
them at random. For EDF, it is more complicated to generate the worst case arrival pattern. The
first step is to determine the interval that needs to be checked, L, which can be achieved by using
equation (30). Then for each task τi in turn, we scheduled a job of task τi so that it has a deadline
at t = L. We then scheduled a job of all of the other tasks, sorted by longest to shortest deadline,
so that they have their deadlines at t = L− 1, t = L− 2, t = L− 3 etc... Based on the final jobs’
deadlines, we then calculated when the first jobs for each task need to be released. If all tasks
are schedulable, we repeated the process using t = L− 1 for all of the other tasks’ jobs, and also
using a random schedule.

The results for the baseline configuration are shown in Figure 9 and are summarised in Table 5
using weighted schedulability measures. The results follow a similar pattern to the results from the
case study. EDF outperformed FP finding a higher number of tasksets schedulable. The results
for the simulations show that the CRPD affects both FP and EDF, with the CRPD being slightly
lower for EDF. Specifically, the simulation shows that CRPD reduced the weighted measure by at
least 0.129 for EDF (0.925− 0.795) and 0.141 for FP (0.774− 0.633) in this case. However, once

7 Note that the simulation effectively provides a necessary, but not sufficient test of schedulability.

W. Lunniss, S. Altmeyer, and R. I. Davis 01:19

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Simulation

FP - Simulation

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout
0 %

20 %

40 %

60 %

80 %

100 %

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s
(%

)

Utilisation

Figure 9 The percentage of schedulable tasksets at each utilisation level for the baseline configuration
(taskset cardinality 15).

Table 5 Weighted schedulability measures for the baseline configuration study shown in Figure 9. The
higher the weighted schedulability measure, the more tasksets deemed schedulable by the approach.

Weighted
Schedulability

EDF – No Pre-emption cost 0.925
EDF – Simulation 0.796
FP – No Pre-emption cost 0.774
FP – Simulation 0.633
EDF – Optimised layout 0.455
EDF – Standard layout 0.413
FP – Optimised layout 0.369
FP – Standard layout 0.336

the CRPD obtained via analysis is taken into account, the performance gains of using EDF over
FP are diminished. This is most likely caused by increased pessimism in the CRPD analysis for
EDF. The results for the layout optimisation showed that it was able to make improvements to
the schedulability of tasksets scheduled under both FP and EDF.

7.2 Weighted Schedulability
Evaluating all combinations of different parameters is not possible. Therefore, the majority of
our evaluations focused on varying one parameter at a time. To present the results, weighted
schedulability measures [8] are used. This allows a graph to be drawn which shows the weighted
schedulability, Wl(p), for each method used to obtain a layout l as a function of parameter p. For
each value of p, this measure combines the data for all of the generated tasksets τ for all of a set
of equally spaced utilisation levels, where the utilisation is based on no pre-emption cost.

The schedulability test returns a binary result of 1 or 0 for each layout at each utilisation level.
If this result is given by Sl (τ, p), and u(τ) is the utilisation of taskset τ , then:

Wl(p) =
(∑

∀τ u(τ)Sl(τ, p)
)∑

∀τ u(τ) . (31)

LITES

01:20 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

W
ei

gh
te

d
M

ea
su

re

Cache Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 10 Weighted measure for varying the cache utilisation from 0 to 20 in steps of 2.

The benefit of using a weighted schedulability measure is that it reduces a 3-dimensional plot
to 2 dimensions. Individual results are weighted by taskset utilisation to reflect the higher value
placed on a being able to schedule higher utilisation tasksets.

7.2.1 Cache Utilisation
As the cache utilisation increases the likelihood of tasks evicting each other from cache increases,
this causes higher CRPD reducing the number of schedulable tasksets. It can be seen in Figure 10
that task layout optimisation is effective for FP and EDF across the same range of cache utilisations.
In both cases it becomes less effective once the cache utilisation becomes high. We note that
because the number of tasks is fixed, that the average size of the tasks is equal to the cache
utilisation divided by the number of tasks. This means that as the cache utilisation increases, so
does the size of the tasks and therefore, the number of UCBs. This in turn makes it harder to
find an improved layout.

7.2.2 Maximum UCB Percentage
As the maximum UCB percentage increases, the CRPD increases resulting in a reduction in
the number of tasksets that are deemed schedulable, as can be seen in Figure 11. With a low
percentage of UCBs, the CRPD is low which means there is little benefit from layout optimisation.
When the UCB percentage is very high, there are so many conflicts that there is very little that
can be done to improve the layout. When the maximum UCB percentage is around 40–60%, there
is a notable amount of CRPD, but there is also room for the task layout algorithm to optimise the
layout. This allows FP using an optimised task layout to schedule a similar number of tasksets as
EDF using the standard layout.

7.2.3 Number of Tasks
When varying the number of tasks, Figure 12, we scaled the cache utilisation to keep the average
size of tasks constant based on a cache utilisation of 10 for 15 tasks. This is because it would be
unrealistic for the size of tasks to decrease as more tasks are added to the system. Hence with
8 tasks the cache utilisation is equal to 5.33, whereas for 32 tasks, it is equal to 21.33. As the
number of tasks increases, it becomes harder the schedule all tasks which leads to a decrease

W. Lunniss, S. Altmeyer, and R. I. Davis 01:21

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

W
ei

gh
te

d
M

ea
su

re

Maximum UCB Percentage

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 11 Weighted measure for varying the maximum UCB percentage from 0 to 100 in steps of 10.

in the overall weighted measure. The task layout optimisation performs best when there is a
moderate number of tasks, as there are enough conflicts that optimising the layout can give an
improvement, but not so many that there is nothing that can be done to avoid the conflicts.

7.2.4 Block Reload Time
As the block reload time is increased, it becomes more costly to reload a block, which causes an
increase in CRPD. It can be seen in Figure 13 that as the block reload time is increased, the
analysis that takes into account the pre-emption cost shows a decrease in the overall weighted
measure. We note that as the cost of reloading a block increases, the potential gains of optimising
the layout increase. Once the block reload time exceeds 14 µs, using an optimised layout under
FP scheduling outperforms using a standard layout under EDF scheduling.

7.2.5 Period Range
We also investigated the effect of the scaling factor used to generate task periods to simulate
tasksets with shorter to longer execution times. We varied the scaling factor, w, from 0.5 to 10
and hence the range of task periods given by w[1, 100] ms. A lower scaling factor resembles tasks
with shorter execution times, as seen in the PapaBench benchmark, and a higher scaling factor
resembles tasks with higher execution times and commensurately longer periods, as seen in the
Mälardalen and SCADE benchmarks. The results in Figure 14 show the layout optimisation
performs best when task periods are relatively short, as that is when the pre-emption costs are
highest. Once the period range is greater than [10, 1000] ms, the relative pre-emption costs are
low enough that performing the layout optimisation only makes a very small improvement on the
schedulability of the tasksets.

8 Conclusion

The EDF scheduling algorithm is an optimal scheduling algorithm for single processors however, it
has been largely disregarded by industry. Whereas FP, despite offering lower theoretical schedulable
processor utilisation, is relatively popular with many commercial real- time operating systems
supporting it.

Previous work by Buttazzo [13] has compared the two algorithms, but it did not take into
account CRPD which can have a significant effect on the schedulability of a taskset.

LITES

01:22 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

W
ei

gh
te

d
M

ea
su

re

Number of Tasks

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 12 Weighted measure for varying the number of tasks from 20 to 26 while maintaining a
constant ratio of number of tasks to cache utilisation.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

W
ei

gh
te

d
M

ea
su

re

Block Reload Time

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 13 Weighted measure for varying the block reload time from 0 to 20 µs in steps of 2.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10

W
ei

gh
te

d
M

ea
su

re

Period Range

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 14 Weighted measure for varying the scaling factor used to generate periods, w, in w[1, 100]
ms, from 0.5 to 10.

W. Lunniss, S. Altmeyer, and R. I. Davis 01:23

The main contributions of this paper are:
Performing a detailed comparison of FP and EDF taking into account CRPD using state-of-
the-art CRPD analysis [3, 22].
Showing the feasibility of simple, yet effective, task layout optimisation techniques for EDF.
Finding that when CRPD is considered, the performance gains offered by EDF over FP, while
still significant, are somewhat diminished. This is most likely due to greater pessimism in the
CRPD analysis for EDF than FP.
Discovering that in configurations that cause relatively high CRPD, optimising task layout
can be just as effective as changing the scheduling algorithm from FP to EDF.

We investigated the effects of performing task layout [21] optimisation based on Simulated
Annealing under both FP and EDF scheduling algorithms. We found that in the scenarios that
cause the pre-emption cost to be relatively high in relation to task execution times, applying task
layout optimisation to a system scheduled using FP scheduling can allow it to be schedulable
at a similar processor utilisation compared to using EDF scheduling with a standard layout.
This is important in an industrial setting as it is considerably simpler and cheaper to control
the task layout via the linker, than it is to change the scheduler. Nevertheless, our evaluations
showed that changing to an EDF scheduler and optimising the task layout provides a gain over
FP scheduling. Although this gain was not as pronounced as the advantage that EDF has over
FP when pre-emption costs are not accounted for via analysis.

In the future we plan to further investigate techniques for CRPD analysis, and to apply them
in an industrial context comparing the results of analysing a real system with those obtained via
measurement.

Grant Information. This work was partially funded by the UK EPSRC through the Engineering
Doctorate Centre in Large-Scale Complex IT Systems (EP/F501374/1), the UK EPSRC fun-
ded MCC (EP/K011626/1), and the European Community’s ARTEMIS Programme and UK
Technology Strategy Board, under ARTEMIS grant agreement 295371-2 CRAFTERS.

References
1 Sebastian Altmeyer and Claire Burguière. A

new notion of useful cache block to improve the
bounds of cache-related preemption delay. In
21st Euromicro Conference on Real-Time Systems,
ECRTS 2009, Dublin, Ireland, July 1–3, 2009,
pages 109–118. IEEE Computer Society, 2009. doi:
10.1109/ECRTS.2009.21.

2 Sebastian Altmeyer, Robert I. Davis, and Claire
Maiza. Cache related pre-emption delay aware re-
sponse time analysis for fixed priority pre-emptive
systems. In Proceedings of the 32nd IEEE Real-
Time Systems Symposium, RTSS 2011, Vienna,
Austria, November 29 – December 2, 2011, pages
261–271. IEEE Computer Society, 2011. doi:10.
1109/RTSS.2011.31.

3 Sebastian Altmeyer, Robert I. Davis, and Claire
Maiza. Improved cache related pre-emption delay
aware response time analysis for fixed priority pre-
emptive systems. Real-Time Systems, 48(5):499–
526, 2012. doi:10.1007/s11241-012-9152-2.

4 Sebastian Altmeyer, Claire Maiza, and Jan
Reineke. Resilience analysis: tightening the CRPD
bound for set-associative caches. In Proceedings
of the ACM SIGPLAN/SIGBED 2010 Conference
on Languages, Compilers, and Tools for Embed-

ded Systems, LCTES 2010, Stockholm, Sweden,
April 13–15, 2010, pages 153–162. ACM, 2010.
doi:10.1145/1755888.1755911.

5 Neil C. Audsley, Alan Burns, Mike F. Richard-
son, Ken Tindell, and Andrew J. Wellings.
Applying new scheduling theory to static pri-
ority pre-emptive scheduling. Software En-
gineering Journal, 8(5):284–292, 1993. URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=238595&isnumber=6134.

6 Sanjoy K. Baruah, Aloysius K. Mok, and Louis E.
Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Proceedings of
the Real-Time Systems Symposium – 1990, Lake
Buena Vista, Florida, USA, December 1990, pages
182–190. IEEE Computer Society, 1990. doi:10.
1109/REAL.1990.128746.

7 Sanjoy K. Baruah, Louis E. Rosier, and Rodney R.
Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks
on one processor. Real-Time Systems, 2(4):301–
324, 1990. doi:10.1007/BF01995675.

8 Andrea Bastoni, Björn B. Brandenburg, and
James H. Anderson. Cache-related preemp-
tion and migration delays: Empirical approxim-

LITES

http://dx.doi.org/10.1109/ECRTS.2009.21
http://dx.doi.org/10.1109/ECRTS.2009.21
http://dx.doi.org/10.1109/RTSS.2011.31
http://dx.doi.org/10.1109/RTSS.2011.31
http://dx.doi.org/10.1007/s11241-012-9152-2
http://dx.doi.org/10.1145/1755888.1755911
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=238595&isnumber=6134
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=238595&isnumber=6134
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1007/BF01995675

01:24 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

ation and impact on schedulability. In Proceed-
ings of the 6th International Workshop on Op-
erating Systems Platforms for Embedded Real-
Time Applications, OSPERT 2010, pages 33–
44, 2010. URL: http://www.mpi-sws.org/~bbb/
papers/pdf/ospert10.pdf.

9 Enrico Bini and Giorgio C. Buttazzo. Measur-
ing the performance of schedulability tests. Real-
Time Systems, 30(1-2):129–154, 2005. doi:10.
1007/s11241-005-0507-9.

10 Björn B. Brandenburg, Hennadiy Leontyev, and
James H. Anderson. Accounting for interrupts
in multiprocessor real-time systems. In 15th
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
RTCSA 2009, Beijing, China, 24–26 August 2009,
pages 273–283. IEEE Computer Society, 2009. doi:
10.1109/RTCSA.2009.37.

11 Claire Burguière, Jan Reineke, and Sebastian Alt-
meyer. Cache-related preemption delay computa-
tion for set-associative caches - pitfalls and solu-
tions. In 9th International Workshop on Worst-
Case Execution Time Analysis, WCET 2009, Dub-
lin, Ireland, July 1–3, 2009, volume 10 of OASICS,
pages 1–11. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, Germany, 2009. doi:10.4230/
OASIcs.WCET.2009.2285.

12 José V. Busquets-Mataix, Juan José Serrano, Ra-
fael Ors, Pedro J. Gil, and Andy J. Wellings.
Adding instruction cache effect to schedulabil-
ity analysis of preemptive real-time systems. In
2nd IEEE Real-Time Technology and Applications
Symposium, RTAS 1996, June 10–12, 1996, Bo-
ston, MA, USA, page 204. IEEE Computer Society,
1996. doi:10.1109/RTTAS.1996.509537.

13 Giorgio C. Buttazzo. Rate monotonic vs. EDF:
judgment day. Real-Time Systems, 29(1):5–26,
2005. doi:10.1023/B:TIME.0000048932.30002.d9.

14 Robert I. Davis, A. Zabos, and Alan Burns. Ef-
ficient exact schedulability tests for fixed priority
real-time systems. IEEE Transactions on Com-
puters, 57(9):1261–1276, 2008. doi:10.1109/TC.
2008.66.

15 Michael L. Dertouzos. Control robotics: The pro-
cedural control of physical processes. In IFIP Con-
gress, pages 807–813, 1974.

16 Laurent George, Nicolas Rivierre, and Marco Spuri.
Preemptive and non-preemptive real-time unipro-
cessor scheduling. Technical report, INRIA, 1996.
URL: http://hal.inria.fr/inria-00073732.

17 Lei Ju, Samarjit Chakraborty, and Abhik Roy-
choudhury. Accounting for cache-related preemp-
tion delay in dynamic priority schedulability ana-
lysis. In 2007 Design, Automation and Test in
Europe Conference and Exposition, DATE 2007,
April 16–20, 2007, Nice, France, pages 1623–1628.

ACM, 2007. URL: http://dl.acm.org/citation.
cfm?id=1266366.1266723.

18 Chang-Gun Lee, Joosun Hahn, Yang-Min Seo,
Sang Lyul Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong-Sang
Kim. Analysis of cache-related preemption delay in
fixed-priority preemtive scheduling. IEEE Trans.
Computers, 47(6):700–713, 1998. doi:10.1109/12.
689649.

19 Joseph Y.-T. Leung and M. L. Merrill. A note
on preemptive scheduling of periodic, real-time
tasks. Information Processing Letters, 11(3):115–
118, 1980. doi:10.1016/0020-0190(80)90123-4.

20 C. L. Liu and James W. Layland. Scheduling al-
gorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61,
1973. doi:10.1145/321738.321743.

21 Will Lunniss, Sebastian Altmeyer, and Robert I.
Davis. Optimising task layout to increase
schedulability via reduced cache related pre-
emption delays. In 20th International Conference
on Real-Time and Network Systems, RTNS 2012,
Pont a Mousson, France – November 08–09, 2012,
pages 161–170. ACM, 2012. doi:10.1145/2392987.
2393008.

22 Will Lunniss, Sebastian Altmeyer, Claire Maiza,
and Robert I. Davis. Integrating cache related pre-
emption delay analysis into EDF scheduling. In
19th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2013, Phil-
adelphia, PA, USA, April 9–11, 2013, pages 75–84.
IEEE Computer Society, 2013. doi:10.1109/RTAS.
2013.6531081.

23 Ismael Ripoll, Alfons Crespo, and Aloysius K.
Mok. Improvement in feasibility testing for real-
time tasks. Real-Time Systems, 11(1):19–39, 1996.
doi:10.1007/BF00365519.

24 Marco Spuri. Analysis of deadline scheduled real-
time systems. Technical report, INRIA, 1996. URL:
http://hal.inria.fr/inria-00073920.

25 Jan Staschulat, Simon Schliecker, and Rolf Ernst.
Scheduling analysis of real-time systems with pre-
cise modeling of cache related preemption delay. In
17th Euromicro Conference on Real-Time Systems,
ECRTS 2005, 6–8 July 2005, Palma de Mallorca,
Spain, pages 41–48. IEEE Computer Society, 2005.
doi:10.1109/ECRTS.2005.26.

26 Yudong Tan and Vincent John Mooney III. Tim-
ing analysis for preemptive multitasking real-time
systems with caches. ACM Transactions on Em-
bedded Computing Systems (TECS), 6(1), 2007.
doi:10.1145/1210268.1210275.

27 Fengxiang Zhang and Alan Burns. Schedulab-
ility analysis for real-time systems with EDF
scheduling. IEEE Transactions on Computers,
58(9):1250–1258, 2009. doi:10.1109/TC.2009.58.

http://www.mpi-sws.org/~bbb/papers/pdf/ospert10.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/ospert10.pdf
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/RTCSA.2009.37
http://dx.doi.org/10.1109/RTCSA.2009.37
http://dx.doi.org/10.4230/OASIcs.WCET.2009.2285
http://dx.doi.org/10.4230/OASIcs.WCET.2009.2285
http://dx.doi.org/10.1109/RTTAS.1996.509537
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://dx.doi.org/10.1109/TC.2008.66
http://dx.doi.org/10.1109/TC.2008.66
http://hal.inria.fr/inria-00073732
http://dl.acm.org/citation.cfm?id=1266366.1266723
http://dl.acm.org/citation.cfm?id=1266366.1266723
http://dx.doi.org/10.1109/12.689649
http://dx.doi.org/10.1109/12.689649
http://dx.doi.org/10.1016/0020-0190(80)90123-4
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/2392987.2393008
http://dx.doi.org/10.1145/2392987.2393008
http://dx.doi.org/10.1109/RTAS.2013.6531081
http://dx.doi.org/10.1109/RTAS.2013.6531081
http://dx.doi.org/10.1007/BF00365519
http://hal.inria.fr/inria-00073920
http://dx.doi.org/10.1109/ECRTS.2005.26
http://dx.doi.org/10.1145/1210268.1210275
http://dx.doi.org/10.1109/TC.2009.58

TLM.open: a SystemC/TLM Front-end for the
CADP Verification Toolbox∗

Claude Helmstetter

Verimag – CNRS
2 Avenue de Vignate, 38610 Gières, France
claude.helmstetter@gmail.com

Abstract
SystemC/TLM models, which are C++ programs,
allow the simulation of embedded software before
hardware low-level descriptions are available and
are used as golden models for hardware verification.
The verification of the SystemC/TLM models is
an important issue since an error in the model can
mislead the system designers or reveal an error in
the specifications. An open-source simulator for
SystemC/TLM is provided but there are no tools
for formal verification.

In order to apply model checking to a System-
C/TLM model, a semantics for standard C++ code
and for specific SystemC/TLM features must be

provided. The usual approach relies on the trans-
lation of the SystemC/TLM code into a formal
language for which a model checker is available.

We propose another approach that suppresses
the error-prone translation effort. Given a System-
C/TLM program, the transitions are obtained by
executing the original code using g++ and an ex-
tended SystemC library, and we ask the user to
provide additional functions to store the current
model state. These additional functions generally
represent less than 20% of the size of the original
model, and allow it to apply all CADP verification
tools to the SystemC/TLM model itself.

2012 ACM Subject Classification Hardware, Hardware validation, Functional verification, Transaction-
level verification
Keywords and phrases Model checking, Verification, Simulation, SystemC, Transactional modeling
Digital Object Identifier 10.4230/LITES-v001-i001-a002
Received 2013-03-01 Accepted 2013-04-25 Published 2014-04-25

1 Introduction

The design of abstract models written in SystemC/TLM has become more common in the
development of embedded systems. These models allow the simulation of the embedded software
before the hardware RTL description is available, and are used as golden models for hardware
verification. The verification of the SystemC/TLM models is an important issue since an error in
the model can mislead the system designers or reveals an error in the specifications.

ASI (Accellera Systems Initiative, previously OSCI: Open SystemC Initiative) provides an
open-source simulator for SystemC/TLM and a library SCV (SystemC Verification) to ease test
generation. However, ASI does not provide tools for formal verification. Moreover, while the
SystemC specification allows many schedules for a given test case, the ASI simulator always
exhibits the same schedule. Thus, even if an execution leads to the expected result, another
execution with a different schedule may be erroneous. To find these kind of bugs, many publications
have experimented with the use of model checking.

The problem of verifying C++ and SystemC codes could be avoided by writing transactional
models in a formal language directly. However, in order to model embedded systems at the

∗ This work was achieved when the author was working for INRIA Montbonnot – VASY team. Moreover, this
work was sponsored by the French government and by Conseil Général de l’Isère as part of the Multival
project (pôle de compétitivité Minalogic).

© Claude Helmstetter;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 1, Article No. 2, pp. 02:1–02:18
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i001-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 TLM.open: SystemC/TLM Verification

transaction level, engineers of industrial companies prefer to use SystemC/TLM. One reason is
that SystemC/TLM provides all the useful features directly, like shared memory and transactional
communication channels. Another reason is that a SystemC/TLM program is mainly C++ code,
so engineers can learn SystemC/TLM quickly, and existing C code can be reused easily.

In order to apply model checking to a SystemC/TLM program, the usual approach relies on
the translation of the SystemC/TLM code into a formal language for which a model checker is
available. A lot of languages and tools have been tested so far (see Subsection 3.1.2). Nonetheless,
there have been few successes with industrial case studies.

We propose another approach that suppresses the translation effort. Basically, an explicit
model checker must be able to execute transitions and store states. Given a SystemC/TLM
program, we assume that the states are the places where processes yield back to the scheduler.
Consequently, transitions correspond to pieces of C++ code delimited by yield points: either wait
statements or return statements from the process main function. We obtain the transitions by
executing the original code using g++ and a SystemC library, as in any simulator. Storing the
state could be done by copying the whole memory used by the simulator, but would be inefficient.
Therefore, we ask the user to provide additional functions to store the current state and restore
a previous state. Part of the state, including the SystemC kernel, is stored automatically; so in
general the user can only store the SystemC module data members.

Following this approach, we have developed a new front-end for the CADP tool suite. The
CADP tool suite includes many tools useful for formal verification and bug finding; the main tool
is an explicit model checker. This article does not introduce a new verification technique (we did
not change anything in CADP) except a pragmatic and efficient way to use existing tools to verify
programs written in a language that has not been designed to ease formal verification. The new
front-end we have developed is not fully automatic since the user must provide some additional
functions; these additional functions generally represent less than 20% of the size of the original
model.

The model checking technique is known to be limited by the state space explosion. Because
we rely on this technique and there are no changes in the core algorithm, we are limited in this
area. Nevertheless, model checking has been applied to many real-life case studies (over 150 using
CADP in many application fields1 most of the times, using model checking allowed to verify
properties or discover bugs. We have written our new front-end in a way that avoids to make the
state space explosion even worse by adding intermediate states and transitions, which was the
case using a previous approach [16]. Experiments which were first made with benchmarks, then
with a single SystemC module, and finally with a basic system, show that we can indeed find bugs
and prove some properties on real-life TLM models.

The remainder of this article is organized as follows. We present briefly SystemC and TLM in
Section 2. Section 3 gives an overview of the related work and presents the existing CADP toolbox.
Section 4 describes our technique to connect SystemC/TLM with CADP. The performances of
TLM.open are evaluated in Section 5 and Section 6 concludes this article.

2 SystemC and TLM

SystemC [1] is a C++ library published by the Accellera Systems Initiative (ASI) and defined by
an IEEE standard which provides classes to describe heterogeneous systems composed of hardware
and software. The architecture of a system is defined by a set of modules connected by synchronous
or asynchronous ports and channels (sc_module, sc_port, ...). Each module contains zero, one, or

1 Case studies achieved using the CADP toolset: http://www.inrialpes.fr/vasy/cadp/case-studies.

http://www.inrialpes.fr/vasy/cadp/case-studies

C. Helmstetter 02:3

various processes (SC_THREAD or SC_METHOD) describing the system’s behavior. SystemC processes
interact using shared memory or communication channels and are synchronized using SystemC
events (sc_event e, e.notify(), wait(e)) with timing annotations (sc_time t, wait(t)).

Each SystemC process is a C++ method that is executed by the SystemC scheduler commu-
nicates with other processes using shared memory and may explicitly suspend itself by executing
a wait statement. When the process is resumed by the scheduler, its execution continues from
the wait statement. Each SystemC process is eligible or running or waiting for a SystemC event.
There is, at most, one running process simultaneously. If the running process notifies an event,
then all processes waiting for this event move from waiting to eligible.

The Transaction Level Modeling (TLM) library [10] built upon SystemC, provides a transaction
mechanism that encapsulates communication protocols (data transfer and synchronization) between
modules and accelerates both model design and simulation. Using a transaction, a process in
an initiator module can directly call the methods exported by a target module. Thus, a process
can read many values from a memory, or set many registers of a peripheral without any costly
inter-process synchronization (no context switch is required). At the TLM level of abstraction,
processes inside the same module communicate using SystemC events and shared variables. A
TLM model can be timed or untimed: a timed model contains timing annotations (sc_time t,
wait(t)) whereas an untimed model does not. An untimed model includes more possible behaviors
than a timed model, increasing the coverage, but also the cost, of the verification.

Because SystemC and TLM are C++ libraries, simulating a SystemC/TLM model does not
require a dedicated SystemC/TLM parser. A SystemC/TLM model is parsed and compiled as
with any C++ program, using a regular C++ compiler, such as g++.

3 Related Works

3.1 Verification of SystemC/TLM models
In order to provide formal verification for SystemC/TLM programs, two approaches were investig-
ated: stateless model checking of a SystemC/TLM program and a translation of a SystemC/TLM
program into a language for which a stateful model checker is available.

3.1.1 Stateless model-checking
A stateless model-checker explores the set of all the possible executions of a given program without
storing the states. Because the states are not stored, a stateless model-checker can execute the
same transition many times. Moreover, if the program under verification has at least one possible
execution that does not terminate then the stateless model-checker will not terminate either.
However, stateless model-checkers have benefits: 1. naive stateless model-checkers are easy to
implement because one just needs to modify the functions used for non-deterministic choices; 2.
their memory consumption is limited (linear in terms of execution lengths).

Many stateless model checking tools have been implemented for SystemC/TLM programs [15,
21, 2]. In order to reduce the number of executions explored, these model-checkers select a subset
for the possible executions; this subset is guaranteed to detect all the errors of a particular family;
such as all the assertion failures or all the deadlocks. All these stateless model-checkers implement
dynamic partial order reduction [5]; the selection of the executions explored is based on the
analysis of detailed execution traces. The dynamic partial order algorithm was specifically adapted
for the particularities of the SystemC scheduling policy.

In particular, [14, 15] show how to validate programs with loose timing annotations encoded by
bounded intervals. This technique extracts a finite subset from the infinite set of the timings allowed

LITES

02:4 TLM.open: SystemC/TLM Verification

by the specification. Given a program that always terminates and without non-deterministic data
choices, this technique detects all the assertion failures and the deadlocks.

These tools give interesting results for small and medium sized industrial examples. Using
SCRV [13], a synchronization error was found in a model of a video decoder provided by STMi-
croelectronics. However, stateless model-checkers can only be applied to terminating programs
without non-deterministic unbounded data inputs.

3.1.2 Translate then verify

For programs that do not terminate, a second approach was investigated. The idea was to translate
the SystemC/TLM program to be verified into another language, and then verify the translated
program using an existing stateful model checker. This approach has first been applied to the
RTL level SystemC descriptions [4, 11].

Many translations and languages have been proposed for the validation of transactional models,
as in [25], which translates SystemC/TLM programs into finite state machines (FSM), similarly [20],
which describes abstraction techniques and a translation from SystemC/TLM to labeled Kripke
structures. Most of these translations are manual, the first exception being the LusSy tool
chain [24], which automatically translates TLM models into synchronous automata with variables;
it provides some simple abstraction techniques (e.g., abstract address representation). The LusSy
tool chain has been connected to many model checkers, including symbolic model checkers based
on BDD or SAT. Some minor examples have been successfully verified, but industrial examples
face the state space explosion problem. There are now other automatic translation tools starting
from SystemC, including [17] that can translate SystemC/TLM models into Uppall models, and
allow verification of liveness properties and timing constraints. [12] translates TLM models into
sequential C programs, in order to use verification tools dedicated to software.

The state space explosion problem appears mainly because TLM models are mostly asynchron-
ous. Thus, after each transition, there are many valid scheduling choices that should be explored.
It is therefore suitable to use the model checkers for asynchronous programs as these model
checkers have been specifically optimized to fight state space explosions arising from asynchrony.
Translation of TLM programs into Promela [27] has allowed TLM models to be verified using
the SPIN checker which uses partial orders to reduce state spaces. Since then other translations
into Promela have been presented [22, 3], allowing the verification of larger models. Note that
the translation defined in [3] was implemented in an automatic tool where other back-ends were
available.

Furthermore, we firstly proposed a translation of TLM to LOTOS [16, 26] that enables
verification of the benchmark of [27] for a slightly greater number of processes than using SPIN.
The translation was fully manual, preventing the approach to scale up.

Next, [7] presented both an extension of our TLM to LOTOS translation and an application to
an industrial case study. As shown in Figure 1, part of the SystemC/TLM code was translated into
LOTOS while data-types and related operations were kept as C++ code, thus strongly reducing
the translation effort. This paper showed that some properties can be checked on industrial code,
but the amount of manual work still limited the efficiency of the approach.

3.2 The CADP verification toolbox

Our goal is to detect synchronization errors between asynchronous processes of SystemC/TLM
programs or to guarantee that the communication protocol they use is correct. For this kind
of task one of the best techniques is model checking and in particular explicit model checking.

C. Helmstetter 02:5

operations on MLOTOS

MLOTOS (i.e. MC)
implementation of

LOTOS processes
modeling the

SystemC processes

on objects of
local computations

class M

linked with
verification tool

interface with the
extracted C++ code

(implement operations
on MLOTOS by calls to

methods of M)

sort MLOTOS

declaration of:

gccCÆSAR

extracted C++ codeLOTOS code

g++

C code

Figure 1 Verification of hybrid LOTOS/C++ models.

R← {initial state} //set of remaining states
E ← ∅ //set of explored states
while (∃x ∈ R) do

foreach transition x→ y do
add the transition x→ y to the LTS
if (y 6∈ E ∪R) then R← R ∪ {y}

R← R \ {x}
E ← E ∪ {x}

end while

Figure 2 Basic algorithm for LTS generation.

A well-known explicit model-checker is SPIN. In this work, we investigated the use of another
model-checker; namely CADP.

CADP (“Construction and Analysis of Distributed Processes”) [9] is a toolbox for the validation
of communication protocols and distributed systems.

The usual entry point for CADP is the language LOTOS. The ISO standard LOTOS [18]
(Language Of Temporal Ordering Specification) is a process algebra used to describe asynchronous
concurrent processes communicating and synchronizing by rendezvous on gates. This language is
well suited for designing communication protocols.

The semantics of a LOTOS specification is formally defined by a state graph, also called an
LTS (labeled transition system) – i.e. a set of states and transitions labeled by gates and offers
between states.

CADP [8] includes a compiler from LOTOS to LTS with many tools exploiting the LTS for
simulation as well as model checking of modal µ-calculus formulae, equivalence checking, test
generation and performance evaluation. The LOTOS to LTS compiler generates the LTS by
executing all transitions of the system under verification; each visited state is recorded, so that
each transition is executed once only. The algorithm is shown in Figure 2.

4 Connecting SystemC/TLM with formal methods

4.1 The architecture of TLM.open
The CADP toolbox architecture is similar to the GNU compiler tool suite, with many front-ends
and back-ends. There is one front-end per input language; the front-end reads a program and
implements some basic analysis (e.g., type checking). Then there is one back-end per CADP
feature, such as simulation, LTS generation, or on-the-fly property checking. The most used front-
ends are caesar.open which manages LOTOS programs and bcg_open which reads compressed

LITES

02:6 TLM.open: SystemC/TLM Verification

library
TLM.open

interface
SystemC

OPEN/CÆSAR
interface

model
SystemC

checkers, etc

ASI library

simulators,
LTS generator,

toolbox
CADPSystemC/TLM

property

helper methods
for OPEN/CÆSAR

restore(char *src)
store(char *dest)

Figure 3 Overview of the verification framework. The model is linked with the SystemC TLM.open
library instead of the ASI library.

and explicit LTS (bcg stands for “binary coded graphs”). All CADP front-ends connect with
CADP back-ends using the OPEN/CÆSAR interface [6].

In this section, we present TLM.open which is a new CADP front-end allowing the use of the
same back-ends as caesar.open and bcg_open. TLM.open is a C and C++ library that implements
two interfaces: the SystemC interface and the OPEN/CÆSAR interface. The architecture of
TLM.open is shown in Figure 3.

A SystemC/TLM program communicates with TLM.open through the SystemC interface as a
SystemC/TLM program communicates with a SystemC simulator. The library TLM.open provides
the same classes as the ASI SystemC simulator, including the sc_module, sc_port, sc_event,
sc_signal, etc.

The OPEN/CÆSAR interface provides the operators required by the CADP model-checker
itself. In order to implement the algorithm described by Figure 2, the following operators are
required and must be provided by the TLM.open front-end:

generation of the initial state
enumeration and simulation of the transitions starting from a given state
efficient storage of a state (requires comparison and hash functions).

To simulate a transition, TLM.open executes the corresponding C++ code of the SystemC/TLM
program. This C++ code is compiled with an unmodified C++ compiler such as g++. TLM.open
does not parse the C++ code itself and does not produce LOTOS code.

The most difficult task is to store and restore the states of the SystemC/TLM program. The
person who writes and verifies the SystemC/TLM program, called user in this paper, has to
provide some additional functions that allow TLM.open to store the states of each SystemC module.
To date, these additional functions have had to be written by hand. Thus, our approach is not
fully automatic.

When TLM.open is used with the LTS generator of CADP, the result is an LTS with two
kinds of transitions. Here, offers are only used to add information to the transitions, and have no
impact on synchronizations or communications.

TE transitions indicate that time has elapsed; the offer gives the duration and the list of events
triggered and processes awakened. For example, “TE !o(+41ms, VGAC.compute)” means that
the SystemC clock has advanced 41 ms and the process “VGAC.compute” is now awake.
EXEC transitions represent the execution of a SystemC process; the offers name the executed
SystemC process, the inputs of this process if the special rand() function of TLM.open was
called (cf. Section 4.3.2) and the outputs generated using the overloaded puts() function. For
example, “EXEC !VGAC.compute !o(image updated, IRQ sent)” means that the SystemC
scheduler has executed the process “VGAC.compute” and this process has printed two messages
“image updated” and “IRQ sent”.

C. Helmstetter 02:7

SystemC
Simulation
Kernel

(TLM.open
implementation)

SC_MODULE(Processor)

data
SystemC
objects

static dynamic
data

data
SystemC
objects

static dynamic
data

SC_MODULE(Memory)
static
data

dynamic
data

static
data

SC
_
M
O
D
U
LE(Bus)

SC_MODULE(Timer)

timer
state

timer
state

timer
state

memory

state
SystemC object

states state
processor

state
memory

SystemC kernel
state

SystemC object
states state

processor
state

memory

SystemC kernel
state

SystemC object
states state

processor
state

SystemC kernel

- only one instance

- data often change

- build during SystemC

the CADP tool

elaboration phase

stored/restored
by the user

stored/
restrored

by TLM.open

Stored states:
- many instances
- each state is constant
- stored (or not) by

- memory size matters

Simulation state:

Figure 4 Memory layout: simulation state and stored states.

4.2 Storing and restoring program states
The TLM.open library includes a SystemC simulator. The state of this simulator consists of the
state (i.e., the current value) of each object that has been instantiated. Some objects are described
by SystemC classes (such as: sc_event, sc_signal, ...) and others are described by user classes.
SystemC modules are hybrid: some class members are inherited from the base class sc_module
but other members are defined by the user.

A stored state contains a copy of each value of the simulator state that may change during the
simulation. A stored state must be as small as possible and does not use the same types as the
simulator states: constant values are not stored, Boolean values can be grouped in one byte using
bit fields.

All objects which are defined by a SystemC class are stored automatically by the TLM.open
library. The other objects are stored using callback functions implemented by the user. Each
SystemC module must provide the following functions:

size_t size() const: number of bytes needed to store a copy of the SystemC module.
size_t alignment() const: specify whether padding bytes are needed.
void store(char *dest) const: store the current state of the module in dest.
void restore(const char *src): restore the state of the module according to the copy
stored in src.

The store() function must generate a canonical representation, so that state comparison can be
done using memcmp() and hash functions can be generated automatically.

Implementing the functions size() and alignment() generally requires only one line of code
for each. The store() function implementation contains two lines of code per module member on
average; similarly the restore() function. Implementing these functions requires some manual
work, but less than translating the whole model into another language.

Theoretically, generating automatically the store() and restore() functions should be
simpler than translating the whole code, because it is not necessary to manage the code describing
the behavior. However, such a generator would have to parse and manage a large part of C++,
and the generated functions would likely be less efficient than those hand-written.

LITES

02:8 TLM.open: SystemC/TLM Verification

4.2.1 Storing modules using flat state
The user has many possibilities to implement the store and restore functions. The basic solution
is to define a new struct type with one field per member of the SystemC module that is not
constant and not managed directly by TLM.open. To store the state, the user filled this new type
by copying values from the C++ class, and inversely, the user filled the C++ class by copying
values from the struct type when the state must be restored. This is shown in the example below.

SC_MODULE(Foo) {
sc_event e; // state stored by the tlm.open library
bool flag; // dynamic data
uint32_t data; // dynamic data
const sc_time period; // static data, not stored
... // module implementation

// code below is used only by TLM.open
struct State { // container type

bool flag; uint32_t data;
void set(Foo *f) const {f->flag=flag; f->data=data;}
void set(const Foo *f) {flag=f->flag; data=f->data;}

};
size_t size() const {return sizeof(State);}
size_t alignment() const {return 4 /*alignmentof(State)*/;}
void store(char *dst) const {

reinterpret_cast<State*>(dst)->set(this);}
void restore(const char *src) {

reinterpret_cast<const State*>(src)->set(this);}
}; // Foo

In this example, storing the state of an instance of Foo requires 8 bytes (i.e.,
sizeof(Foo::State)). If a program contains n modules M1, . . . ,Mn, each module being stored
using a typeMi::State, then each state stored consumes at least Σn

i=1sizeof(Mi::State) bytes.

4.2.2 Storing module using hierarchical state
Most of the time, a transition modifies the state of only one or two modules. If storing a module
consumes a lot of memory, it is then mostly better to use a hierarchical state. Using hierarchical
states, the main state contains a pointer to the module state instead of the module state itself.
When a transition is executed and the module has not been modified, then the new stored state
contains only a pointer to the previously stored value.

Moreover, checking whether the module has been modified by the last transition is not enough.
Even if the module has been modified, it is possible that we already have a copy of its current
state. At the end of a transition, we search all the previous states of this module, which are stored
in a container (hash table or binary tree). If this module state is encountered for the first time,
then it is added to this container, or else we reuse the existing module state.

Here is how the Foo state could be recorded using a hierarchical state:

typedef std::set<const State*, StateCmp> state_set;
static state_set foo_states;
size_t Foo::size() const {return sizeof(State*);}

C. Helmstetter 02:9

void Foo::store(char *dst) const {
State *s = new State(); s->set(this);
std::pair<state_set::iterator,bool> p = foo_states.insert(s);
if (!p.second) delete s; //This Foo state already exists,

// so we reuse the previous version.
*reinterpret_cast<const State**>(dst) = *p.first;}

To compare two states of the whole program, we just need to compare the pointers because
identical module states are never stored in distinct memory locations.

In some cases, hierarchical states can significantly reduce the memory consumption. Moreover,
whereas the OPEN/CÆSAR interface requires the main state to have a fixed size, hierarchical
states allow a module to be stored whose size is not statically bound.

Internally, for all objects that are stored automatically, the TLM.open library uses a flat state
for all objects except SystemC threads (SC_THREAD). Moreover, storing the state of a thread is
done by copying its execution stack. Note that when yielding, the QuickThreads library used by
SystemC pushes the register contents and the program counter on top of the thread stack. As
thread stack sizes vary during simulation because stacks may become large,and because at most
one thread stack is modified during a transition, the hierarchical state technique here is more
efficient than flat states.

4.3 Implementation of the OPEN/CÆSAR interface

4.3.1 Generation of the initial state
The generation of the initial state faces a technical problem. Moreover, SystemC and CADP do
not use the same control flow:

A SystemC simulator creates the initial state by calling the function sc_main, which is
implemented by the user, and the simulation starts when the user calls back the function
sc_start from the sc_main function.
A CADP back-end creates the initial state by calling the function CAESAR_START_STATE, which
is implemented by the front-end and the verification starts after the function
CAESAR_START_STATE returned.

Thus, the CADP back-end calls the function CAESAR_START_STATE of TLM.open, and this
function calls sc_main. The function CAESAR_START_STATE must return when sc_start is called,
before sc_main returns. If one returns in advance of sc_start using a return statement or a C
long jump or a C++ exception then the modules allocated on the stack are destroyed before they
are used. The solution is to execute the sc_main function in a separated thread, which has its own
stack and suspends this thread when sc_start is called. As we do not need real concurrency, this
thread is implemented using the collaborative QuickThreads library, which is used to implement
the SystemC threads too.

4.3.2 Enumerating the transitions
The key function of the OPEN/CÆSAR interface is CAESAR_ITERATE_STATE. This function must
enumerate the transitions starting from a given stored state x. A transition is defined by a label s
(a C string) and the successor state y.

There is at least one transition per eligible process. Assuming all transitions are deterministic,
the TLM.open library behaves as follows:
1. A SystemC process is selected.

LITES

02:10 TLM.open: SystemC/TLM Verification

2. The simulator is set according to the stored state x, by calling the restore function of each
stored object (either a user function for modules, or a TLM.open library function for other
SystemC objects).

3. The transition is executed, until the elected process yields back to the scheduler.
4. The new simulator state is stored in y, by calling the store function of each stored objects.

The label s is created using the name of the elected process, and the outputs generated by the
user using the puts() function.

5. This transition is sent to the back-end.
6. If there is another eligible thread, then go back to step 1.

If no processes are eligible, then TLM.open can let the time elapse until a process is awoken,
just like a regular SystemC simulator. In this case, a specific transition is generated with the label
“TE”. If no process can be awoken by a time elapse, then this means that x is in a deadlock state.
In order to simulate inputs or a non determinism, the TLM.open library provides a rand(int MAX)
function. From the user point of view, this function returns a number between 0 and MAX. In
case of a simulation, an implementation would choose a number randomly. On the contrary,
model checking requires an enumeration of all values. In order to generate the full LTS, each
time TLM.open encounters a call to rand(), it records that another transition exists for the same
process for which values have already been tried. Thus, the same code will be executed MAX+1
times, generating as many LTS transitions. Because a transition may call rand() many times,
TLM.open uses a stack to remember its position in the transition tree. Thus, all input combinations
are finally generated (e.g., “x=rand(2); y=rand(3); wait();” generates 3× 4 = 12 transitions).

4.4 Features and limitations
Most SystemC, TLM and C++ features can be used normally. However, some features require
special care. As aforementioned, the functions puts() and rand() have a special meaning when
used with TLM.open.

4.4.1 The sc_stop function
SystemC provides a function sc_stop() to stop the simulation. Because all states that can be
reached using a simulator must be reached using TLM.open, calling sc_stop() may not stop
the generation of the LTS. With respect to the SystemC specifications, the effect of executing
sc_stop() in a transition x→ y is to eliminate all the successors of y. If other transitions are
pending, then they are explored normally.

4.4.2 Recording the current time
A SystemC simulator, such as the ASI simulator, records the current date. The user can read
this data using the function sc_timestamp(). Because this value is stored in the state, the state
space becomes infinite for all programs containing a timed instruction in an unbounded loop. An
example of such program is:

SC_THREAD(compute); ...
void compute() {

while (true) {wait(1,SC_SEC);}}

To allow the verification of this program, TLM.open provides an option to record only relative
durations. This option disables the function sc_timestamp(). Using this option, the LTS of the
program above has only two states and two transitions: a transition with gate “EXEC” leads
from the initial state to the second state and another transition with gate “TE” leads back to the
initial state.

C. Helmstetter 02:11

void complete() {
wait(e); assert(false);

}

Transmitter

void initiate() {

}
port.f();

Source

void f() {e.notify();}

void compute() {
wait(e); port.f();

}

Sink
void f() {e.notify();}

Figure 5 Source code of the chain benchmark for n = 1.

4.4.3 Pointers and dynamic allocations
It is perfectly safe to use pointers when verifying a SystemC/TLM program with TLM.open. Both
the pointer and the pointed value must be stored (respectively restored) when the module is stored
(resp. restored).

However, dynamic allocations should not be used because a transition can be executed many
times, calling new creates a memory leak (a second object will be created if the transition is
executed again), and calling delete corrupts the memory (memory can be freed twice). There is
one exception: a new statement can be used safely if the corresponding delete statement is found
in the same transition.

If using dynamic allocation is necessary, then the user must define its own memory allocator.
Next, the user must provide store and restore functions to manage the state of the memory
allocator itself. Thus, when a state is restored, the memory allocator knows which objects are
allocated and which memory locations are available.

5 Examples

5.1 The chain benchmark
We evaluate our new front-end on the benchmark proposed in [27] and reused in [16]. This
benchmark consists of a chain of interrupt transmitter modules, whose length is parametrised
by n. Modules communicate through transactions, and processes synchronize with events.

Figure 5 presents the SystemC original benchmark for n = 1. To increase n, one adds a
transmitter module between the last transmitter and the sink module. There are always n+ 2
threads (functions named compute and process) and n+ 1 events (private attribute e of each
module).

It is very easy to use TLM.open to verify this benchmark because the modules do not contain
any dynamic members. Thus, the store and restore functions can be left empty. The state of
the SystemC events and of the SystemC threads (possibly including local variables) are stored
automatically.

We have also tried TLM.open on a modified version of this benchmark. The modified version
uses the SC_METHOD instead of the SC_THREAD. Using SC_METHOD makes the code more difficult to
read, but accelerates the simulation and reduces the memory consumption. When replacing a

LITES

02:12 TLM.open: SystemC/TLM Verification

Figure 6 Screen-shot of the OCIS simulator of CADP (chain benchmark, n = 1).

Table 1 Results of the experiments using TLM.open.

n = 3 7 11 15 17 19 21
LTS generation
(SC_THREAD)

1.1 s 1.2 s 2.3 s 35.3 s 193 s 844 s 4314 s

LTS generation
(SC_METHOD)

1.1 s 1.1 s 1.5 s 11.8 s 62 s 268 s 1445 s

state number 62 1022 16,382 262,142 1,048,574 4,194,302 16,777,214
state number after

minimization
47 767 12,287 196,607 786,431 3,145,727 n.a.

SC_THREAD by a SC_METHOD, local variables have generally to be replaced by module members,
and thus must be stored and restored by the user callback methods.

Among the CADP tools that can be used, there is ocis, an interactive simulator with
backtracking. Figure 6 provides a screen-shot of this tool. Also, for small values of n, the LTS can
be fully generated and displayed (cf. Figure 7).

Table 1 presents the results for the generation of the full LTS, using a Macbook machine with
4 GB of memory. For comparison, [27] verifies this benchmark up to n = 15 (47 seconds), and
[16] verifies this benchmark up to n = 19 (8293 seconds for n = 19, 60.2 seconds for n = 15).
These results show a significant improvement compared to the previous approach based on the
translation into Promela or LOTOS. The efficiency of TLM.open can be explained by two points:

One transition in the LTS corresponds exactly to one SystemC transition (i.e., the execution
of a process between two wait statements.) There are no additional transitions used to mimic
the behavior of the SystemC scheduler.
The memory size of a state is kept as small as possible, allowing the model checker to store
more states.

The modified benchmark in which SC_THREADs have been replaced by SC_METHODs gives identical
LTSes. However, the generation is three times faster, and the memory consumption is reduced:
for n = 19, generating the LTS for the original benchmark requires 650 MB whereas the modified
version requires only 387 MB.

In this experiment, SC_THREADs are stored using hierarchical states. We have tried another

C. Helmstetter 02:13

Figure 7 The LTS of the chain benchmark for n = 1 (output of bcg_edit).

implementation using only flat states. Using the original benchmark with SC_THREADs, the flat
state technique leads to an explosion of the memory consumption: 700 MB instead of 3.5 MB for
n = 12 and the LTS generation is about 1.5 times slower.

5.2 The LusSy benchmark

The thesis [23] describes another SystemC/TLM benchmark, which is similar to the chain
benchmark. The main difference is that the LusSy benchmark uses real transactions which are
routed by a bus model.

It is worth noting that LusSy has a special interpretation of the timing annotations [23].
TLM.open provides an option to mimic the semantics of LusSy. This allows a greater number of
schedules than the official specification, because it considers that all durations are equal.

Using TLM.open, instrumenting this benchmark with store() and restore() functions is
trivial for all modules but the bus model because the whole state is contained in SC_THREAD stacks,
which are automatically stored and restored. The bus model requires about 40 additional lines
of code, used for storing and restoring the list of pending transactions. When using LusSy, no
additional code is needed. However, LusSy does not use the bus model code. Indeed, LusSy is
currently restricted to a few bus models for which a corresponding automaton model has been
manually provided. Modeling a bus using automata requires more work and knowledge than adding
store() and restore() functions. Therfore using LusSy is not easier than using TLM.open.

Table 2 provides the results obtained with TLM.open. It appears that TLM.open uses less
memory than LusSy combined with SMV. Thus, TLM.open can verify this benchmark up to n = 18,
whereas LusSy does not work over n = 13 (with a common memory limit fixed at 512 MB). For
n = 12, TLM.open needs only two seconds where LusSy+SMV spends over one hour.

LITES

02:14 TLM.open: SystemC/TLM Verification

Table 2 Results for the LusSy benchmark verification using TLM.open.

n memory consumption time
n = 15 30.8 MB 11.3 sec
n = 16 64.6 MB 24.1 sec
n = 17 136.1 MB 52.6 sec
n = 18 289.8 MB 116.3 sec

5.3 Application to a timer
This subsection illustrates the features provided by TLM.open by showing how it can be applied
to a simple but realistic example. We consider a timer with two registers; PERIOD and ACK.

Writing a non-null value to PERIOD starts the timer.
When enabled, the timer generates an interrupt periodically.
Writing to ACK acknowledges the interrupt.
Writing 0 to PERIOD stops the timer.

We have 4 TLM models for this timer. The first comes from the SimSoC project [19]; the
second is identical to the first with a bug fix; the third and the fourth were provided respectively
by an engineer and a PhD student.

In order to verify the first TLM model, which contains 80 lines of code, we had to write 17
additional lines of code to implement the store() and restore() functions. The timer verification
requires the design of an environment modeling the commands generated by the embedded software.
For this example, we decided to describe the environment using SystemC code. Here, the code of
the environment process:

void compute () {
switch (rand(5)) {
case 0: puts(‘‘stop’’); port->write(Timer::PERIOD_REG_OFFSET,0); break;
case 1: puts(‘‘start’’); port->write(Timer::PERIOD_REG_OFFSET,5); break;
case 2: puts(‘‘ack’’); port->write(Timer::ACK_REG_OFFSET,1); break;
case 3: {

std::ostringstream oss;
oss <<‘‘read_period:’’ <<port->read(Timer::PERIOD_REG_OFFSET);
puts(oss.str().c_str());
break;}

case 4: {
std::ostringstream oss;
oss <<‘‘read_ack:’’ <<port->read(Timer::ACK_REG_OFFSET);;
puts(oss.str().c_str());
break;}

case 5: puts(‘‘wait’’); next_trigger(5,sc_core::SC_MS); return;
}
next_trigger(sc_core::IMMEDIATE_WAKE_UP);

}

Note that we trigger the timer with only one specific period. Explicit model-checking does not
permit the verification of this model for all values of the period. Thus, we have to assume that
the presence of bugs does not depend on this particular period.

C. Helmstetter 02:15

The last line uses a special feature of TLM.open: the process yields back to the scheduler but
remains eligible. This statement is similar to the yield() statement introduced in [15]. The
rationale of this statement is to break critical sections that would exist in the model but not in
the real system.

Firstly, we applied on-the-fly property checking. The property checker of CADP revealed an
error in the first version: for some particular schedules, the timer could generate an interrupt after
it was stopped. A counter-example was automatically shown, allowing us to fix the bug. Another
minor bug was found in the third version.

Secondly, we applied equivalence checking. We generated the LTS of each timer TLM model,
we hid the internal transitions and we minimized them according to the branching equivalence.
We got the proof that the second and the forth version are bisimilar modulo branching equivalence.
It means that if one contains an error, the other contains the same error. Obviously, the first and
third versions are not bisimilar, since they contain distinct errors.

5.4 Application to a basic system

In order to evaluate the behavior of TLM.open on a system made of many modules, we studied a
basic system that was originally used for practical work. This system was implemented on FPGA.
It contains a MicroBlaze processor, a VGA controller, plus the usual and mandatory peripherals:
bus, memory, timers, interrupt controller. In the SystemC/TLM model, the user can model the
processor, by either using a native wrapper or an instruction set simulator (ISS). The embedded
software compute images and manage the configuration of the peripherals.

For the validation of the embedded software, we decided to use the native wrapper instead
of the ISS. On the one hand, there is nothing that prevents us using the native wrapper for this
software (i.e., no inline assembly code and no dynamic code loading). On the other hand, using
the ISS would multiply the number of states: 1 state per binary instruction with the ISS instead
of one state per explicit synchronization point with the native wrapper.

Thus, we have instrumented all modules with store() and restore() methods. Then, we
changed the output functions so that traces are added to LTS labels instead of sent to the terminal.
Finally, we made some simplifications: 1. we have disconnected the graphical library used by the
VGA module, which means that during model checking we do not display the simulated VGA
screen. 2. We have simplified the TLM protocol so that it no longer uses a transaction pool
because the transaction pool mechanism is only a trick to make simulations a little faster.

Using TLM.open, we generated the LTS corresponding to this basic SystemC model for one
embedded software. Using the bcg_min tool of CADP, the LTS can be reduced to a minimal
LTS. This minimal LTS is small enough to be read by human. By observing this LTS, we notice
that in some cases the processor was receiving an interruption before any other module raised one.
The rationale was a missing dont_initialize() in the SystemC code. Because the occurrence of
this error depends on the scheduling, this bug had not been noticed before we used TLM.open.
After fixing this bug, we generated the minimized LTS again. This second LTS is represented by
Figure 8.

Finally, we tried to add some errors in the embedded software, such as changing an initial
value or disabling a register write in order to verify that all errors can be discovered during model
checking. For each error, we got either a SystemC error message (such as assertion failure coming
from the TLM code) during LTS generation, or an LTS that was not equivalent to the reference
once (equivalence checked using the CADP tool bisimulator).

LITES

02:16 TLM.open: SystemC/TLM Verification

8

4

0

5

1

6

2

7

3

EXEC !VGAC.compute !o(starting)

EXEC !Processor.interrupt_handler

EXEC !Processor.compute !o(finished image)

EXEC !Processor.compute !o(finished image) TE !o(DELTA)

EXEC !VGAC.compute

EXEC !VGAC.compute !o(sending interrupt)

TE !o(DELTA)

TE !o(+41 ms,VGAC.compute)

EXEC !Processor.compute !o(IRQ caught, finished image)

Figure 8 LTS generated for the basic system, after minimization.

6 Conclusion

We presented a new framework for the verification of SystemC/TLM programs. Our new System-
C/TLM front-end avoids the need to translate the whole SystemC/TLM program into another
language. Compared to approaches based on manual translation, the verification using TLM.open
is much simpler: there are less lines of code to write and the engineers do not need to learn a
new modeling language. Moreover, TLM.open allows better scaling than previous works. Thanks
to the numerous tools of CADP, it is now possible to check complex properties and to test the
equivalence of two SystemC/TLM programs.

Note that TLM.open can be used with pure SystemC programs also (i.e., programs not
using TLM). The rationale of calling our tool TLM.open instead of SystemC.open is related to
the abstraction level: the CADP verification toolbox is optimized for asynchronous processes.
SystemC/TLM models use asynchronous processes, but SystemC programs modeling a system at
a lower level of abstraction use synchronous processes. In order to verify synchronous processes,
symbolic model-checker based on BDD or SAT, are in general more efficient than CADP. Thus,
TLM.open can be used for pure SystemC programs, but is not likely to be the most efficient tool.

As explained in [7], the most difficult task when verifying a SystemC/TLM program is to
extract an abstract model that is simple enough to be formally verified. Thus, the main further
work is to integrate TLM.open in the design flow in such a way that this task becomes simple
and safe. Additionally, it would help to automatize the generation of the store() and restore
methods.

References
1 Accellera Systems Initiative. IEEE 1666 Standard:

SystemC Language Reference Manual., 2011. URL:
http://www.accellera.org.

2 Nicolas Blanc and Daniel Kroening. Race analysis
for SystemC using model checking. In 2008 Inter-
national Conference on Computer-Aided Design
(ICCAD’08), November 10–13, 2008, San Jose,
CA, USA, pages 356–363. IEEE, 2008. URL: http:
//doi.acm.org/10.1145/1509456.1509540.

3 Alessandro Cimatti, Iman Narasamdya, and
Marco Roveri. Software model checking SystemC.
IEEE Trans. on CAD of Integrated Circuits and

Systems, 32(5):774–787, 2013. doi:10.1109/TCAD.
2012.2232351.

4 Rolf Drechsler and Daniel Große. Reachability ana-
lysis for formal verification of SystemC. In 2002
Euromicro Symposium on Digital Systems Design
(DSD 2002), Systems-on-Chip, 4–6 September
2002, Dortmund, Germany, pages 337–340. IEEE
Computer Society, 2002. doi:10.1109/DSD.2002.
1115387.

5 Cormac Flanagan and Patrice Godefroid. Dynamic
partial-order reduction for model checking soft-
ware. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Program-

http://www.accellera.org
http://doi.acm.org/10.1145/1509456.1509540
http://doi.acm.org/10.1145/1509456.1509540
http://dx.doi.org/10.1109/TCAD.2012.2232351
http://dx.doi.org/10.1109/TCAD.2012.2232351
http://dx.doi.org/10.1109/DSD.2002.1115387
http://dx.doi.org/10.1109/DSD.2002.1115387

C. Helmstetter 02:17

ming Languages, POPL 2005, Long Beach, Cali-
fornia, USA, January 12–14, 2005, pages 110–121.
ACM, 2005. doi:10.1145/1040305.1040315.

6 Hubert Garavel. Open/cæsar: An OPen software
architecture for verification, simulation, and test-
ing. In Tools and Algorithms for Construction and
Analysis of Systems, 4th International Conference,
TACAS ’98, Held as Part of the European Joint
Conferences on the Theory and Practice of Soft-
ware, ETAPS’98, Lisbon, Portugal, March 28 –
April 4, 1998, Proceedings, pages 68–84. Springer,
1998. Full version available as INRIA Research Re-
port RR-3352. doi:10.1007/BFb0054165.

7 Hubert Garavel, Claude Helmstetter, Olivier
Ponsini, and Wendelin Serwe. Verification of an in-
dustrial SystemC/TLM model using LOTOS and
CADP. In 7th ACM/IEEE International Confer-
ence on Formal Methods and Models for Codesign
(MEMOCODE 2009), July 13–15, 2009, Cam-
bridge, Massachusetts, USA, pages 46–55. IEEE
Computer Society, 2009. doi:10.1109/MEMCOD.
2009.5185377.

8 Hubert Garavel, Frédéric Lang, and Radu
Mateescu. An overview of CADP 2001. European
Association for Software Science and Technology
(EASST) Newsletter, 4:13–24, August 2002. Also
available as INRIA Technical Report RT-0254
(December 2001).

9 Hubert Garavel, Radu Mateescu, Frédéric Lang,
and Wendelin Serwe. CADP 2006: A tool-
box for the construction and analysis of distrib-
uted processes. In Computer Aided Verifica-
tion, 19th International Conference, CAV 2007,
Berlin, Germany, July 3–7, 2007, Proceedings,
volume 4590 of Lecture Notes in Computer Sci-
ence, pages 158–163. Springer, July 2007. doi:
10.1007/978-3-540-73368-3_18.

10 Frank Ghenassia, editor. Transaction-Level Mod-
eling with SystemC. TLM Concepts and Applica-
tions for Embedded Systems. Springer, June 2005.
ISBN 0-387-26232-6.

11 Daniel Große and Rolf Drechsler. CheckSyC: an ef-
ficient property checker for RTL SystemC designs.
In International Symposium on Circuits and Sys-
tems (ISCAS 2005), 23–26 May 2005, Kobe, Ja-
pan, volume 4, pages 4167–4170. IEEE, May 2005.
doi:10.1109/ISCAS.2005.1465549.

12 Daniel Große, Hoang M. Le, and Rolf Drechsler.
Proving transaction and system-level properties
of untimed SystemC TLM designs. In 8th
ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE
2010), Grenoble, France, 26–28 July 2010, pages
113–122. IEEE Computer Society, 2010. doi:10.
1109/MEMCOD.2010.5558643.

13 Claude Helmstetter. Validation de modèles de sys-
tèmes sur puce en présence d’ordonnancements in-
déterministes et de temps imprécis. PhD thesis,
INPG, Grenoble, France, March 2007. URL: http:
//tel.archives-ouvertes.fr/tel-00350929.

14 Claude Helmstetter, Florence Maraninchi, and
Laurent Maillet-Contoz. Test coverage for loose
timing annotations. In Formal Methods: Applic-
ations and Technology, 11th International Work-
shop, FMICS 2006 and 5th International Work-
shop PDMC 2006, Bonn, Germany, August 26–

27, and August 31, 2006, Revised Selected Pa-
pers, volume 4346, pages 100–115. Springer, Au-
gust 2006. doi:10.1007/978-3-540-70952-7_7.

15 Claude Helmstetter, Florence Maraninchi, and
Laurent Maillet-Contoz. Full simulation cov-
erage for SystemC transaction-level models of
systems-on-a-chip. Formal Methods in Sys-
tem Design, 35(2):152–189, 2009. doi:10.1007/
s10703-009-0075-z.

16 Claude Helmstetter and Olivier Ponsini. A com-
parison of two SystemC/TLM semantics for formal
verification. In 6th ACM & IEEE International
Conference on Formal Methods and Models for
Co-Design (MEMOCODE 2008), June 5–7, 2008,
Anaheim, CA, USA, pages 59–68. IEEE Computer
Society, June 2008. doi:10.1109/MEMCOD.2008.
4547687.

17 Paula Herber, Marcel Pockrandt, and Sabine Gles-
ner. Transforming SystemC transaction level
models into UPPAAL timed automata. In 9th
IEEE/ACM International Conference on Formal
Methods and Models for Codesign, MEMOCODE
2011, Cambridge, UK, 11–13 July, 2011, pages
161–170. IEEE, 2011. doi:10.1109/MEMCOD.2011.
5970523.

18 ISO/IEC. Lotos – a formal description technique
based on the temporal ordering of observational
behaviour. International Standard 8807, Interna-
tional Organization for Standardization – Informa-
tion Processing Systems – Open Systems Intercon-
nection, Genève, September 1989.

19 Vania Joloboff and Claude Helmstetter. SimSoC:
A SystemC TLM integrated ISS for full system sim-
ulation. In Circuits and Systems, 2008. APCCAS
2008. IEEE Asia Pacific Conference on. IEEE,
2008. doi:10.1109/APCCAS.2008.4746381.

20 Daniel Kroening and Natasha Sharygina. Formal
verification of SystemC by automatic hard-
ware/software partitioning. In 3rd ACM & IEEE
International Conference on Formal Methods and
Models for Co-Design (MEMOCODE 2005), 11–
14 July 2005, Verona, Italy, Proceedings, pages
101–110. IEEE, 2005. doi:10.1109/MEMCOD.2005.
1487900.

21 Sudipta Kundu, Malay K. Ganai, and Rajesh
Gupta. Partial order reduction for scalable testing
of SystemC TLM designs. In Proceedings of the
45th Design Automation Conference, DAC 2008,
Anaheim, CA, USA, June 8–13, 2008, pages 936–
941. ACM, 2008. doi:10.1145/1391469.1391706.

22 Kevin Marquet, Matthieu Moy, and Bertrand
Jeannet. Efficient Encoding of SystemC/TLM
in Promela. In Workshop on Design, Ana-
lysis and Tools for Integrated Circuits and
Systems at the International MultiConference
of Engineers and Computer Scientists 2011,
DATICS-IMECS, pages 1039–1044, 2011. URL:
http://www.iaeng.org/publication/IMECS2011/
IMECS2011_pp1039-1044.pdf.

23 Matthieu Moy. Techniques and Tools for the
Verification of Systems-on-a-Chip at the Transac-
tion Level. PhD thesis, INPG, Grenoble, France,
December 2005. URL: http://www-verimag.imag.
fr/~moy/phd/.

24 Matthieu Moy, Florence Maraninchi, and Laurent
Maillet-Contoz. LusSy: an open tool for the

LITES

http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1007/BFb0054165
http://dx.doi.org/10.1109/MEMCOD.2009.5185377
http://dx.doi.org/10.1109/MEMCOD.2009.5185377
http://dx.doi.org/10.1007/978-3-540-73368-3_18
http://dx.doi.org/10.1007/978-3-540-73368-3_18
http://dx.doi.org/10.1109/ISCAS.2005.1465549
http://dx.doi.org/10.1109/MEMCOD.2010.5558643
http://dx.doi.org/10.1109/MEMCOD.2010.5558643
http://tel.archives-ouvertes.fr/tel-00350929
http://tel.archives-ouvertes.fr/tel-00350929
http://dx.doi.org/10.1007/978-3-540-70952-7_7
http://dx.doi.org/10.1007/s10703-009-0075-z
http://dx.doi.org/10.1007/s10703-009-0075-z
http://dx.doi.org/10.1109/MEMCOD.2008.4547687
http://dx.doi.org/10.1109/MEMCOD.2008.4547687
http://dx.doi.org/10.1109/MEMCOD.2011.5970523
http://dx.doi.org/10.1109/MEMCOD.2011.5970523
http://dx.doi.org/10.1109/APCCAS.2008.4746381
http://dx.doi.org/10.1109/MEMCOD.2005.1487900
http://dx.doi.org/10.1109/MEMCOD.2005.1487900
http://dx.doi.org/10.1145/1391469.1391706
http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp1039-1044.pdf
http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp1039-1044.pdf
http://www-verimag.imag.fr/~moy/phd/
http://www-verimag.imag.fr/~moy/phd/

02:18 TLM.open: SystemC/TLM Verification

analysis of systems-on-a-chip at the transac-
tion level. Design Automation for Embedded
Systems, 10(2–3):73–104, 2005. doi:10.1007/
s10617-006-9044-6.

25 Bernhard Niemann and Christian Haubelt. Form-
alizing TLM with communicating state machines.
In Forum on specification and Design Languages,
FDL 2006, September 19–22, 2006, Darmstadt,
Germany, Proceedings, pages 285–293. ECSI, 2006.

26 Olivier Ponsini and Wendelin Serwe. A sched-
ulerless semantics of TLM models written in Sys-
temC via translation into LOTOS. In FM 2008:
Formal Methods, 15th International Symposium

on Formal Methods, Turku, Finland, May 26–30,
2008, Proceedings, volume 5014 of Lecture Notes in
Computer Science, pages 278–293. Springer, 2008.
doi:10.1007/978-3-540-68237-0_20.

27 Claus Traulsen, Jérôme Cornet, Matthieu Moy,
and Florence Maraninchi. A SystemC/TLM se-
mantics in Promela and its possible applications.
In Model Checking Software, 14th International
SPIN Workshop, Berlin, Germany, July 1–3,
2007, Proceedings, volume 4595 of Lecture Notes in
Computer Science, pages 204–222. Springer, 2007.
doi:10.1007/978-3-540-73370-6_14.

http://dx.doi.org/10.1007/s10617-006-9044-6
http://dx.doi.org/10.1007/s10617-006-9044-6
http://dx.doi.org/10.1007/978-3-540-68237-0_20
http://dx.doi.org/10.1007/978-3-540-73370-6_14

Randomized Caches Considered Harmful in
Hard Real-Time Systems
Jan Reineke

Saarland University
Saarbrücken, Germany
reineke@cs.uni-saarland.de

Abstract
We investigate the suitability of caches with ran-
domized placement and replacement in the con-
text of hard real-time systems. Such caches have
been claimed to drastically reduce the amount of
information required by static worst-case execu-
tion time (WCET) analysis, and to be an enabler

for measurement-based probabilistic timing analy-
sis. We refute these claims and conclude that with
prevailing static and measurement-based analysis
techniques caches with deterministic placement and
least-recently-used replacement are preferable over
randomized ones.

2012 ACM Subject Classification Computer systems organization∼Real-time system architecture, The-
ory of computation∼Caching and paging algorithms, Hardware∼Safety critical systems
Keywords and phrases Real-time systems, caches, randomization, WCET analysis
Digital Object Identifier 10.4230/LITES-v001-i001-a003
Received 2013-12-04 Accepted 2014-05-28 Published 2014-06-10

1 Introduction

Recent work has promoted the use of randomized caches in hard real-time systems [4, 20, 22, 23, 21,
7, 5, 25]. Along with randomized microarchitectures, this line of work proposes static probabilistic
timing analysis (SPTA) and measurement-based probabilistic timing analysis (MBPTA). Caches
are a major challenge in the timing analysis of traditional, deterministic microarchitectures. A key
feature of randomized microarchitectures are caches with randomized placement and replacement.
Such caches have been claimed to drastically reduce the amount of information required by WCET
analyses. To quote Kosmidis et al. [23]: “The key benefit of embracing PTA (probabilistic timing
analysis) is that execution timing becomes dramatically less dependent on execution history,
with drastic reduction in the amount of information required to obtain tight WCET estimates in
comparison to other timing analysis approaches.”

In this paper, we critically assess these claims both in the context of static and measurement-
based analysis. Specifically, we compare the precision of static cache analyses for caches with
least-recently-used (LRU) replacement and with randomized replacement provided the same amount
of information, i.e. the information stated to be sufficient for the analysis of randomized caches.
Among deterministic caches we restrict our attention to those with LRU replacement, as it is
widely considered to be the most predictable replacement policy, and it has been demonstrated
to be efficiently implementable [1, 8]. Our analysis demonstrates that, with simple, state-of-the-
art analyses, deterministic LRU replacement is preferable over random replacement. We also
observe that, with its current restrictions, MBPTA is equally applicable to LRU caches as it is to
randomized ones.

Regarding random placement, we show that it is impossible to assign non-zero hit probabilities
to individual memory accesses that are independent of the outcome of other accesses. This means
that caches with random placement are not amenable to the prevailing SPTA approach that
relies on independence, as execution time profiles (ETPs) of individual instructions are convolved.

© Jan Reineke;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 1, Article No. 3, pp. 03:1–03:13
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i001-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

03:2 Randomized Caches Considered Harmful in Hard Real-Time Systems

Finally, we provide a class of memory access sequences that is problematic for MBPTA under
random placement. On these sequences, which may occur in practice due to loops, MBPTA either
fails, is incorrect, or highly imprecise.

We provide the necessary background about probabilistic timing analysis in Section 2. Then,
we introduce deterministic and randomized caches in Section 3. We assess the suitability of
random placement and replacement for use in hard real-time systems in Sections 4 and 5. Finally,
we briefly summarize our findings in Section 6.

2 Static and Measurement-Based Timing Analysis

The goal of static and measurement-based timing analysis for deterministic microarchitectures is to
compute tight upper bounds on the worst-case execution times (WCET) of programs. The goal of
timing analyses for randomized microarchitectures is slightly different: in such microarchitectures,
very high execution times are possible, but—hopefully—only with a very low probability. Thus,
timing analyses for such microarchitectures compute exceedance functions. These exceedance
functions determine upper bounds on the probability of exceeding any given execution time. From
such a function, and a probability threshold p, an execution time can be obtained that is exceeded
only with a probability of e.g. p = 10−12.

2.1 Static Probabilistic Timing Analysis
The de facto standard approach to static timing analysis (STA) for deterministic microarchitectures
divides analysis into two main parts [31]:
1. Low-level analysis, which determines execution-time bounds for basic blocks (or other small

contiguous program fragments) based on an accurate model of the underlying microarchitecture.
2. Path-level analysis, which determines an upper bound on the execution time of the program as

a whole based on constraints on the control flow, e.g. loop bounds, and the execution-time
bounds for basic blocks determined by low-level analysis.

A critical assumption of this approach is that the bounds obtained for a basic block during
low-level analysis hold for all possible execution histories leading to the respective basic block. As
execution times may depend heavily on the execution history, low-level analysis is often made
context sensitive, e.g. by distinguishing the first iteration of a loop from the following ones.

While so far less studied and thus less developed, static probabilistic timing analysis (SPTA)
follows a similar approach [4]:
1. For each instruction in the program, an execution time profile (ETP), i.e., a discrete probability

distribution over the instruction’s possible execution times, is derived. This step corresponds
to the low-level analysis in STA.

2. To arrive at an ETP for a sequence of instructions the ETPs of all instructions in the sequence
are combined by convolution. If multiple different execution paths are possible, their ETPs can
be merged conservatively [4]. This roughly corresponds to path-level analysis in STA. From an
ETP, a corresponding exceedance function can then be determined easily.

A critical assumption for SPTA to be sound is that the ETPs derived in step one are independent
of each other. Only if they are independent, can they be soundly combined by convolution to
arrive at an ETP for a sequence of instructions.

2.2 Measurement-based Probabilistic Timing Analysis
Measurement-based probabilistic timing analysis (MBPTA) derives exceedance functions for the
execution time of a program from measurements. MBPTA as described by Cucu et al. [5] is

J. Reineke 03:3

based on Extreme Value Theory (EVT). In this approach, a series of end-to-end execution-time
measurements is performed. The measurement results are used to estimate the parameters of an
extreme value distribution, the Gumbel distribution. Measurements and estimation of the Gumbel
distribution are interleaved until the distribution is considered to have converged [5]. The thus
obtained Gumbel distribution then immediately induces an exceedance function.

Applicability of this approach relies on two assumptions:
1. The execution-time measurements can be modeled by independent and identically-distributed

(i.i.d.) random variables.
2. The maximum of a sample of these i.i.d. random variables converges in distribution to the

Gumbel distribution.

To satisfy the first assumption, Cucu et al. [5] propose a number of changes to the microarchitec-
ture to eliminate the dependence of execution times on input data. For instance, input-dependent
memory accesses must bypass the cache. They also initially limit their approach to single-path
programs, which they later [5] show how to relax.

The satisfaction of the second assumption is validated during the analysis of a particular
program by statistical tests.

3 Deterministic and Randomized Caches

Caches are fast but small memories that store a subset of the main memory’s contents to bridge
the latency gap between the CPU and main memory. To reduce management overhead and to
profit from spatial locality, data is not cached at the granularity of words, but at the granularity
of so-called memory blocks. To this end, main memory is logically partitioned into the set of
equally-sized memory blocks B = {0, . . . , n}. Blocks are cached as a whole in cache lines of the
same size. The size of a memory block varies from one processor to another, but is usually between
32 and 128 bytes.

When accessing a memory block, the cache logic has to determine whether the block is stored
in the cache (a cache hit) or not (a cache miss). To enable an efficient look-up, each memory
block can only be stored in a small number of cache lines. For this purpose, caches are partitioned
into equally-sized cache sets. The size of a cache set is called the associativity k of the cache.

The placement policy determines the cache set a memory blocks maps to. In Section 3.2 we
describe common deterministic and randomized placement policies.

Since caches are usually much smaller than main memory, a replacement policy must decide
which memory block to replace upon a cache miss. In Section 3.1 we describe common deterministic
and randomized replacement policies.

The performance of a cache depends on the temporal and spatial locality of the memory accesses.
In Section 3.3, we describe two notions of locality that are approximated by state-of-the-art static
(probabilistic) cache analyses.

3.1 Replacement Policies
Usually, replacement policies treat each cache set separately, so that accesses to a particular
cache set do not influence replacement decisions in other cache sets. While exceptions to this rule
exist, they have been identified as particularly unsuitable for real-time systems [17]. Thus, in the
following, we only consider replacement policies treating each cache set separately.

Well-known deterministic replacement policies in this class are least-recently used (LRU),
used in various Freescale processors such as the MPC603E and the TriCore17xx, as well as the
recent Kalray MPPA 256; pseudo-LRU (PLRU), a cost-efficient variant of LRU, used in the

LITES

03:4 Randomized Caches Considered Harmful in Hard Real-Time Systems

Freescale MPC750 family and multiple Intel microarchitectures; most-recently used (MRU), also
known as not most-recently used (NMRU), another cost-efficient variant of LRU, used in the
Intel Nehalem; first-in first-out (FIFO), also known as Round Robin, used in several ARM and
Freescale processors such as the ARM922 and the Freescale MPC55xx family

Logically, LRU orders cached memory blocks by the recency of their last use, from most- to
least-recently-used. Upon a miss, the least-recently-used block is evicted. Among deterministic
policies, LRU is generally accepted as the most predictable policy [28]. Thus, in the following,
among deterministic policies, we restrict our attention to LRU, which has been shown to be
efficiently implementable [1], and which is used in the Kalray MPPA 256 [8] for predictability.

Quiñones et al. [25, 20, 21, 4] have promoted the use of randomized caches in real-time systems.
They have focused on a policy, which we will call Random in the following, that was introduced by
Belady [2]. Upon a miss, Random chooses the block to evict randomly and uniformly among the k
cache lines of the cache set. Thus, upon a miss, a cached block—in the cache set that the accessed
block maps to—is evicted with probability 1

k . This policy is also referred to as evict-on-miss in
the literature [7].

Several commercial processors are claimed to employ random replacement, e.g. the ARM720T,
the ARM940T, the ARM11xx, and the Freescale MPC7450. However, most processor documen-
tations are inconclusive about the exact meaning of “random”. Such caches could be based on
hardware random number generators that generate random numbers from a physical process, such
as thermal noise, or they could employ deterministic pseudo-random number generators. The
well-documented MPC7450 [18] allows to choose between two random policies for its second-level
caches [10]: “The simpler one uses a modulo counter that is incremented on each clock cycle and
whose value determines the cache line to replace.”

To achieve independence between cache-miss probabilities, Cazorla et al. [4] have also proposed
the evict-on-access policy, which evicts a block uniformly at random upon each memory access,
rather than upon each cache miss. In the following, we limit our attention to Random, as it
provably dominates evict-on-access in terms of the induced exceedance function on any workload.

Randomized policies have been studied extensively in the context of competitive analysis [3].
Policies such as Mark and Equitable have been shown to have smaller competitive ratios than
any deterministic policy. These results concern the expected performance of a policy, rather than
the performance achieved with high probability, which would be of greater interest in the hard
real-time setting. However, recent results by Komm et al. [19] suggest that randomized policies
can also be shown to be competitive “with high probability”.

3.2 Placement Policies
A placement policy can be formalized as a mapping from memory blocks to cache sets: place :
B → {0, . . . , s− 1}, where s is the number of cache sets.

The most common deterministic placement policy for set-associative caches ismodulo placement:
placemodulo(b) = b mod s. The number of sets s is usually a power of two, so that the cache set of
a block is simply determined by its log s least significant bits.

In random placement the mapping placerandom from memory blocks to cache sets is chosen
randomly from the set of all mappings B → {0, . . . , s − 1}. For static-analysis purposes it is
convenient if the mapping is chosen uniformly at random from this set. Then, the probability of
block b mapping to cache set t, P (placerandom(b) = t), is 1

s . Note, that placerandom needs to be
fixed for the entire execution of a program. Otherwise, it would not be possible to locate memory
blocks that were cached earlier under a different mapping.1

1 Changing the mapping at runtime requires either flushing of cache contents or their migration.

J. Reineke 03:5

Kosmidis et al. present an approximation of random placement in hardware [20, 21] based on
a parametric hash function and in software [22] on top of conventional caches with deterministic
placement. The crucial difference between the hardware and the software solution is that the
software solution can only randomize mapping at the granularity of “memory objects”, i.e., memory
entities normally stored in consecutive memory addresses such as functions, basic blocks, or arrays.

3.3 Notions of Locality
Caches rely on locality in the memory access sequences generated by programs. Different ways of
capturing locality have been proposed over time. Two notions of locality particularly relevant to
LRU and Random replacement are the reuse distance and the stack distance of a memory access.

The reuse distance of a memory access to block b is the number of memory accesses between the
current and the previous access to block b. The first access to a block has reuse distance ∞. As an
example, we have annotated each memory access in the following sequence with its reuse distance:

a∞, b∞, b0, a2, c∞, d∞, d0, c2, b5, a5.

In contrast to the reuse distance, the stack distance of an access to block b is defined as the
number of distinct memory blocks accessed between the current and the previous access to block b.
The stack distance of a block is sometimes also referred to as the age of the block. The first access
to a block has stack distance ∞. In the sequence from above, the stack distances are as follows:

a∞, b∞, b0, a1, c∞, d∞, d0, c1, b3, a3.

Note that the stack distance of any access is less than or equal to its reuse distance.
We will see later how hit and miss probabilities of a memory access can be given based on its

reuse and stack distance for both randomized and deterministic caches.

3.4 Cache Analysis in Static (Probabilistic) Timing Analysis
Cache analysis is an important part of low-level analysis. In STA, its purpose is to classify memory
accesses in the program as either definite hits or definite misses. Sometimes, an access may result
in a hit or a miss depending on the execution history leading to the access. As a consequence
of such inherent uncertainty or uncertainty due to analysis imprecision, cache analysis may also
classify an access as “unknown”. Due to timing anomalies [24, 29] it is not always safe to simply
assume a cache miss in case of uncertainty.

Similarly, in SPTA [4], a probability needs to be attached to the hit and the miss case for
each memory access. Current SPTAs assume microarchitectures in which hits and misses have
a fixed, context-independent cost and thus cache-related timing anomalies may not occur. As a
consequence, it is sufficient to determine a lower bound h on the hit probability of an access, which
induces an upper bound of 1 − h on its miss probability. Together with hit and miss latencies
hitlatency and misslatency we get the following ETP for a memory instruction with hit probability h:(

hitlatency misslatency
h 1− h

)
.

The issue of timing anomalies in the pipeline is orthogonal to that of using deterministic or
randomized caches. In order not to mix the two issues, we compare deterministic2 and randomized
caches in the context of SPTA, i.e., in terms of deriving lower bounds on the hit probability of a
memory access.

2 Caches with LRU replacement do not exhibit timing anomalies.

LITES

03:6 Randomized Caches Considered Harmful in Hard Real-Time Systems

4 Deterministic versus Random Replacement in Fully-Associative Caches

4.1 In Static Probabilistic Timing Analysis
In a cache with LRU replacement, an access b with stack distance sd(b) less than the associativity k
is a hit, otherwise it is a miss:

P (hitLRU(b)) =
{

1 : sd(b) < k

0 : sd(b) ≥ k
(1)

Note, that the hit probabilities of different memory accesses in a sequence are independent. Static
cache analyses thus determine upper bounds on the stack distance of each memory access to
guarantee cache hits. Such analyses are called must analyses [9]. Analogously, may analyses [9]
determine lower bounds on stack distances to guarantee cache misses.

In the case of a fully-associative cache there are two challenges for may and must analyses:
1. The initial state of the cache is unknown. Thus, must analyses conservatively assume an upper

bound > k on the stack distance of any block at program start. Similarly, may analyses assume
a lower bound of 0.

2. Logically, memory accesses are at the granularity of words, not memory blocks. Thus a value
analysis needs to determine for pairs of memory accesses whether they refer to the same memory
block or not.3 This is trivial for instruction caches, but may be very hard for input-dependent
data accesses.

In a cache with Random replacement the situation is different. In contrast to LRU, the hit
probability of an access cannot be given purely in terms of its stack or reuse distance. Zhou [32]
observes that the hit probability of an access b to a block that has been accessed before is

P (hitRandom(b)) =
(

1− 1
k

)m

(2)

where m is the number of cache misses between access b and the previous access to the same
memory block. Clearly m is bounded from above by b’s reuse distance rd(b), so

P (hitRandom(b)) ≥
(

1− 1
k

)rd(b)
(3)

This formula correctly underestimates the hit probability of an individual access. Unfortunately,
however, hit probabilities computed with the formula above are not independent of each other.
Thus, the convolution of corresponding ETPs may underestimate the probability of observing
a given number of misses. Consider, e.g., the access sequence a, b, c, a, b, c and a cache with
associativity 2. Clearly, at least one miss must occur on the final three accesses of the sequence,
as the first access to c will evict either a or b. Yet, the convolution of the ETPs obtained from
Equation (3) yields a non-zero probability of having no misses on those three accesses, because the
hit probability of each individual access is greater than zero4. As a consequence, the probability of
observing four or more cache misses on the entire sequence, which is 1, would be underestimated.

3 Note, that it is not necessary to determine which memory block is referred to by a memory access. It is
sufficient to determine for pairs of accesses whether they refer to the same block or not. This is exploited by
relational cache analysis [16].

4 According to Equation (3), it is 1
4 .

J. Reineke 03:7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

Reuse distance

H
it
pr
ob

ab
ili
ty

LRU
Random

Figure 1 Lower bounds on hit probabilities of memory accesses for LRU and Random in terms of reuse
distances for a cache of associativity 8 based on Equations 1 and 4.

Davis et al. [7] provide the following formula, which bounds the hit probability of an access b,
independently of whether preceding accesses hit or miss, in terms of the reuse distance of b:

P (hitRandom(b)) ≥
{(

1− 1
k

)rd(b) : rd(b) < k

0 : rd(b) ≥ k
(4)

The more optimistic formula for hit probabilities given in [20] has been refuted in [6]. Based on
the reuse distance, the above formula is the most precise hit probability that holds independently
of the outcome of previous memory accesses.

For associativity 8, Figure 1 illustrates the hit probabilities of LRU and Random in terms of
reuse distances. Remember that by definition the stack distance sd(b) of an access is less than or
equal to its reuse distance rd(b). With this in mind, comparing the hit probabilities for LRU and
for Random from Equations 1 and 4, we make the following two observations:

I Observation 1. With the same information about an access sequence, i.e. upper bounds on the
reuse distances of accesses, the hit probabilities for LRU are always greater than or equal to the
hit probabilities for Random.

I Observation 2. In case of LRU, and in contrast to Random, current cache analyses can profit
from bounding stack distances, which can be arbitrarily lower than reuse distances.

I Conclusion 1. With simple, state-of-the-art analysis methods, LRU replacement is preferable
over Random replacement in static (probabilistic) timing analysis.

In general, we note that the state (or the state distribution in case of randomized caches) of
any cache is a function of the history of memory accesses. This holds independently of whether
the cache is deterministic or randomized. More precisely, the state of any fully-associative cache
depends, at least, on the suffix of the history of memory accesses containing k distinct blocks,
where k is the associativity of the cache. Among all policies, randomized or deterministic, the
state of an LRU-controlled cache depends on the shortest suffix of the access history. Thus, LRU
requires the least information about the access history to fully determine its state [28].

Other Deterministic Policies: FIFO, PLRU, and MRU. Common deterministic policies such
as FIFO, PLRU, and MRU have been found to be less predictable than LRU [28]. In contrast
to LRU, the exact hit probability of an access cannot be determined in terms of stack or reuse

LITES

03:8 Randomized Caches Considered Harmful in Hard Real-Time Systems

distances for these policies. The best lower bounds on hit probabilities that can be given based on
stack distances for FIFO, PLRU, and MRU are:5

P (hitFIFO(b)) ≥
{

1 : sd(b) < 1
0 : sd(b) ≥ 1

(5)

P (hitPLRU(b)) ≥
{

1 : sd(b) < log2 k + 1
0 : sd(b) ≥ log2 k + 1

(6)

P (hitMRU(b)) ≥
{

1 : sd(b) < 2
0 : sd(b) ≥ 2

(7)

Static (probabilistic) timing analyses that are based purely on stack (or reuse) distances thus
yield worse results under FIFO than under Random, MRU, PLRU, or LRU. MRU and PLRU are
incomparable with Random. Depending on the benchmark, and the resulting distribution of reuse
distances, MRU and PLRU may yield better results than Random and vice versa.

It should be noted that there are access sequences (and programs that generate such sequences)
on which Random outperforms LRU and other deterministic policies with a very high probability.
A prime example for such sequences are so-called “payroll sequences”, i.e. sequences of the form
(a1, . . . , ak+1)∗, where k is the associativity of the cache. On such sequences LRU incurs cache
misses only. Similar sequences can be constructed for every deterministic policy.

To profit from Random replacement in such cases, more sophisticated analysis techniques are
required. Such analyses will likely have to derive conditional hit probabilities and combine results
for individual memory accesses in a different way than convolution, which is not required in case
of LRU. Similarly, sophisticated static analyses have recently been proposed for FIFO [11, 12, 15],
PLRU [13], and MRU [14]. Yet, while being more complex than Ferdinand’s analysis for LRU [9],
they still do not quite achieve the same level of precision.

Stack Distance versus Reuse Distance. As an example where reuse and stack distances may
differ a lot, consider instruction accesses following the execution of a small, nested loop:

1 x = 0
2 y = 0
3 for i in [1, 1000]:
4 for j in [1, i]:
5 x = x+1
6 y = y+1

Assume for simplicity that the instructions implementing each line of the program occupy exactly
one memory block. Thus, the program’s instructions occupy exactly six memory blocks. Then,
except for the first access, the stack distance of each instruction access for y = y+1 is three. Yet,
the corresponding reuse distance depends on the value of i. In the last iteration of the outer loop
the reuse distance of the instruction access for y = y+1 is 2001.

In practice, the relation between reuse and stack distances likely varies strongly within
benchmarks and from one benchmark to another. Unfortunately, we were not able to find empirical
data concerning their relation, with one exception: Sen and Wood [30] plot the distribution of
reuse distances for accesses of a given stack distance (Figure 3 in [30]) for an online transaction
processing application.

5 This follows immediately from the competitiveness of the respective policies relative to LRU [26].

J. Reineke 03:9

4.2 In Measurement-Based Probabilistic Timing Analysis

MBPTA derives WCET estimates from a series of execution-time measurements. Cache perfor-
mance depends on the initial state of the cache and on the sequence of memory accesses provided
to the cache. Cucu et al. [5] flush the cache upon program start and eliminate all input-dependent
memory accesses from the program. Thus, on a given path through the program, the sequence
of memory accesses is the same for different program inputs. Then, a number of end-to-end
execution-time measurements is performed on each program path. By nature of the approach, the
analysis results apply only to those program paths for which measurements have been performed.

In such a scenario, i.e., flushed cache and no input-dependent memory accesses, the requirements
of MBPTA, namely independence and identical distribution of execution times on a given program
path, are also met by a conventional cache with LRU replacement: the cache behavior will be
identical on each measurement; it follows a degenerate probability distribution. Independence is
thus trivial. In fact, the same argument applies to any deterministic cache replacement policy.

Thus, under the conditions described above, a single measurement will reveal the worst case—in
terms of cache performance. This compares with having to perform hundreds of measurements in
case of a randomized cache [5].

I Conclusion 2. Deterministic replacement yields more efficient MBPTA than Random replacement.

For LRU, the empty state is the worst-case initial state for any memory access sequence [27].
Therefore, measurements obtained starting with a flushed cache yield upper bounds on the number
of cache misses under any initial cache state for LRU. In this case, flushing the cache would only
be required during the measurement-based analysis and could in principle be disabled during
normal operation, assuming the microarchitecture features no timing anomalies [24, 29].

5 Deterministic versus Random Placement in Set-Associative Caches

5.1 In Static Probabilistic Timing Analysis

In a set-associative cache with s cache sets, the placement policy partitions the stream of memory
accesses into s substreams, each of which is processed by one of the s cache sets. For set-
associative caches, it is convenient to define the reuse and the stack distance of an access based on
the subsequence the access belongs to. In other words, the reuse distance of an access to block b
is the number of memory accesses between the current and the previous access to block b within
the same cache set. Let the stack distance be defined analogously for set-associative caches.

Then we get the same hit probabilities in terms of stack and reuse distance for LRU and
Random as in case of a fully-associative cache.

The additional difficulty in static cache analysis with deterministic placement is thus to
determine which memory accesses map to the same cache set. This is again trivial for instruction
accesses, but may be very difficult for data accesses. Note, however, that it is not required
to determine the absolute cache set an access maps to, as demonstrated by relational cache
analysis [16].

Randomized placement [20, 21] promises to reduce the analysis effort for set-associative caches,
as two memory blocks will only collide in the cache with a certain probability. If the placement
function is chosen randomly from a uniform distribution over all possible placement functions, then
the probability of any two blocks to map to the same cache set is 1

s . Based on this assumption,
Kosmidis et al. [20] derive the following hit probability for a direct-mapped cache in terms of the

LITES

03:10 Randomized Caches Considered Harmful in Hard Real-Time Systems

stack distance6 of an access:

P (hitRandom(b)) =
(

1− 1
s

)sd(b)
(8)

This formula is correct. However, as in the case of Zhou’s formula for random replacement, hit
probabilities determined in this way are not independent. Consider the following access sequence:

a, b, a, b, a, b, a, b, a, b

As the placement is chosen randomly at program start and does not change during program
execution, there are only two possibilities: either a and b systematically collide in the cache or they
do not. They collide with probability 1

s . Thus with a probability of 1
s all ten memory accesses

will be cache misses, and with a probability of 1− 1
s only two (compulsory) misses will occur. In

the example, each access’s miss probability is 1− (1− 1
s)1 = 1

s . Assuming independence of these
miss probabilities would incorrectly yield a probability of 1

s8 � 1
s of observing ten misses.

Unfortunately, no non-zero hit probability can be assigned to an access based on its stack
distance that is independent of other whether previous accesses resulted in hits or misses. Yet,
independence is required by the current SPTA approach. To see this, consider arbitrarily long
sequences of the form a, b, a, b, a, b, . . . No matter how long the sequence, with a probability of 1

s

all accesses will miss in a direct-mapped cache. For any non-zero hit probability p assigned to
each individual access there is a length n of the sequence, such that the convolution of the ETPs
based on p will underestimate the probability of incurring n misses.

I Observation 3. In case of random placement, no mutually independent hit probabilities greater
than zero can be assigned to individual memory accesses with stack distances greater than zero.

Observation 3 immediately implies the following conclusion:

I Conclusion 3. Random placement requires complex static analyses that take into account condi-
tional hit probabilities. Random placement is thus not amenable to current analysis approaches.

5.2 In Measurement-Based Probabilistic Timing Analysis
As we have seen in the previous section, with random placement there are cases in which we
observe very few misses with a high probability p and very many misses with a low probability
1− p, with no cases in between the two extremes.

If p is sufficiently close to 1, MBPTA is unlikely to ever observe the case of very many
misses. Then, its observations are indistinguishable from a case in which many misses are in fact
impossible. Consider as an example7 the same sequence σslow = a, b, a, b, a, b, . . . as above, which
may be generated by a loop, and a very large direct-mapped cache with s = 106 cache sets. The
probabilities of the two possible execution times are depicted in Figure 2.

Even 10000 = 104 measurements will only reveal the worst case with a probability of 1− (1−
1/106)104

< 1%. In other words, with a probability greater than 99%, all measurements will yield
exactly two cache misses, and thus the sequence would be indistinguishable from the sequence
σfast = a, b, b, b, b, . . . , which will yield exactly two misses independently of the placement.

6 Here, sd(b) refers to b’s stack distance among all memory accesses, i.e., not to its stack distance among blocks
mapping to the same cache set.

7 While this example is slightly construed, due to the unrealistically high number of cache sets, the sequence
a, b, c, d, a, b, c, d, . . . in a 3-way set-associative cache with a more realistic s = 102 leads to similar results, yet
is more difficult to analyze precisely.

J. Reineke 03:11

0 0.2 0.4 0.6 0.8 1
10−6

10−3

100

Execution time (in 10000 clock cycles)
Pr

ob
ab

ili
ty

Figure 2 Execution-time distribution on example sequence with random placement.

MBPTA is used to estimate execution times that are only exceeded with a very low probability,
such as 10−12, ideally without performing 1012 measurements. In our example, with a probability
of 10−6 � 10−12, the execution time for sequence σslow will be very high, as all memory accesses
will result in cache misses.

MBPTA bases its estimates solely on measurement results. It would thus generate the same
execution-time distribution for programs that generate the sequences σslow and σfast with a high
probability. In such a situation there are three possibilities:
1. MBPTA correctly estimates the execution-time distribution for the sequence σslow.
2. MBPTA incorrectly underestimates the execution-time distribution for the sequence σslow.
3. Based on the measurement results, the statistical tests in MBPTA reject such programs.
The two latter cases are clearly undesirable. In the first case, MBPTA’s estimate would have to
be the same for the sequence σfast. However, a correct estimate for σslow is necessarily extremely
pessimistic for σfast, which never exhibits more than two cache misses. This leads us to our final
conclusion:
I Conclusion 4. Random placement is not suitable for MBPTA.

6 Summary

We have critically assessed the suitability of randomized caches for use in hard real-time systems.
We observe that when used in SPTA, state-of-the-art cache analyses deliver better hit probabilities
for LRU than for Random replacement with the same amount of information. With the restrictions
currently imposed upon the use of randomized caches in MBPTA, i.e., no input-dependent memory
accesses, deterministic caches with LRU replacement can also be safely employed in MBPTA.
This comes with the additional benefit of requiring only a single measurement to identify the
worst-case cache performance.

Further, we have shown that non-trivial hit probabilities under random placement are not
independent and can thus not be safely combined by convolution. We have also identified
simple access sequences, which may be generated by simple loops, on which MBPTA must—by
construction—be either unsound, extremely pessimistic, or fail to produce an estimate at all.

Despite the negative results obtained in this paper, we believe that randomization might have
a place in microarchitectures for real-time systems. A benefit over deterministic microarchitec-
tures may be an increase in robustness. It is future work to rigorously analyze the benefits of
randomization in this direction.

Acknowledgements. I would like to thank the anonymous reviewers for their helpful remarks.
This work was supported by the Deutsche Forschungsgemeinschaft as part of the Transregional
Collaborative Research Centre SFB/TR 14 (AVACS).

LITES

03:12 Randomized Caches Considered Harmful in Hard Real-Time Systems

References
1 Bryan D. Ackland, Alex Anesko, Douglas M.

Brinthaupt, Steven J. Daubert, Asawaree
Kalavade, Joseph Knobloch, E. Micca, Mallik
Moturi, Chris J. Nicol, Jay H. O’Neill, Joseph H.
Othmer, Eduard Säckinger, Kanwar J. Singh,
J. Sweet, Christopher J. Terman, and Joseph
Williams. A single-chip, 1.6 billion, 16-b mac/s
multiprocessor DSP. IEEE Journal of Solid-
State Circuits, 35(3):412–423, March 2000.
doi:10.1109/4.826824.

2 Laszlo A. Belady. A study of replacement algo-
rithms for a virtual-storage computer. IBM Sys-
tems Journal, 5(2):78–101, 1966. doi:10.1147/sj.
52.0078.

3 Allan Borodin and Ran El-Yaniv. Online compu-
tation and competitive analysis. Cambridge Uni-
versity Press, New York, NY, USA, 1998.

4 Francisco J. Cazorla, Eduardo Quiñones, Tul-
lio Vardanega, Liliana Cucu, Benoit Triquet,
Guillem Bernat, Emery Berger, Jaume Abella,
Franck Wartel, Michael Houston, Luca Santinelli,
Leonidas Kosmidis, Code Lo, and Dorin Maxim.
PROARTIS: Probabilistically analyzable real-time
systems. ACM Transactions on Embedded Com-
puting Systems, 12(2s):94:1–94:26, May 2013. doi:
10.1145/2465787.2465796.

5 Liliana Cucu-Grosjean, Luca Santinelli, Michael
Houston, Code Lo, Tullio Vardanega, Leonidas
Kosmidis, Jaume Abella, Enrico Mezzetti, Ed-
uardo Quiñones, and Francisco J. Cazorla.
Measurement-based probabilistic timing analysis
for multi-path programs. In 24th Euromicro Con-
ference on Real-Time Systems, ECRTS’12, Pisa,
Italy, pages 91–101, Washington, DC, USA, July
2012. IEEE Computer Society. doi:10.1109/
ECRTS.2012.31.

6 Robert I. Davis. Improvements to static proba-
bilistic timing analysis for systems with random
cache replacement policies. In 2013 4th Real-Time
Scheduling Open Problems Seminar, RTSOPS’13,
July 2013.

7 Robert I. Davis, Luca Santinelli, Sebastian Alt-
meyer, Claire Maiza, and Liliana Cucu-Grosjean.
Analysis of probabilistic cache related pre-emption
delays. In 25th Euromicro Conference on Real-
Time Systems, ECRTS’13, Paris, France, pages
168–179, July 2013. doi:10.1109/ECRTS.2013.27.

8 Benoît Dupont de Dinechin, Duco van Amstel,
Marc Poulhiès, and Guillaume Lager. Time-critical
computing on a single-chip massively parallel pro-
cessor. In Design, Automation & Test in Eu-
rope Conference & Exhibition, DATE’14, Dres-
den, Germany, pages 513–518, March 2014. doi:
10.7873/DATE2014.110.

9 Christian Ferdinand and Reinhard Wilhelm. Effi-
cient and precise cache behavior prediction for real-
time systems. Real-Time Systems, 17(2-3):131–
181, 1999. doi:10.1023/A:1008186323068.

10 Daniel Grund. Static Cache Analysis for
Real-Time Systems – LRU, FIFO, PLRU.
PhD thesis, Saarland University, 2012. URL:
https://www.epubli.de/shop/buch/Static-
Cache-Analysis-for-Real-Time-Systems-
Daniel-Grund-9783844216998/13092.

11 Daniel Grund and Jan Reineke. Abstract interpre-
tation of FIFO replacement. In Static Analysis,
16th International Symposium, SAS’09, Los An-
geles, CA, USA, pages 120–136. Springer, August
2009. doi:10.1007/978-3-642-03237-0_10.

12 Daniel Grund and Jan Reineke. Precise and ef-
ficient FIFO-replacement analysis based on static
phase detection. In 22nd Euromicro Conference
on Real-Time Systems, ECRTS’10, Brussels, Bel-
gium, pages 155–164. IEEE Computer Society, July
2010. doi:10.1109/ECRTS.2010.8.

13 Daniel Grund and Jan Reineke. Toward pre-
cise PLRU cache analysis. In 10th International
Workshop on Worst-Case Execution Time Anal-
ysis, WCET’10, Brussels, Belgium, pages 23–
35. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Germany, July 2010. doi:10.4230/OASIcs.
WCET.2010.23.

14 Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu.
WCET analysis with MRU caches: Challenging
LRU for predictability. In 2012 IEEE 18th Real
Time and Embedded Technology and Applications
Symposium, Beijing, China, pages 55–64. IEEE,
April 2012. doi:10.1109/RTAS.2012.31.

15 Nan Guan, Xinping Yang, Mingsong Lv, andWang
Yi. FIFO cache analysis for WCET estimation: a
quantitative approach. In Design, Automation and
Test in Europe, DATE’13, Grenoble, France, pages
296–301. EDA Consortium San Jose, CA, USA /
ACM DL, March 2013. URL: http://dl.acm.org/
citation.cfm?id=2485362.

16 Sebastian Hahn and Daniel Grund. Relational
cache analysis for static timing analysis. In
24th Euromicro Conference on Real-Time Sys-
tems, ECRTS’12, Pisa, Italy, pages 102–111. IEEE
Computer Society, July 2012. doi:10.1109/ECRTS.
2012.14.

17 Reinhold Heckmann, Marc Langenbach, Stephan
Thesing, and Reinhard Wilhelm. The influence of
processor architecture on the design and the re-
sults of WCET tools. Proceedings of the IEEE,
91(7):1038–1054, 2003. doi:10.1109/JPROC.2003.
814618.

18 Freescale Semiconductor Inc. MPC7450 RISC mi-
croprocessor family reference manual, rev. 5, 2005.

19 Dennis Komm, Rastislav Kràlovic, Richard
Kràlovic, and Tobias Mömke. Randomized on-
line algorithms with high probability guarantees.
In 31st International Symposium on Theoretical
Aspects of Computer Science, STACS’14, Lyon,
France, pages 470–481. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, March 2014. doi:10.
4230/LIPIcs.STACS.2014.470.

20 Leonidas Kosmidis, Jaume Abella, Eduardo
Quiñones, and Francisco J. Cazorla. A cache de-
sign for probabilistically analysable real-time sys-
tems. In Design, Automation and Test in Eu-
rope, DATE’13, Grenoble, France, pages 513–518.
EDA Consortium San Jose, CA, USA / ACM DL,
March 2013. URL: http://dl.acm.org/citation.
cfm?id=2485416.

21 Leonidas Kosmidis, Jaume Abella, Eduardo
Quiñones, and Francisco J. Cazorla. Efficient

http://dx.doi.org/10.1109/4.826824
http://dx.doi.org/10.1147/sj.52.0078
http://dx.doi.org/10.1147/sj.52.0078
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/ECRTS.2013.27
http://dx.doi.org/10.7873/DATE2014.110
http://dx.doi.org/10.7873/DATE2014.110
http://dx.doi.org/10.1023/A:1008186323068
https://www.epubli.de/shop/buch/Static-Cache-Analysis-for-Real-Time-Systems-Daniel-Grund-9783844216998/13092
https://www.epubli.de/shop/buch/Static-Cache-Analysis-for-Real-Time-Systems-Daniel-Grund-9783844216998/13092
https://www.epubli.de/shop/buch/Static-Cache-Analysis-for-Real-Time-Systems-Daniel-Grund-9783844216998/13092
http://dx.doi.org/10.1007/978-3-642-03237-0_10
http://dx.doi.org/10.1109/ECRTS.2010.8
http://dx.doi.org/10.4230/OASIcs.WCET.2010.23
http://dx.doi.org/10.4230/OASIcs.WCET.2010.23
http://dx.doi.org/10.1109/RTAS.2012.31
http://dl.acm.org/citation.cfm?id=2485362
http://dl.acm.org/citation.cfm?id=2485362
http://dx.doi.org/10.1109/ECRTS.2012.14
http://dx.doi.org/10.1109/ECRTS.2012.14
http://dx.doi.org/10.1109/JPROC.2003.814618
http://dx.doi.org/10.1109/JPROC.2003.814618
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.470
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.470
http://dl.acm.org/citation.cfm?id=2485416
http://dl.acm.org/citation.cfm?id=2485416

J. Reineke 03:13

cache designs for probabilistically analysable real-
time systems. IEEE Transactions on Computers,
99(PrePrints):1, 2013. doi:10.1109/TC.2013.182.

22 Leonidas Kosmidis, Charlie Curtsinger, Eduardo
Quiñones, Jaume Abella, Emery D. Berger, and
Francisco J. Cazorla. Probabilistic timing analy-
sis on conventional cache designs. In Design, Au-
tomation and Test in Europe, DATE’13, Greno-
ble, France, pages 603–606. EDA Consortium San
Jose, CA, USA / ACM DL, March 2013. URL:
http://dl.acm.org/citation.cfm?id=2485435.

23 Leonidas Kosmidis, Eduardo Quiñones, Jaume
Abella, Tullio Vardanega, and Francisco J. Ca-
zorla. Achieving timing composability with
measurement-based probabilistic timing anal-
ysis. In 2013 16th IEEE Symposium on
Object/Component/Service-oriented Real-time
Distributed Computing, ISORC’13, 2013.

24 Thomas Lundqvist and Per Stenström. Timing
anomalies in dynamically scheduled microproces-
sors. In 20th IEEE Real-Time Systems Sympo-
sium, Phoenix, AZ, USA, pages 12–21. IEEE Com-
puter Society, December 1999. doi:10.1109/REAL.
1999.818824.

25 Eduardo Quiñones, Emery D. Berger, Guillem
Bernat, and Francisco J. Cazorla. Using ran-
domized caches in probabilistic real-time systems.
In 21st Euromicro Conference on Real-Time Sys-
tems, ECRTS 2009, Dublin, Ireland, pages 129–
138. IEEE Computer Society, July 2009. doi:
10.1109/ECRTS.2009.30.

26 Jan Reineke. Caches in WCET Anal-
ysis. PhD thesis, Universität des Saar-
landes, 2008. URL: http://rw4.cs.
uni-saarland.de/~reineke/publications/
DissertationCachesInWCETAnalysis.pdf.

27 Jan Reineke and Daniel Grund. Sensitivity of
cache replacement policies. ACM Transactions

on Embedded Computing Systems, 12(1s):42, 2013.
doi:10.1145/2435227.2435238.

28 Jan Reineke, Daniel Grund, Christoph Berg,
and Reinhard Wilhelm. Timing predictability
of cache replacement policies. Real-Time Sys-
tems, 37(2):99–122, 2007. doi:10.1007/s11241-
007-9032-3.

29 Jan Reineke, Björn Wachter, Stephan Thesing,
Reinhard Wilhelm, Ilia Polian, Jochen Eisinger,
and Bernd Becker. A definition and classification
of timing anomalies. In 6th International Work-
shop on Worst-Case Execution Time Analysis,
WCET’06, Dresden, Germany. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, March 2006. doi:
10.4230/OASIcs.WCET.2006.671.

30 Rathijit Sen and David A. Wood. Reuse-based
online models for caches. In ACM SIGMET-
RICS / International Conference on Measurement
and Modeling of Computer Systems, SIGMET-
RICS’13, Pittsburgh, PA, USA, pages 279–292.
ACM, June 2013. doi:10.1145/2465529.2465756.

31 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David B.
Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter P. Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem – overview of methods and survey of tools.
ACM Transactions on Embedded Computing Sys-
tems, 7(3), 2008. doi:10.1145/1347375.1347389.

32 Shuchang Zhou. An efficient simulation algorithm
for cache of random replacement policy. In Net-
work and Parallel Computing, IFIP International
Conference, NPC’10, Zhengzhou, China, pages
144–154. Springer, 2010. doi:10.1007/978-3-642-
15672-4_13.

LITES

http://dx.doi.org/10.1109/TC.2013.182
http://dl.acm.org/citation.cfm?id=2485435
http://dx.doi.org/10.1109/REAL.1999.818824
http://dx.doi.org/10.1109/REAL.1999.818824
http://dx.doi.org/10.1109/ECRTS.2009.30
http://dx.doi.org/10.1109/ECRTS.2009.30
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://dx.doi.org/10.1145/2435227.2435238
http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.4230/OASIcs.WCET.2006.671
http://dx.doi.org/10.4230/OASIcs.WCET.2006.671
http://dx.doi.org/10.1145/2465529.2465756
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/978-3-642-15672-4_13
http://dx.doi.org/10.1007/978-3-642-15672-4_13

	lites-v001-i001-frontmatter
	Table of Contents
	lites-v001-i001-a000-Burns-Foreword
	lites-vol001-i001-a01-Lunniss
	Introduction
	Related Work on CRPD
	Organisation

	System Model, Terminology and Notation
	CRPD Analysis for FP Scheduling
	CRPD Analysis
	ECB-Union Multiset
	UCB-Union Multiset
	Combined Multiset

	Comparison of Approaches

	CRPD Analysis for EDF Scheduling
	CRPD Analysis
	ECB-Union Multiset
	UCB-Union Multiset Approach
	Combined Multiset Approach
	Effect on Task Utilisation and h(t) Calculation

	Comparison of Approaches

	Task Layout
	Case Studies
	Single Taskset Case Study
	Multiple Taskset Case Studies
	PapaBench Benchmark
	Mälardalen and SCADE Benchmarks
	Mixed Benchmarks

	Evaluation
	Baseline Configuration
	Weighted Schedulability
	Cache Utilisation
	Maximum UCB Percentage
	Number of Tasks
	Block Reload Time
	Period Range

	Conclusion

	lites-vol001-i001-a02-helmstetter
	Introduction
	SystemC and TLM
	Related Works
	Verification of SystemC/TLM models
	Stateless model-checking
	Translate then verify

	The CADP verification toolbox

	Connecting SystemC/TLM with formal methods
	The architecture of TLM.open
	Storing and restoring program states
	Storing modules using flat state
	Storing module using hierarchical state

	Implementation of the OPEN/CÆSAR interface
	Generation of the initial state
	Enumerating the transitions

	Features and limitations
	The sc_stop function
	Recording the current time
	Pointers and dynamic allocations

	Examples
	The chain benchmark
	The LusSy benchmark
	Application to a timer
	Application to a basic system

	Conclusion

	lites-v001-i001-a003-reineke
	Introduction
	Static and Measurement-Based Timing Analysis
	Static Probabilistic Timing Analysis
	Measurement-based Probabilistic Timing Analysis

	Deterministic and Randomized Caches
	Replacement Policies
	Placement Policies
	Notions of Locality
	Cache Analysis in Static (Probabilistic) Timing Analysis

	Deterministic versus Random Replacement in Fully-Associative Caches
	In Static Probabilistic Timing Analysis
	In Measurement-Based Probabilistic Timing Analysis

	Deterministic versus Random Placement in Set-Associative Caches
	In Static Probabilistic Timing Analysis
	In Measurement-Based Probabilistic Timing Analysis

	Summary

