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Abstract
Lower and upper bounds on the maximum prior-
ity inversion blocking (pi-blocking) that is gener-
ally unavoidable in distributed multiprocessor real-
time locking protocols (where resources may be
accessed only from specific synchronization proces-
sors) are established. Prior work on suspension-
based shared-memory multiprocessor locking proto-
cols (which require resources to be accessible from
all processors) has established asymptotically tight
bounds of Ω(m) and Ω(n) maximum pi-blocking
under suspension-oblivious and suspension-aware
analysis, respectively, where m denotes the total
number of processors and n denotes the number
of tasks. In this paper, it is shown that, in the
case of distributed semaphore protocols, there exist
two different task allocation scenarios that give rise
to distinct lower bounds. In the case of co-hosted
task allocation, where application tasks may also

be assigned to synchronization processors (i. e., pro-
cessors hosting critical sections), Ω(Φ ·n) maximum
pi-blocking is unavoidable for some tasks under any
locking protocol under both suspension-aware and
suspension-oblivious schedulability analysis, where
Φ denotes the ratio of the maximum response time
to the shortest period. In contrast, in the case of
disjoint task allocation (i. e., if application tasks
may not be assigned to synchronization processors),
only Ω(m) and Ω(n) maximum pi-blocking is fun-
damentally unavoidable under suspension-oblivious
and suspension-aware analysis, respectively, as in
the shared-memory case. These bounds are shown
to be asymptotically tight with the construction
of two new distributed real-time locking protocols
that ensure O(m) and O(n) maximum pi-blocking
under suspension-oblivious and suspension-aware
analysis, respectively.
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1 Introduction

The principal purpose of a real-time locking protocol is to provide tasks with mutually exclusive
access to shared resources such that the maximum blocking incurred by any task can be bounded
a priori. Such blocking is problematic in real-time systems and must be bounded because it
increases worst-case response times, and hence may cause deadline violations if left unchecked.
Real-time locking protocols should thus avoid blocking as much as possible. Unfortunately, if tasks
require exclusive access, some blocking is inherently possible and can generally not be avoided.
This naturally raises the question of optimality: if some blocking is inevitable when using locks,
then what is the minimal bound on worst-case blocking that any locking protocol can guarantee?
In other words, when can a real-time locking protocol be deemed (asymptotically) optimal?

This question has long been answered for uniprocessor systems [2,44,48], where it has been
shown that the real-time mutual exclusion problem can be solved with O(1) maximum blocking:
the priority ceiling protocol (PCP) [44, 48] and the stack resource policy (SRP) [2] both ensure
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01:2 Blocking Optimality in Distributed Real-Time Locking Protocols

that the maximum blocking incurred by any task is bounded by the length of a single (outermost)
critical section, which is obviously optimal.

In the multiprocessor case, the picture is not as straightforward, and not as complete. First of
all, there are two classes of multiprocessor locking protocols to consider: spin-based (or spin lock)
protocols, in which waiting tasks remain scheduled and execute a delay loop, and suspension-based
(or semaphore) protocols, in which waiting tasks suspend to make the processor available to other
tasks. Of the two classes, spin locks are much simpler to analyze: with non-preemptive FIFO spin
locks, a lock acquisition is delayed by at most one critical section on each other processor [23, 29],
and it is easy to see that this cannot be improved upon in the general case.

In the case of multiprocessor real-time semaphore protocols, however, the question of blocking
optimality is considerably more challenging, and has only recently been answered in part [11,16,
18, 49]. In particular, it has been answered only for the case of shared-memory multiprocessor
semaphore protocols, which fundamentally require shared resources to be accessible from all
processors because they assume that tasks execute critical sections locally on the processor(s)
on which they are scheduled. In this paper, we extend the theory of blocking optimality to
distributed multiprocessor semaphore protocols, which are required if (some) shared resource(s)
can be accessed only from specific (subsets of) processors.

1.1 Motivation
Besides the fact that the restriction to shared-memory systems in prior work is an obvious
limitation, our work is motivated by the observation that there are many systems that either
inherently require, or at least can benefit from, distributed real-time locking protocols.

For instance, in the absence of a shared memory or on heterogeneous hardware platforms
(e. g., if only some processor cores support special-purpose instructions), the execution of critical
sections can be inherently restricted to specific processors. Similarly, when tasks share physical
resources such as network links, I/O co-processors, graphics processing units (GPUs), or digital
signal processors (DSPs), certain devices may be accessible only from specific processors.

Second, even if all processors technically could access all shared resources, it sometimes is
preferable to centralize resource access nonetheless. For example, many shared-memory multicore
processors intended for embedded systems are not cache-consistent (e. g., Infineon’s Aurix platform
for automotive applications does not support hardware-based cache coherency). On such a platform,
the coherency of shared data structures either must be managed in software (thus introducing an
additional implementation burden), or alternatively the execution of critical sections can simply
be centralized on a dedicated processor with the help of a distributed real-time locking protocol.
In fact, even on a cache-consistent shared-memory platform, it can be beneficial to centralize the
execution of critical sections due to cache affinity issues [39]. Furthermore, the use of distributed
real-time locking protocols in shared-memory systems can also yield improved schedulability [14].

As the final example, consider multi-kernel operating systems [6, 51], where each core is
managed as a uniprocessor and system-wide resource management is carried out using message
passing. Multi-kernels tend to aggressively optimize locality—intuitively, they form a “distributed
system on a chip”—with the effect that some resources may be accessed only on specific cores.

In each of these examples, the critical sections of some tasks must be executed on a specific
remote processor, since executing them locally is either infeasible or disallowed. This renders
shared-memory semaphore protocols as studied in [11,16,18,49] inapplicable, and a distributed
real-time semaphore protocol must be employed instead.

Naturally, as in the uniprocessor and shared-memory cases, distributed real-time locking
protocols should minimize blocking to the extent possible. However, to the best of our knowledge,
blocking optimality in distributed real-time locking protocols has not been studied to date, and it
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is thus not even clear what the minimal “extent possible” is, nor is it known how protocols should
be structured to obtain (asymptotically) optimal blocking bounds. In this paper, we seek to close
this gap in the understanding of multiprocessor real-time synchronization.

1.2 Related Work
The first discussion of the effects of uncontrolled blocking in real-time systems and possible
solutions dates back to the Mesa project [36]. Sha et al. [48] were the first to study the problem
from an analytical point of view and proposed uniprocessor protocols that provably bound the
worst-case blocking duration. As already mentioned, the Sha et al.’s PCP [48] and Baker’s SRP [2]
were the first uniprocessor semaphore protocols to ensure optimal blocking bounds.

In the first work on synchronization in multiprocessor real-time systems, Rajkumar et al. [45]
proposed the distributed priority ceiling protocol (DPCP) [44, 45] for partitioned1 multiprocessors,
which applies the PCP on each processor and uses “agents” to carry-out critical sections on
behalf of tasks assigned to remote processors. As the first and prototypical distributed real-
time semaphore protocol, the DPCP is central to this paper and reviewed in greater detail in
Section 2.2.2. Rajkumar also developed the first suspension-based shared-memory real-time locking
protocol, namely the multiprocessor priority ceiling protocol (MPCP) [43],2 an extension of the
PCP for partitioned shared-memory multiprocessors based on priority queues. Like the DPCP,
the MPCP uses the regular PCP for local resources (i. e., resources used on only one processor),
but when accessing global resources (i. e., resources used by tasks on multiple processors), tasks
execute critical section on their assigned processor in the MPCP (rather than delegating resource
access to “agents” as in the DPCP). In contrast to the PCP and the SRP, which are obviously
optimal on a uniprocessor, the MPCP and the DPCP were not studied from a blocking optimality
perspective.

Favoring spin locks over semaphores, Gai et al. [28, 29] developed the MSRP, a multiprocessor
extension of the SRP for partitioned shared-memory multiprocessors, wich employs non-preemptive
FIFO spin locks for global resources and the SRP for local resources; Devi et al. [23] similarly
analyzed non-preemptive FIFO spin locks in the context of globally scheduled multiprocessors.3
As already pointed out, it is not possible to construct spin lock protocols that ensure, in the
worst case, asymptotically less blocking to all tasks than the protocols by Gai et al. [28, 29] and
Devi et al. [23], although it is possible to use priority-ordered spin locks [32, 33, 41] to ensure that
some tasks are less susceptible to blocking than others [52].

In subsequent work on shared-memory real-time locking protocols (both spin-based and
suspension-based), numerous new protocols, analysis improvements, and evaluations have been
presented [10,11,14,17,19,20,22,24,26,27,35,40,42,47]; however, in contrast to this paper, they
are not primarily concerned with questions of blocking optimality.

Perhaps more closely related are two studies targeting different notions of optimality. Soon
after the MPCP was proposed, Lortz and Shin [38] observed that ordering conflicting critical
sections by scheduling priority, as in the MPCP, does not always yield the best results in terms of
schedulability, and proposed using FIFO queues or semaphore-specific locking priorities instead.
They further showed that assigning per-semaphore locking priorities that maximize schedulability

1 Under partitioned scheduling, each task is statically assigned to a processor, and each processor is scheduled
individually using a uniprocessor policy.

2 The name “multiprocessor priority ceiling protocol” originally referred to the DPCP in [45], but was later
repurposed to refer to the MPCP in [43]. We follow the terminology from [35, 43, 44], wherein the MPCP
denotes the shared-memory variant.

3 Under global scheduling, all processors serve a shared ready queue and tasks migrate among all processors.

LITES
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is an NP-complete problem [38]. More recently, Hsiu et al. [31] studied three problems related to
finding task and resource assignments that minimize system-wide resource usage (i. e., the number
of processors hosting real-time tasks, the number of processors hosting shared resources, and
the total number of processors) assuming a distributed, priority-queue-based semaphore protocol
similar to the DPCP. Unsurprisingly, they found the exact optimization problems to be intractable
(NP-hard). In contrast to Hsiu et al.’s work [31], the notion of optimality studied herein focuses
on the locking protocol itself (and not system-wide allocation properties), which makes it possible
to find simple, asymptotically optimal solutions, as we show in Section 5.

Most closely related to this paper is [16], which was the first work to consider blocking optimality
in (shared-memory) multiprocessor real-time systems, and from which we adopt the analytical
framework and key definitions (as reviewed in detail in Section 2.3). In short, it was shown that
even in the shared-memory case alone, there exist not only one, but two lower bounds on maximum
blocking [16]. This is because there exist two sets of analysis assumptions, termed suspension-aware
and suspension-oblivious schedulability analysis, that yield different lower bounds due to differences
in how semaphore-related suspensions are accounted for during schedulability analysis. More
precisely, in a system with m processors and n tasks, a lower bound of Ω(n) was established in
the suspension-aware case, whereas the suspension-oblivious case yields a lower bound of Ω(m).
In other words, it was shown that there exist pathological scenarios in which some tasks incur
blocking that is (at least) linear in the number of processors (under suspension-oblivious) or linear
in the number of tasks (under suspension-aware analysis), regardless of the employed locking
protocol. These bounds have further been shown to be asymptotically tight with the construction
of practical shared-memory semaphore protocols that ensure bounds on maximum blocking that
are within a small constant factor of the established lower bounds [11,13,16,18,25,49,50].

To the best of our knowledge, no equivalent results are known for the case of distributed
multiprocessor real-time semaphore protocols.4

1.3 Contributions
We study the question of optimal blocking in distributed multiprocessor real-time semaphore
protocols and show that there exist two distinct task allocation strategies, which we call co-hosted
and disjoint task allocation, that lead to different lower bounds on blocking. In the disjoint
case, synchronization processors are dedicated exclusively to executing critical sections and may
not host real-time tasks, whereas in the co-hosted case tasks also execute on synchronization
processors. Notably, in a co-hosted scenario, we observe two surprising results:
1. in terms of the lower bound, there is no difference between suspension-aware and suspension-

oblivious analysis, in contrast to the shared-memory case; and
2. blocking can be asymptotically worse than in an equivalent shared-memory system by a factor

of Φ, where Φ denotes the ratio of the maximum response time and the minimum period
(formalized in Section 2)—we establish Ω(Φ · n) as a lower bound on maximum blocking under
both suspension-oblivious and suspension-aware analysis (Theorem 8).

We further show that any “reasonable” distributed locking protocol that does not artificially delay
requests (formalized as “weakly work-conserving” in Section 2) causes at most O(Φ · n) blocking
(Theorem 10); any “reasonable” protocol is hence asymptotically optimal in the co-hosted case.

4 The material presented herein was previously made available online in preliminary form as an unpublished
manuscript [12]. Based on [12], an in-kernel implementation and a fine-grained linear-programming-based
blocking analysis of the protocol presented in Section 5.1 was previously discussed and evaluated in [14].
Whereas [14] focuses on accurate (non-asymptotic) analysis and practical concerns, the material presented in
Sections 3–5 pertains exclusively to questions of optimality and has previously not been published.
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In contrast to the co-hosted case, we show that, under disjoint task allocation, distributed
locking protocols exist that ensure blocking bounds analogous to the shared-memory case: we
establish lower bounds of Ω(n) and Ω(m) under suspension-aware and suspension-oblivious
analysis, respectively, and show these bounds to be asymptotically tight by constructing two new
distributed real-time semaphore protocols that ensure O(n) and O(m) maximum blocking under
suspension-aware and suspension-oblivious analysis, respectively (Theorems 12 and 14).

The remainder of the paper is organized as follows. Section 2 provides essential definitions and
a detailed review of the needed background. Section 3 establishes a lower bound on blocking with
the construction of a task set that exhibits pathological blocking under co-hosted task allocation,
and argues that prior constructions apply in the case of disjoint task allocation. Section 4 considers
the co-hosted case and shows that any “reasonable” distributed locking protocol without artificial
delays ensures maximum blocking within at most a constant factor of the established lower bound.
Section 5 pertains to the case of disjoint task allocation and introduces two new protocols that
establish the asymptotic tightness of the lower bounds under suspension-oblivious and suspension-
aware analysis. Finally, Section 6 concludes with a discussion of the impact of communication
delays.

2 Background and Definitions

In this section, we establish required definitions and review key prior results. In short, the results
presented in this paper apply to sets of sporadic real-time tasks with arbitrary deadlines that are
provisioned on a multiprocessor platform comprised of non-uniform processor clusters. Shared
resources are accessible only from select synchronization processors and may be accessed from
other processors using remote procedure calls (RPCs). These assumptions are formalized as follows;
a summary of our notation is subsequently given at the end of the section in Table 1.

2.1 System Model
We consider the problem of scheduling a set of n sporadic real-time tasks τ = {T1, . . . , Tn}
on a set of m processors. A sporadic task Ti is characterized by its minimum inter-arrival
separation (or period) pi, its per-job worst-case execution time ei, and its relative deadline di,
where ei ≤ min(di, pi). Each task releases a potentially infinite sequence of jobs, where two
consecutive jobs of a task Ti are released at least pi time units apart.

We let Ji denote an arbitrary job of task Ti. A job is pending from its release until it completes,
and while it is pending, it is either ready and may be scheduled on a processor, or suspended and
not available for scheduling. A job Ji released at time ta has its absolute deadline at time ta + di.
Both tasks and jobs are sequential: each job can be scheduled on at most one processor at a time,
and a newly released job cannot be processed until the task’s previous job has been completed.

A task’s maximum response time ri describes the maximum time that any Ji remains pending.
A task Ti is schedulable if it can be shown that ri ≤ di; the set of all tasks τ is schedulable if
each Ti ∈ τ is schedulable. We define Φ to be the ratio of the maximum response time and the
minimum period; formally Φ , maxi{ri}

mini{pi} .
The set of m processors consists of K pairwise disjoint clusters (or sets) of processors, where

2 ≤ K ≤ m. We let Cj denote the jth cluster, and let mj denote the number of processors in Cj ,
where

∑K
j=1 mj = m. A common special case is a partitioned system, where K = m and mj = 1

for each Cj . However, in general, clusters do not necessarily have a uniform size. We preclude the
special case of K = 1 and m1 = m because distributed locking protocols are relevant only if there
are at least two clusters (i. e., the case of K = 1 and m1 = m corresponds to a globally scheduled
shared-memory platform, which is already covered by prior work [11,15,16,18]).

LITES
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For notational convenience, we assume that clusters are indexed in order of non-decreasing
cluster size: mj ≤ mj+1 for 1 ≤ j < K. In particular, m1 denotes the (or one of the) smallest
cluster(s) in the system (with ties broken arbitrarily). Since K ≥ 2, we have m1 ≤ m

2 . This fact is
exploited by the lower-bound argument in Section 3.

Each task Ti is statically assigned to one of the K clusters; we let C(Ti) denote Ti’s assigned
cluster. Each cluster is scheduled independently according to a work-conserving job-level fixed-
priority (JLFP) scheduling policy [21]. Two common JLFP policies are fixed-priority (FP) scheduling,
where each task is assigned a fixed priority and jobs are prioritized in order of decreasing task
priority, and earliest-deadline first (EDF) scheduling, where jobs are prioritized in order of
decreasing absolute deadlines (with ties broken arbitrarily).

In general, a JLFP scheduler assigns each pending job a fixed priority and, at any point in
time, schedules the mj highest-priority ready jobs (or agents, see below) in each cluster Cj . Jobs
may freely migrate among processors belonging to the same cluster (i. e., global JLFP scheduling
is used within each cluster), but jobs may not migrate across cluster boundaries. Note that this
model includes the partitioned scheduling of shared-memory systems (each processor forms a
singleton cluster). Each cluster may use a different JLFP policy. Our results apply to any JLFP
policy.

Next, we discuss how resources may be shared in the assumed system architecture.

2.2 Distributed Real-Time Semaphore Protocols

In many real-time systems, tasks may have to share serially reusable resources (e. g., co-processors,
I/O ports, shared data structures, etc.). This paper is concerned with systems in which mutually
exclusive access to such resources is governed by a distributed (binary) semaphore protocol. In a
distributed semaphore protocol, each resource can be accessed only from a (set of) designated
processor(s); critical sections must hence be executed remotely if tasks use resources that are not
local to their assigned processor.

We next formalize the assumed resource model and review a distributed semaphore protocol.

2.2.1 Resource Model

The tasks in τ are assumed to share nr resources (besides the processors). Each shared resource `q
(where 1 ≤ q ≤ nr) is local to exactly one of the K clusters (but can be accessed from any cluster
using RPC invocations). We let C(`q) denote the cluster to which `q is local. Cluster C(`q) is
also called the synchronization cluster for `q.

To allow tasks to use non-local resources, access to each shared resource is mediated by one or
more resource agents. To use a shared resource `q, a job Ji invokes an agent on cluster C(`q) to
carry out the request on Ji’s behalf using a synchronous RPC. After issuing an RPC, Ji suspends
until notified by the invoked agent that the request has been carried out. A locking protocol such
as the DPCP (reviewed in Section 2.2.2) determines how concurrent requests are serialized.

We let Ni,q denote the maximum number of times that any Ji uses `q, and let Li,q denote
the corresponding per-request maximum critical section length, that is, the maximum time that
the agent handling Ji’s RPC requires exclusive access to `q as part of carrying out any single
operation invoked by Ji. For notational convenience, we require Li,q = 0 if Ni,q = 0 and define
Lmax , max{Li,q | 1 ≤ q ≤ nr ∧ Ti ∈ τ}.

Jobs invoke at most one agent at any time, and agents do not invoke other agents as part of
handling a resource request (i. e., resource requests are not nested). An agent is active while it is
processing requests, and inactive otherwise. While active, an agent is either ready (and can be
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scheduled) or suspended (and is not available for execution). Active agents are typically ready,
but may suspend temporarily when serving a request that involves synchronous I/O operations.

Following Rajkumar et al. [44, 45], we assume that jobs can invoke agents without significant
delay. That is, we assume that the overhead of cluster-to-cluster communication is negligible,
in the sense that any practical system overheads can be incorporated into task parameters
using standard overhead accounting techniques (e. g., see [11, Ch. 7]). If a distributed locking
protocol is implemented on top of a platform with dedicated point-to-point links, or if the
maximum communication delay across a shared network can be bounded by a constant (e. g.,
when communicating over a time-triggered network [34]), this assumption is appropriate, as any
constant invocation cost can be accounted for using standard overhead accounting techniques.
Further, such communication delays do not affect the blocking analysis per se (i. e., they do not
affect the contention for shared resources) and thus can be ignored when deriving asymptotic
bounds. We revisit the issue of non-negligible communication delays in Section 6.

Finally, in a real system, there likely exist resources in each cluster that are shared only
among local tasks. Such local resources can be readily handled using shared-memory protocols (or
uniprocessor protocols) and are not the subject of this paper. We hence assume that each resource
`q is accessed by tasks from at least two different clusters.

Given our resource model, a locking protocol is required to determine how agents are prioritized,
how conflicting requests are ordered, and when jobs may invoke agents. We next review the classic
protocol for this purpose, namely the DPCP.

2.2.2 The Distributed Priority Ceiling Protocol

As the first (distributed) real-time semaphore protocol for multiprocessors, the DPCP [44, 45] can
be considered to be the prototypical distributed semaphore protocol for partitioned fixed-priority
(P-FP) scheduling, a special case of the clustered JLFP scheduling assumed in this paper. We
briefly review the DPCP as a concrete example of the considered class of protocols.

The DPCP fundamentally requires mj = 1 for each cluster (or, rather, partition) Cj . Each
resource `q is statically assigned to a specific processor and may not be directly used on other
processors. Rather, tasks residing on other processors must indirectly access the resource by
issuing RPCs to resource agents. To this end, the DPCP provides one resource agent Aq,i for each
resource `q and each task Ti. To ensure a timely completion of critical sections, resource agents
are subject to priority boosting, which means that they have priorities higher than any regular task
(and thus cannot be preempted by regular jobs). Nonetheless, under the DPCP, resource agents
acting on behalf of higher-priority tasks may still preempt agents acting on behalf of lower-priority
tasks. That is, an agent Aq,h may preempt another agent Ar,l if Th has a higher priority than Tl.
After a job has invoked an agent, it suspends until its request has been carried out.

On each processor, conflicting accesses are mediated using the PCP [44, 48]. The PCP assigns
each resource a priority ceiling, which is the priority of the highest-priority task (or agent) accessing
the resource, and, at runtime, maintains a system ceiling, which is the maximum priority ceiling of
any currently locked resource. A job (or agent) is permitted to lock a resource only if its priority
exceeds the current system ceiling. Waiting jobs/agents are ordered by effective scheduling priority,
and priority inheritance [44, 48] is applied to prevent unbounded “priority inversion” (Section 2.3).

From an optimality point of view, not all of the details of the DPCP are relevant. Therefore,
we abstract from the specifics of the DPCP in our analysis to consider a larger class of “DPCP-like”
protocols, as defined next.

LITES
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2.2.3 Simplified Protocol Assumptions
Specifically, in this paper, we focus on the class of distributed real-time locking protocols that
ensure progress by means of two properties adopted from the DPCP [44, 48].
A1 Agents are priority-boosted: agents always have a higher priority than regular jobs.
A2 The distributed locking protocol is weakly work-conserving: a resource request R for a resource

`q is unsatisfied at time t (i. e., R has been issued but is not yet being processed) only if
some resource (but not necessarily `q) is currently unavailable (i. e., some agent is currently
processing a request for any resource).

Assumption A1 is necessary to expedite request completion since excessive delays cannot
generally be avoided if jobs can preempt agents. Assumption A2 rules out pathological protocols
that “artificially” delay requests. We consider this form of work conservation to be “weak” because
it does not require the requested resource to be unavailable; a request for an available resource
may also be delayed if some other resource is currently in use. Notably, the DPCP is only
weakly work-conserving (and not work-conserving w.r.t. each resource) since requests for available
resources may remain temporarily unsatisfied due to ceiling blocking [44,48].

Assumptions A1 and A2 together ensure that any delay in the processing of resource requests
can be attributed exclusively to other resource requests.

Another simplification pertains to the use of agents. Under the DPCP, jobs do not require
agents to access resources local to their assigned processor since jobs can directly participate
in the PCP. In a sense, this can be seen as jobs taking on the role of their agent on their local
processor. To simplify the discussion in this paper, we assume herein that resources are accessed
only via agents (i. e., jobs invoke agents even for resources that happen to be local to their assigned
processors). This does not change the algorithmic properties of the DPCP.

Finally, we assume that there is only a single local agent for each resource. As seen in the
DPCP [44,45], it can make sense to use more than one agent per resource; however, in the following,
we abstract from such protocol specifics and let a single agent Aq represent all agent activity
corresponding to a resource `q.

A key assumption in our system model is that both tasks and resources are statically assigned
to clusters, which gives rise to two allocation scenarios, as we discuss next.

2.2.4 Co-Hosted and Disjoint Task Allocation
Processor clusters that host resource agents are called synchronization clusters. Conversely,
processor clusters that host sporadic real-time tasks are called application clusters.

In this paper, we establish asymptotically tight lower and upper blocking bounds on maximum
blocking in two separate scenarios, which we refer to as “co-hosted” and “disjoint” task allocation,
respectively. Under co-hosted task allocation, the set of application clusters overlaps with the set
of synchronization clusters, that is, there exists a cluster that hosts both tasks and agents. In
contrast, under disjoint task allocation, clusters may host either agents or tasks, but not both. The
significance of these two allocation strategies is that they give rise to two distinct lower bounds on
worst-case blocking, as will become apparent in Section 3.

Next, we give a precise definition of what actually constitutes “blocking.”

2.3 Priority Inversion Blocking
The sharing of resources subject to mutual exclusion constraints inevitably causes some delays
because conflicting concurrent requests must be serialized. Such delays are problematic in a
real-time system if they lead to an increase in worst-case response times (i. e., if they affect
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some ri). Conversely, delays that do not affect ri are not considered to constitute “blocking” in
real-time systems. This is captured by the concept of priority inversion [44,48], which, intuitively,
exists if a job that should be scheduled according to its base priority is not scheduled, either
because it is suspended (while waiting to gain access to a shared resource) or because a job or
agent with elevated effective priority prevents it from being scheduled. To avoid confusion with
other interpretations of the term “blocking” (e. g., in an OS context, “blocking” often is used
synonymously with suspending), the term priority inversion blocking (pi-blocking) denotes any
resource-sharing-related delay that affects worst-case response times [16]. We let bi denote a
bound on the maximum pi-blocking incurred by any job of task Ti.

2.3.1 Suspension-Oblivious vs. Suspension-Aware Analysis
Prior work has shown that there exist in fact two kinds of priority inversion [16], depending on
how suspensions are accounted for by the employed schedulability analysis. The difference arises
because many published schedulability tests simply assume the absence of self-suspensions, which
are notoriously difficult to analyze (e. g., see [46]), and thus ignore a major source of pi-blocking.
Such suspension-oblivious (s-oblivious) schedulability tests can still be employed to analyze task
systems that exhibit self-suspensions, but require pi-blocking to be accounted for pessimistically
by inflating each execution requirement ei by bi prior to applying the schedulability test. This
results in sound, but likely pessimistic results: over-approximating all pi-blocking as additional
processor demand is safe because converting execution time to suspensions does not increase the
response time of any task (under preemptive JLFP scheduling), but is also likely pessimistic as the
processor load is lower in practice than assumed during analysis.

As an example of an s-oblivious schedulability test, consider Liu and Layland’s classic unipro-
cessor EDF utilization bound for implicit-deadline tasks: a set of independent sporadic tasks
τ is schedulable under EDF on a uniprocessor if and only if

∑
Ti∈τ

ei

pi
≤ 1 [37]. This test is

s-oblivious because tasks are assumed to be independent (i. e., there are no shared resources)
and because jobs are assumed to always be ready (i. e., there are no self-suspensions). However,
even if these assumptions are violated (i. e., if bi > 0 for some Ti), Liu and Layland’s utilization
bound can still be used after inflating all execution costs ei by the maximum pi-blocking bounds
bi [11,16,18]. That is, in the presence of locking-related self-suspensions, a set of resource-sharing,
implicit-deadline sporadic tasks τ is schedulable under EDF on a uniprocessor if

∑
Ti∈τ

ei+bi

pi
≤ 1.

While s-oblivious schedulability analysis may at first sight appear too pessimistic to be useful,
it is still relevant because some of the pessimism can actually be “reused” to obtain less pessimistic
pi-blocking bounds [11,16,18], and because many published multiprocessor schedulability tests
(e. g., [3–5,7–9,30]) do not account for self-suspensions explicitly.

In contrast, suspension-aware (s-aware) schedulability analysis explicitly accounts for all effects
of pi-blocking. For instance, response-time analysis (RTA) for (uniprocessor) FP scheduling [1, 35]
is a good example of effective s-aware schedulability analysis, and can be applied to partitioned
scheduling as follows. Let bri denote a bound on maximum remote pi-blocking (i. e., pi-blocking
caused by tasks or agents assigned to remote clusters), and let bli denote a bound on maximum
local pi-blocking (i. e., pi-blocking caused by tasks or agents assigned to cluster C(Ti)), where
bi = bri + bli. Then, assuming constrained deadlines (i. e., di ≤ pi), a task Ti’s maximum response
time ri is bounded by the smallest positive solution to the recursion [1, 35]

ri = ei + bri + bli +
∑

Th∈hp(Ti)

⌈
ri + brh
ph

⌉
· eh, (1)

where hp(Ti) denotes the set of tasks assigned to processor C(Ti) with higher priorities than Ti.
Equation (1) is an s-aware schedulability test because bi = bri + bli is explicitly accounted for.
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This difference—explicit vs. implicit suspension accounting—has a profound impact on the
exact nature of pi-blocking, as we review next.

2.3.2 S-Oblivious and S-Aware PI-Blocking
From the point of view of schedulability analysis, a priority inversion exists if a job is delayed
(i. e., not scheduled) and this delay cannot be attributed to the execution of a higher-priority job.5
Prior work [11,16, 18] has shown that, since s-oblivious schedulability analysis over-approximates
a task’s processor demand, the definition of “priority inversion” depends on the type of analysis.

I Definition 1. Under s-oblivious schedulability analysis, a job Ji of a task Ti assigned to cluster
Cj = C(Ti) incurs s-oblivious pi-blocking at time t if Ji is pending but not scheduled and fewer
than mj higher-priority jobs of tasks assigned to Cj are pending [16].

I Definition 2. Under s-aware schedulability analysis, a job Ji of a task Ti assigned to cluster
Cj = C(Ti) incurs s-aware pi-blocking at time t if Ji is pending but not scheduled and fewer than
mj higher-priority ready jobs of tasks assigned to Cj are scheduled [16].

Note that there cannot be fewer pending higher-priority jobs than there are scheduled higher-
priority jobs (i. e., a scheduled job is necessarily also pending). Hence, if a job Ji incurs s-oblivious
pi-blocking at a time t, then it incurs also s-aware pi-blocking at time t. However, the converse
does not hold: if Ji incurs s-aware pi-blocking time t, then it may be the case that it does not
incur s-oblivious pi-blocking at time t. More precisely, Ji incurs s-aware pi-blocking, but not
s-oblivious pi-blocking, at time t if there are at least mj higher-priority jobs pending, but fewer
than mj of them are scheduled at time t.

In other words, if Definition 1 is satisfied, then Definition 2 is satisfied as well. Therefore,
an upper bound on s-aware pi-blocking (Definition 2) implies an upper bound on s-oblivious pi-
blocking (Definition 1), as previously pointed out in [16]. Conversely, a lower bound on s-oblivious
pi-blocking (Definition 1) also implies a lower bound on s-aware pi-blocking (Definition 2). We
use this relationship in Section 3.

From a practical point of view, the difference between s-oblivious and s-aware pi-blocking
suggests that it is useful to design locking protocols specifically for a particular type of analysis.
From an optimality point of view, which we review next, the difference between s-oblivious
and s-aware pi-blocking is fundamental because—in shared-memory systems—the two types of
analysis have been shown to yield two different lower bounds on the amount of pi-blocking that is
unavoidable under any locking protocol [11,16].

2.3.3 PI-Blocking Complexity
As discussed in Section 1, blocking optimality is concerned with finding the smallest possible bound
on worst-case blocking. To enable systematic study of this question, maximum pi-blocking, formally
max{bi | Ti ∈ τ}, has been proposed as a metric of blocking complexity in prior work [11,16,18].

Concrete bounds on pi-blocking must necessarily depend on each Li,q—long requests will cause
long priority inversions under any protocol. Similarly, bounds for any reasonable protocol grow
linearly with the maximum number of requests per job. Thus, when deriving asymptotic bounds,
we consider, for each Ti,

∑
1≤q≤nr

Ni,q and each Li,q to be constants and assume n ≥ m. All
other parameters are considered variable (or dependent on m and n).

5 Regular interference due to the scheduling of higher-priority jobs is accounted for by any sound schedulability
test. A priority inversion exists if additional delay is incurred.
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Table 1 Summary of notation.

Symbol Definition

m total number of processors
K number of clusters, 2 ≤ K ≤ m
Cj the jth cluster, 1 ≤ j ≤ K
mj number of processors in Cj

n total number of tasks
Ti the ith sporadic task, 1 ≤ i ≤ n
Ji a job of Ti

ei Ti’s WCET
pi Ti’s period
di Ti’s relative deadline
ri Ti’s max. response time

C(Ti) Ti’s assigned cluster

Symbol Definition

nr number of shared resources
`q the qth shared resource, 1 ≤ q ≤ nr

Aq the agent handling requests for `q

C(`q) cluster to which `q is local

Ni,q max. number of requests of any Ji for `q

Li,q max. critical section length of Ti w.r.t. `q

Lmax max. Li,q for any Ti and any `q

bi max. pi-blocking incurred by any Ji

Φ ratio of the longest max. response time of
any Ti and the shortest period of any Ti

Under these assumptions, it was shown [11,16, 18] that, in the case of shared-memory locking
protocols, the lower bound on unavoidable pi-blocking depends on whether s-oblivious or s-aware
schedulability analysis is employed. More specifically, it was shown that there exist pathological
task sets such that maximum pi-blocking is linear in the number of processors m (and independent
of the number of tasks n) under s-oblivious analysis, but linear in n (and independent of m) under
s-aware analysis [11,16,18]. Further, it was shown that these bounds are asymptotically tight with
the construction of shared-memory semaphore protocols that ensure for any task set maximum
pi-blocking that is within a constant factor of the established lower bounds. In other words, in
the case of shared-memory semaphore protocols, the real-time mutual exclusion problem can be
solved such that max{bi | Ti ∈ τ} = Θ(m) under s-oblivious schedulability analysis, and such that
max{bi | Ti ∈ τ} = Θ(n) under s-aware schedulability analysis [11,16,18].

We can now precisely state the contribution of this paper: in the following sections, we establish
upper and lower bounds on max{bi | Ti ∈ τ} under s-oblivious and s-aware schedulability analysis
for distributed (i. e., DPCP-like) real-time locking protocols, thereby complementing the earlier
results on shared-memory (i. e., MPCP-like) real-time locking protocols [11, 16, 18]. For ease of
reference, the notation used in this paper is summarized in Table 1.

3 Lower Bounds on Maximum PI-Blocking

We start by establishing a lower bound on maximum s-oblivious and s-aware pi-blocking in the
case of co-hosted task allocation. To establish a general lower bound, it is sufficient to construct
an example task set that demonstrates that the claimed amount of pi-blocking (either s-aware or
s-oblivious) is always possible under any locking protocol compliant with Assumptions A1 and A2.
To this end, we establish the existence of pathological task sets in which some task always incurs
Ω(Φ · n) pi-blocking due to priority boosting (Assumption A1), regardless of whether s-oblivious
or s-aware schedulability analysis is used. This family of task sets is defined as follows.

I Definition 3. For a given smallest cluster size m1, a given number of tasks n (where n ≥
m ≥ 2 ·m1), and an arbitrary positive integer parameter R (where R ≥ 1), let τ seq(n,m1, R) ,
{T1, . . . , Tn} denote a set of n periodic tasks, with parameters as given in Table 2, that share one
resource `1 local to cluster C1 (i. e., C(`1) = C1).
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Table 2 Parameters of the tasks in τ seq(n,m1, R), where a = 1 and b = 2 if m1 > 1, and a = 1
2 and

b = 1 if m1 = 1. Tasks T1, . . . , Tm1 are assigned to the first cluster C1; all other tasks are assigned in a
round-robin fashion to clusters other than C1. Recall that n ≥ m ≥ 2 ·m1.

ei pi di Ni,1 Li,q C(Ti)
R·n

2 R · n R · n 0 0 C1 for i ∈ {1, . . . ,m1}
a n n+ 1 1 b C(2+i mod(K−1)) for i ∈ {m1 + 1, . . . , 2 ·m1}
a n n+ 1 1 a C(2+i mod(K−1)) for i > 2 ·m1 (if any)

151050 time

C2

C1 T1

T2

T3

T4

A1

T5

3 4 5 3 4 5 3 4 5
job release

job completion

RPC issued

critical section

suspended

reply received

3
scheduled on processor

41 2

Figure 1 Example schedule of the task set τ seq(n,m1, R) as specified in Table 2 for K = 2, m1 = 2,
m2 = 2, n = 5, and R = 3. There are five tasks T1, . . . , T5 assigned to K = 2 clusters sharing one resource
`1, which is local to cluster C1. Agent A1 is hence assigned to cluster C1. The small digit in each critical
section signifies the task on behalf of which the agent is executing the request. Deadlines have been
omitted from the schedule for the sake of clarity. By construction, the scheduling policy employed to
schedule jobs is irrelevant (for simplicity, assume FP scheduling, where lower-indexed tasks have higher
priority than higher-indexed tasks). The response-time of T2 is r2 = n · R = 5 · 3 = 15 since it has the
lowest priority in its assigned cluster C1, and because agent A1 is continuously occupying a processor.

The task set τ seq(n,m1, R) depends on the smallest cluster size m1 because, by construction,
the maximum pi-blocking will be incurred by tasks in cluster C1. Note in Table 2 that the
maximum critical section lengths (w.r.t. `1) depend on m1, which is required to accommodate the
special case of m1 = 1. We first consider the case of m1 > 1.

In the following, we assume a synchronous periodic arrival sequence, that is, each task Ti
releases a job at time zero and periodically every pi time units thereafter. We consider periodic
tasks (and not sporadic tasks) in this section because it simplifies the example, and since periodic
tasks are a special case of sporadic tasks and thus sufficient to establish a lower bound.

For simplicity and without loss of generality, we further assume that each job of tasks
Tm1+1, . . . , Tn immediately accesses resource `1 as soon as it is allocated a processor (i. e., at the
very beginning of the job). This results in a pathological schedule in which tasks Tm1+1, . . . , Tn
are serialized. Figure 1 depicts an example schedule for K = 2, m1 = 2, m2 = 2, n = 5, and
R = 3.

We begin by observing that the agent servicing requests for `1, denoted A1 in the following,
continuously occupies one of the processors in cluster C1.

I Lemma 4. If m1 > 1, then only m1−1 processors of cluster C1 service jobs of tasks T1, . . . , Tm1 .
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Proof. By construction, the agent A1 servicing requests for resource `1 is located in cluster C1.
By Assumption A1, when servicing requests, agent A1 preempts any job of T1, . . . , Tm1 . By
Assumption A2, and since there exists only a single shared resource, agent A1 becomes active as
soon as a request for `1 is issued. Thus, a processor in C1 is unavailable for servicing jobs of tasks
T1, . . . , Tm1 whenever A1 is servicing requests issued by jobs of tasks Tm1+1, . . . , Tn.

Consider an interval [ta, ta + n), where ta = x · n and x ∈ N. Assuming a synchronous,
periodic arrival sequence, tasks Tm1+1, . . . , Tn each release a job at time ta. Upon being scheduled,
each such job immediately accesses resource `1 and suspends until its request is serviced. As a
result, regardless of the JLFP policy used to schedule jobs, A1 is active during [ta, ta + n) for
the cumulative duration of all requests issued by jobs of tasks Tm1+1, . . . , Tn released at time
ta. Assuming each request requires the maximum time to service, agent A1 is thus active for a
duration of

n∑
i=m1+1

Ni,1 · Li,1 =
2m1∑

i=m1+1
Ni,1 · Li,1 +

n∑
i=2m1+1

Ni,1 · Li,1 =
2m1∑

i=m1+1
2 +

n∑
i=2m1+1

1 = n

time units during the interval [ta, ta+n), regardless of how the employed locking protocol serializes
requests for `1. Hence, only m1 − 1 processors are available to service jobs of T1, . . . , Tm1 during
the interval [ta, ta+n). Since such intervals are contiguous (as ta = x ·n and x ∈ N), one processor
in C1 is continuously unavailable to jobs of T1, . . . , Tm1 under any JLFP scheduling policy and
any distributed locking protocol satisfying assumptions A1 and A2. J

This in turn implies that the execution of one of the jobs of tasks T1, . . . , Tm1 is delayed.

I Lemma 5. If m1 > 1, then max {ri | 1 ≤ i ≤ m1 } = R · n.

Proof. Consider an interval [ta, ta+R ·n), where ta = x ·R ·n and x ∈ N. Assuming a synchronous,
periodic arrival sequence, tasks T1, . . . , Tm1 each release a job at time ta. Regardless of the (work-
conserving) JLFP policy employed to assign priorities to jobs, one of these m1 jobs will have lower
priority than the other m1 − 1 ready pending jobs in cluster C1. Recall that we assume that
priorities are unique (i. e., any ties in priorities are subject to arbitrary but consistent tie-breaking).
Let Jl denote this lowest-priority job. By Lemma 4, there are only m1 − 1 processors available
to service jobs. Thus Jl will only be scheduled after one of the other jobs has finished execution.
Since each task assigned to cluster C1 has a worst-case execution time of ei = R·n

2 , in the worst
case, job Jl is not scheduled until time ta + R·n

2 , and then requires another el = R·n
2 time units of

processor service to complete. Hence, max {ri | 1 ≤ i ≤ m1 } = 2ei = R · n. J

So far we have considered only the case of m1 > 1. By construction, the same maximum
response-time bound arises also in the case of m1 = 1.

I Lemma 6. If m1 = 1, then max {ri | 1 ≤ i ≤ m1 } = R · n.

Proof. If m1 = 1, then there is only one task assigned to cluster C1. The single processor in C1 is
available to jobs of T1 only when A1 is inactive. Recall from Table 2 that the maximum critical
section lengths of tasks Tm1+1, . . . , Tn are halved if m1 = 1. Analogously to Lemma 4, it can thus
be shown that, in the worst case, the single processor in C1 is available to T1 for only n

2 time units
out of each interval [x · n, x · n+ n), where x ∈ N.

Consider an interval [ta, ta +R · n), where ta = x ·R · n and x ∈ N. Assuming a synchronous
arrival sequence, task T1 releases a J1 at time ta. In the worst case, J1 requires e1 = R·n

2 time
units to complete. Assuming maximum interference by A1 (i. e., if the processor is unavailable to
J1 for n

2 time units every n time units), J1 will accumulate e1 time units of processor service only
by time ta + 2ei = ta +R · n. J
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Since there are m1 processors and m1 pending jobs in cluster C1, all pending jobs should
be immediately scheduled under any work-conserving scheduling policy. However, since the
priority-boosted agent occupies one of the processors, this is not the case, which implies that one
job incurs s-oblivious pi-blocking (under any work-conserving JLFP policy).

I Lemma 7. Under s-oblivious schedulability analysis, max {bi | Ti ∈ τ seq(n,m1, R)} ≥ R·n
2 .

Proof. By construction, there are at most m1 pending jobs in cluster C1 at any time. Hence any
delay of a pending job constitutes s-oblivious pi-blocking (recall Definition 1): bi = ri− ei for each
Ti ∈ {T1, . . . , Tm1}, regardless of the employed JLFP scheduling policy. Since ei = R·n

2 for each
Ti ∈ {T1, . . . , Tm1}, we have max {bi | 1 ≤ i ≤ n} ≥ max {ri | 1 ≤ i ≤ m1 } − R·n

2 . By Lemmas 5
and 6, max {ri | 1 ≤ i ≤ m1 } = R · n, and thus max {bi | 1 ≤ i ≤ n} ≥ R · n− R·n

2 = R·n
2 . J

Since the agent A1 and tasks T1, . . . , Tm1 share a cluster in τ seq(n,m1, R), and because the s-
oblivious pi-blocking implies s-aware pi-blocking, we obtain the following lower bound on maximum
pi-blocking under co-hosted task allocation.

I Theorem 8. Under JLFP scheduling, using either s-aware or s-oblivious schedulability analysis,
there exists a task set such that, under co-hosted task allocation, max{bi} = Ω(Φ · n) under
any weakly work-conserving distributed multiprocessor real-time semaphore protocol that employs
priority-boosted agents (i. e., under protocols matching Assumptions A1 and A2).

Proof. By Lemma 7, there exists a task set τ seq(n,m1, R) such that, under s-oblivious schedula-
bility analysis, any JLFP policy, and any distributed multiprocessor semaphore protocol satisfying
Assumptions A1 and A2, max {bi | Ti ∈ τ seq(n,m1, R)} ≥ R·n

2 for any R ∈ N. Recall from
Section 2.1 that Φ = max{ri}

min{pi} , and hence Φ = R·n
n = R in the case of τ seq(n,m1, R). Since R can

be freely chosen, we have max{bi} = Ω(R · n) = Ω(Φ · n) under s-oblivious schedulability analysis.
Recall from Section 2.3 that s-oblivious pi-blocking implies s-aware pi-blocking (i. e., Definition 2

holds if Definition 1 is satisfied). The established lower bound on s-oblivious pi-blocking therefore
also applies to s-aware pi-blocking [16], and thus max{bi} = Ω(Φ · n) under either s-aware or
s-oblivious schedulability analysis. J

Compared to a shared-memory system, where the shared-memory mutual exclusion problem
can be solved with Θ(n) maximum s-aware pi-blocking in the general case [11, 16], Theorem 8
shows that maximum pi-blocking under distributed locking protocols is asymptotically worse by
a factor of Φ. Maximum s-oblivious pi-blocking is also asymptotically worse—the equivalent
shared-memory mutual exclusion problem can be solved with Θ(m) maximum s-oblivious pi-
blocking [11, 16, 18] (recall that we assume n ≥ m). Note that, Φ, the ratio of the maximum
response time and the minimum period, can in general be arbitrarily large and is independent
of either m or n. This suggests that, from a schedulability point of view, the mutual exclusion
problem is fundamentally more difficult in a distributed environment.

The observed discrepancy, however, is entirely due to the effects of preemptions caused by
priority-boosted agents. While it is not possible to avoid priority boosting entirely (otherwise
excessive pi-blocking could result when agents are preempted by jobs with large execution costs),
such troublesome preemptions can be easily ruled out by disallowing the co-hosting of agents
and tasks in the same cluster. And in fact, when using such a disjoint task allocation approach,
the asymptotic lower bounds on maximum pi-blocking under distributed locking protocols are
identical to those previously established for shared-memory semaphore protocols. The matching
lower bounds can be trivially established with the setup previously used in [16]; we omit the
details here and summarize the correspondence with the following theorem.
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I Theorem 9. There exist task sets such that, under JLFP scheduling, disjoint task allocation, and
any distributed real-time semaphore protocol satisfying Assumptions A1 and A2, max{bi} = Ω(n)
under s-aware schedulability analysis and max{bi} = Ω(m) under s-oblivious schedulability analysis.

Having established lower bounds on s-oblivious and s-aware pi-blocking under both co-hosted
and disjoint task allocation, we next explore the question of asymptotic optimality—how to
construct protocols that ensure upper bounds on maximum pi-blocking that are within a constant
factor of the established lower bounds? We begin with the co-hosted case in Section 4, and consider
the disjoint case in Section 5 thereafter.

As a final remark, we note that the task set τ seq(n,m1, R) as given in Table 2 contains tasks
with relative deadlines larger than periods (i. e., di > pi for i > m1). This is purely a matter of
convenience; asymptotically equivalent bounds can be derived with implicit-deadline tasks.

4 Asymptotic Optimality under Co-Hosted Task Allocation

Theorem 8 shows that there exist pathological scenarios in which the choice of real-time locking
protocol is seemingly irrelevant: regardless of the specifics of the employed locking protocol,
worst-case pi-blocking is asymptotically worse than in a comparable shared-memory system simply
because resources are inaccessible from some processors. Curiously, from an asymptotic point of
view, protocol-specific rules are indeed immaterial: any distributed real-time locking protocol that
does not starve requests is asymptotically optimal in the case of co-hosted task allocation.

I Theorem 10. Under any JLFP scheduler, any weakly-work-conserving, distributed real-time
semaphore protocol that employs priority boosting (i. e., any protocol matching Assumptions A1
and A2) ensures O(Φ · n) maximum pi-blocking, regardless of whether s-aware or s-oblivious
schedulability analysis is employed.

Proof. Recall from Definition 2 that a pending job Jb incurs s-aware pi-blocking if Jb is not
scheduled and not all processors in its assigned cluster are occupied by higher-priority jobs. This
happens either when (i) Jb is suspended while waiting for a resource request to be completed, or
when (ii) Jb is preempted by a priority-boosted agent that executes on behalf of another job.

Concerning (i), the completion of Jb’s own requests can only be delayed by other requests
(and not by the execution of other jobs) since agents are priority-boosted, and since the employed
distributed locking protocol is weakly work-conserving (i. e., whenever one of Jb’s requests is
delayed, at least one other request is being processed by some agent).

Concerning (ii), agents only become active when invoked by other jobs.
Hence the total duration of all requests (issued by jobs of any task) that are executed while Jb

is pending provides a trivial upper bound on the maximum cumulative agent activity, and hence
also on the maximum total duration of pi-blocking incurred by Jb.

To this end, consider for any task Tx the maximum number of jobs of Tx that execute while
Jb is pending, which is bounded by

⌈
rx+rb

px

⌉
.6 Since there are n tasks in total, this implies that

at most
∑n
x=1

⌈
rx+rb

px

⌉
=
∑n
x=1

⌈
rx

px
+ rb

px

⌉
≤
∑n
x=1

⌈
maxi{ri}
mini{pi} + maxi{ri}

mini{pi}

⌉
= n · d2Φe = O(Φ · n)

jobs (in total across all tasks) are executed while Jb is pending. Since
∑
`q
Ni,q · Li,q = O(1)

for each Ti (i. e., since each job issues at most a constant number of requests), it follows that
maxi{bi} = O(n · Φ), regardless of any protocol-specific rules.

Recall from Section 2.3 that s-oblivious pi-blocking implies s-aware pi-blocking (i. e., if Defini-
tion 1 is satisfied, then Definition 2 holds, too). Hence, an upper bound on s-aware pi-blocking

6 See e. g. [11, Ch. 4] for a formal proof of this well-known bound.
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implicitly also upper-bounds s-oblivious pi-blocking, and thus maxi{bi} = O(n · Φ) under either
s-oblivious or s-aware schedulability analysis. J

As a corollary, Theorem 10 implies that the DPCP, which orders requests according to task
priority, is asymptotically optimal in the co-hosted setting. However, it also shows that requests
may be processed in arbitrary order (e. g., in FIFO order, or even in random order) without
losing asymptotic optimality (as long as at least one request at a time is satisfied and agents are
priority-boosted), which is surprising as the queue order is crucial in the shared-memory case [16].

As already noted in the previous section, by prohibiting the co-hosting of resources and tasks—
that is, somewhat counter-intuitively, by making the system less similar to a shared-memory
system (in which tasks and critical sections are necessarily co-hosted, i. e., executed on the same set
of processors)—it is indeed possible to ensure maximum s-aware pi-blocking that is asymptotically
no worse than under a shared-memory locking protocol. We establish this fact next by introducing
two new protocols that realize O(n) and O(m) maximum pi-blocking under s-aware and s-oblivious
schedulability analysis, respectively, in the case of disjoint task allocation. As one might expect,
the choice of queue order is significant in this case.

5 Asymptotic Optimality under Disjoint Task Allocation

Prior work [11,15,16,18] has established shared-memory protocols that yield upper bounds on
maximum s-aware and s-oblivious pi-blocking of O(n) and O(m), respectively. These protocols,
namely the FIFO Multiprocessor Locking Protocol (FMLP+) for s-aware analysis [11,15] and the
family of O(m) Locking Protocols (the OMLP family) for s-oblivious analysis [11,16,18], rely on
specific queue structures with strong progress guarantees to obtain the desired bounds. In the
following, we show how the key ideas underlying the FMLP+ and the OMLP family can be adopted
to the problem of designing asymptotically optimal locking protocols for the distributed case
studied in this paper. We begin with the slightly simpler s-aware case.

5.1 Asymptotically Optimal Maximum S-Aware PI-Blocking
Inspired by the FMLP+ [11], the Distributed FIFO Locking Protocol (DFLP) relies on simple FIFO
queues to avoid starvation. Notably, the DFLP ensures O(n) maximum s-aware pi-blocking under
disjoint task allocation and transparently supports arbitrary, non-uniform cluster sizes (i. e., unlike
the DPCP, the DFLP supports distributed systems consisting of multiprocessor nodes with mj > 1
for some Cj and allows mj 6= mh for any j 6= h). We first describe the structure and rules of the
DFLP, and then establish its asymptotic optimality.

5.1.1 Rules
Under the DFLP, conflicting requests for each serially-reusable resource `q are ordered with a
per-resource FIFO queue FQq. Requests for `q are served by an agent Aq assigned to `q’s cluster
C(`q). Resource requests are processed according to the following rules.
1. When Ji issues a request R for resource `q, Ji suspends and R is appended to FQq. Ji’s

request is processed by agent Aq when R becomes the head of FQq.
2. When R is complete, it is removed from FQq and Ji is resumed.
3. Active agents are scheduled preemptively in the order in which their current requests were

issued (i. e., an agent processing an earlier-issued request has higher priority than one serving
a later-issued request). Any ties can be broken arbitrarily (e. g., in favor of agents serving
requests of lower-indexed tasks).

4. Agents have statically higher priority than jobs (i. e., agents are subject to priority-boosting).
We next show that these simple rules yield asymptotic optimality.
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5.1.2 Blocking Complexity
The co-hosted case is trivial since the DFLP uses priority boosting (Rule 4) and because it is
weakly work-conserving (requests are satisfied as soon as the requested resource is available—see
Rule 1); Theorem 10 hence applies.

To show asymptotic optimality in the disjoint case, we first establish a per-request bound on
the number of interfering requests that derives from FIFO-ordering both requests and agents.

I Lemma 11. Let R denote a request issued by a job Ji for a resource `q and let Tx denote a
task other than Ti (i. e., i 6= x). Under the DFLP, jobs of Tx delay the completion of R with at
most one request.

Proof. Ji’s request R cannot be delayed by later-issued requests since FQq is FIFO-ordered and
because agents are scheduled in FIFO order according to the issue time of the currently-served
request. Since R is not delayed by later-issued requests (and clearly not by earlier-completed
requests), all requests that delay the completion of R are incomplete at the time that R is issued.
Since tasks and jobs are sequential, and since jobs request at most one resource at a time, there
exists at most one incomplete request per task at any time. J

An O(n) bound on maximum s-aware pi-blocking follows immediately since each of the other
n − 1 tasks delays Ji at most once each time Ji requests a resource, and since agents cannot
preempt jobs in the disjoint setting.

I Theorem 12. Under the DFLP with disjoint task allocation, max{bi} = O(n).

Proof. Let Ji denote an arbitrary job. Since, by assumption, no agents execute on Ji’s cluster, Ji
incurs pi-blocking only when suspended while waiting for a request to complete. By Lemma 11,
each other task delays each of Ji’s

∑
q Ni,q requests for at most the duration of one request,

that is, per request, Ji incurs no more than n · Lmax s-aware pi-blocking. Since Ji issues at
most

∑
q Ni,q requests, and since by assumption

∑
q Ni,q = O(1) and Lmax = O(1), we have

bi ≤ n · Lmax ·
∑
q Ni,q = O(n). J

The DFLP is thus asymptotically optimal with regard to maximum s-aware pi-blocking, under
both co-hosted (Theorem 10) and disjoint task allocation (Theorem 12). In contrast, the DPCP
does not generally guarantee O(n) s-aware pi-blocking in the disjoint case since it orders conflicting
requests by task priority and is thus prone to starvation issues (this can be shown similarly to the
lower bound on priority queues established in [11,16]).

This concludes the case of s-aware analysis. Next, we consider the s-oblivious case.

5.2 Asymptotically Optimal Maximum S-Oblivious PI-Blocking
In this section, we define and analyze the Distributed O(m) Locking Protocol (D-OMLP), which
augments the OMLP family with support for distributed systems.

In order to prove optimality under s-oblivious analysis, a protocol must ensure an upper bound
of O(m) s-oblivious pi-blocking. Since there are n ≥ m tasks in total, if each task is allowed to
submit a request concurrently, excessive contention could arise at each agent: if an agent is faced
with n concurrent requests, it is not possible to ensure O(m) maximum s-oblivious pi-blocking
regardless of the order in which requests are processed. Thus, it is necessary to limit contention
early within each application cluster (where job priorities can be taken into account) to only allow
a subset of high-priority jobs to invoke agents at the same time. In the interest of practicality,
such “contention limiting” should not require coordination across clusters, but rather must be
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based on only local information. As we show next, this can be accomplished by reusing (aspects
of) two protocols of the OMLP family.

The first technique is to introduce contention tokens, which are virtual, cluster-local resources
that a job must acquire prior to invoking an agent. This technique was previously used in the
shared-memory OMLP variant for partitioned JLFP scheduling [16]. By limiting the number of
contention tokens to m in total (i. e., by assigning exactly mj such tokens to each cluster Cj),
each agent is faced with at most m concurrent requests.

This in turn creates the problem of managing access to contention tokens. However, since
contention tokens are a cluster-local resource, this reduces to a shared-memory problem and prior
results on optimal shared-memory real-time synchronization can be reused. In fact, as there
may be multiple contention tokens in each cluster (if mj > 1), of which a job may use any one,
this reduces to a k-exclusion problem (where k denotes the number of tokens per cluster in this
case). Several asymptotically optimal solutions for the k-exclusion problem under s-oblivious
analysis have been developed [18, 25, 50], including a variant of the OMLP [18]; the contention
tokens can thus be readily managed within each cluster using any of the available k-exclusion
protocols [18,25,50]. These considerations lead to the following protocol definition.

5.2.1 Rules
Under the D-OMLP, there are mj contention tokens in each cluster Cj , for a total of m =

∑K
j=1 mj

such tokens. As in the DFLP, there is one agent Aq and a FIFO queue FQq for each resource `q.
Jobs may access shared resources according to the following rules. In the following, let Ji

denote a job that must access resource `q.
1. Before Ji may invoke agent Aq, it must first acquire a contention token local to cluster C(Ti)

according to the rules of an asymptotically optimal k-exclusion protocol.
2. Once Ji holds a contention token, it immediately issues its request R by invoking Aq and

suspends. R is appended to FQq and processed by Aq when it becomes the head of FQq.
3. When R is complete, it is removed from FQq. Ji is resumed and immediately relinquishes its

contention token.
4. Active, ready agents are scheduled preemptively in order of non-decreasing request enqueueing

times (i. e., while processing R, agent Aq’s priority is the point in time at which R was
enqueued in FQq). Any ties in the times that requests were enqueued can be broken arbitrarily.

5. Agents have a statically higher priority than jobs (i. e., agents are subject to priority-boosting).

As shown next, the contention tokens in combination with FIFO-ordering requests and agents
yield an asymptotically optimal maximum s-oblivious pi-blocking bound.

5.2.2 Blocking Complexity
As with the DFLP, the co-hosted case is trivial since Theorem 10 applies to the D-OMLP.

In the disjoint case, we first establish a bound on the maximum token-hold time, since jobs can
incur s-oblivious pi-blocking both due to Rule 1 (i. e., when no contention tokens are available)
and due to Rules 2 and 4 (i. e., when R is preceded by other requests in FQq or if Aq is preempted
while processing R).

I Lemma 13. A job Ji holds a contention token for at most m · Lmax time units per request.

Proof. By Rules 1 and 3, a job Ji holds a contention token while it waits for its request R to be
completed. Analogously to Lemma 11, since FQq is FIFO-ordered and since agents are scheduled
in FIFO order w.r.t. the time that requests are enqueued (Rule 4), the completion of R can only
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be delayed due to the execution of requests that were incomplete at the time that R was enqueued
in FQq. By Rule 1, only jobs holding a contention token may issue requests to agents. Since there
are only m =

∑K
j=1 mj contention tokens in total, there exist at most m− 1 incomplete requests

at the time that R is enqueued in FQq. Hence, R is completed and Ji relinquishes its contention
token after at most m · Lmax time units. J

By leveraging a k-exclusion protocols that is asymptotically optimal under s-oblivious analysis
(Rule 1), Lemma 13 immediately yields an O(m) bound on maximum s-oblivious pi-blocking.

I Theorem 14. Under the D-OMLP with disjoint task allocation, max{bi} = O(m).

Proof. Let H denote the maximum token-hold time. By Lemma 13, the maximum token-hold time
is H = m · Lmax = O(m). Further, H represents the “maximum critical section length” w.r.t. the
contention token k-exclusion problem. By Rule 1, an asymptotically optimal k-exclusion protocol
is employed to manage access to contention tokens within each cluster. Applied to a cluster with
mj processors, the k-exclusion problem can be solved such that jobs incur s-oblivious pi-blocking
for the duration of at most O

(mj

k

)
critical section lengths per request [18, 25, 50]. Under the

D-OMLP, there are k = mj contention tokens in each cluster Cj . Hence, in the disjoint setting, a
task assigned to cluster Cj incurs O

(
mj

mj
·H
)

= O(H) = O(m) s-oblivious pi-blocking. J

The D-OMLP is thus asymptotically optimal under s-oblivious schedulability analysis, and
hence a natural extension of the OMLP family to the distributed real-time locking problem.

6 Conclusion

In this paper, we studied blocking optimality in distributed real-time locking protocols. We
identified two different task and resource allocation strategies, namely co-hosted and disjoint task
allocation, that give rise to different answers to this question. In the co-hosted case, under both
s-aware and s-oblivious analysis, Ω(Φ · n) maximum pi-blocking is unavoidable in the general case,
whereas in the disjoint case, Ω(n) maximum s-aware and Ω(m) maximum s-oblivious pi-blocking
are the fundamental lower bounds. The significance of these bounds is that the lower bound on
maximum pi-blocking in the case of co-hosted task allocation is asymptotically worse than in an
equivalent shared-memory scenario. In contrast, disjoint task allocation yields the same lower
bounds already known from the analysis of shared-memory synchronization.

We further showed that the established lower bounds are asymptotically tight. In the co-
hosted case, any distributed locking protocol satisfying Assumptions A1 and A2 is asymptotically
optimal (Theorem 10). To prove asymptotic tightness in the disjoint case, we introduced two new
distributed real-time semaphore protocols. Specifically, the DFLP is asymptotically optimal under
s-aware analysis, and the D-OMLP is asymptotically optimal under s-oblivious analysis, both w.r.t.
the maximum pi-blocking metric.

Pi-blocking is generally undesirable, and hence protocols that guarantee lower asymptotic
pi-blocking bounds are intuitively preferable. Our results are the first formal characterization of
the fundamental limits on pi-blocking in a distributed setting and serve to structure the design
space of distributed real-time locking protocols. However, one should also note that a lower
asymptotic pi-blocking bound does not necessarily imply better overall schedulability.

For one, while disjoint task allocation permits lower bounds on pi-blocking, it also requires
dedicating some cluster(s) to agents, which, depending on constant factors such as the level of
contention and critical section lengths, may decrease the overall utilization of the system. Whether
disjoint task allocation is beneficial is thus a workload-specific question that must be answered
individually for each task set.
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Further, asymptotic optimality does not imply that an asymptotically optimal protocol is
always preferable to a non-optimal one. Rather, blocking bounds of asymptotically similar locking
protocols can still differ significantly in absolute terms. Whether a particular locking protocol
is suitable for a particular task set depends on both the task set’s specific requirements and a
protocol’s constant factors, which asymptotic analysis does not reflect. In particular, this is the
case under co-hosted task allocation, where all distributed locking protocols (in the considered
class of protocols) differ only in terms of constant factors. Fine-grained (i. e., non-asymptotic)
bounds on maximum pi-blocking suitable for schedulability analysis are thus required for practical
use and to enable a detailed comparison. Such bounds should not only reflect a detailed analysis
of protocol rules, but also exploit task-set-specific properties such as per-task bounds on request
lengths and request frequencies. For the DFLP and the DPCP, we have recently developed such
bounds [14]; the same techniques could also be applied to analyze the D-OMLP.

As noted in Section 2.2, we have made the assumption that jobs can invoke agents with
“negligible” overheads (i. e., with overheads that can be accounted for using known overhead
accounting techniques [11]). This is a reasonable assumption in platforms with point-to-point
links, in systems with networks employing TDMA or time-triggered [34] arbitration policies, or if
distributed semaphore protocols are implemented on top of a (large) shared-memory platform
(e. g., see [14] for such a case). However, the assumption may be more problematic in systems
that require explicit message routing across a shared, dynamically arbitrated network. Assuming
there exists an upper bound ∆i,q on the message delay between a task Ti and each agent Aq,
such delays can be incorporated by simply increasing Ti’s self-suspension time by 2∆i,q for each
agent invocation (under the D-OMLP, the maximum token-hold time is increased by 2∆i,q as
well). If ∆i,q can be considered constant (i. e., if ∆i,q = O(1) from an asymptotic analysis point
of view), then the asymptotic upper and lower bounds established in this paper remain unaffected.
If, however, ∆i,q depends on m or n, or on other non-constant factors, then additional analysis is
required, which may be an interesting direction for future work.

In another opportunity for future work, it will also be interesting to explore how to accommodate
nested requests, that is, how to allow complex requests that require agents to invoke other agents.
Ward and Anderson have recently shown that arbitrarily deep nesting can be supported in shared-
memory locking protocols without loss of asymptotic optimality [49]; however, it remains to be
seen how their techniques can be extended to distributed real-time semaphore protocols.
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Abstract
Computation offloading has been adopted to im-
prove the performance of embedded systems by
offloading the computation of some tasks, espe-
cially computation-intensive tasks, to servers or
clouds. This paper explores computation offloading
for real-time tasks in embedded systems, provided
given response time guarantees from the servers, to
decide which tasks should be offloaded to get the
results in time. We consider frame-based real-time
tasks with the same period and relative deadline.
When the execution order of the tasks is given,
the problem can be solved in linear time. How-

ever, when the execution order is not specified,
we prove that the problem is N P-complete. We
develop a pseudo-polynomial-time algorithm for
deriving feasible schedules, if they exist. An ap-
proximation scheme is also developed to trade the
error made from the algorithm and the complexity.
Our algorithms are extended to minimize the peri-
od/relative deadline of the tasks for performance
maximization. The algorithms are evaluated with a
case study for a surveillance system and synthesized
benchmarks.
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1 Introduction

In the recent years, a significant increase in the development of mobile devices has been achieved.
They have become devices that provide various computation-intensive services and applications,
including video, audio, images, etc. Also, mobile robots have become more and more popular
and important in the recent years. For instance, the sales of service robots for personal and
household purposes have been increased significantly in the past years, i. e., 35% increase in
2010 [7]. Furthermore, the number of service robots sold per year is also expected to increase in
the next few years [7].

However, due to the resource constraints on both mobile devices and robots, their computation
capabilities are still quite limited. For some applications on these devices, if the peak performance
requirement happens rarely or is not always required, designing the embedded system for the
extreme case to achieve the peak performance is usually too pessimistic, as most resources will be
wasted. Moreover, when increasing the performance of an embedded system, we will also usually
increase the power consumption, the weight, and also the cost of the devices.

Improving the embedded systems just for extreme cases, for executing some computation-
intensive applications, may waste the device resources in normal cases if the extreme case is needed
rarely. Therefore, computation offloading can be used to move a task from a resource-constrained
device (here, we call it a client) to one or more devices (here, we call them servers). Figure 1
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Figure 1 Offloading Mechanism.

illustrates the computation offloading mechanism. The task can be a part of an active program
(e. g., function, class, etc.) or a complete one. The servers can either provide faster execution in
general (e. g., powerful desktop, an array of high-performance blade servers, cloud of computers,
etc.) or accelerate the execution for some specific tasks (e. g., digital signal processing (DSP) units
for signal decoding/encoding, General-purpose computing on graphics processing units (GPGPU)
for accelerating, etc.). Furthermore, the server may be slower than the client. For such a case,
the offloading may also be beneficial. Because the computation is done remotely, the energy
consumption of the client can be reduced, or another task can be executed on the client while
awaiting the results from the servers.

For example, some computation-intensive real-time tasks may be required to run on the
Electronic Control Units (ECUs), that are distributed in the the automobiles, for specific time.
However, this resource-constrained ECUs may not be able to finish the tasks execution in time.
Improving the ECUs just for the extreme cases, if they happen rarely, to execute computation-
intensive tasks may waste the resources in the normal cases and increases their cost. Therefore,
offloading the computation-intensive tasks to a server (i. e., an additional processing unit inside
the automobile with timing predictable communication), that serves all the ECUs in the extreme
cases, is a cheaper and more flexible solution.

The idea of computation offloading has been studied previously [16, 9, 17, 10, 6, 3, 12, 8].
The existing approaches decide whether to execute a task locally or offload it without changing
the execution order for the independent tasks. So, the client remains idle during the remote
execution of an offloaded task until the result of this task returns from the server. Also, they
consider, implicitly, a dedicated server for each client to run the offloaded task immediately.
Furthermore, most of the existing computation offloading approaches either do not consider the
timing satisfaction requirement for real-time properties, e. g., in [9, 16, 10, 6, 17], or use pessimistic
offloading mechanism for deciding whether a task can be offloaded [12]. Timing requirements
are important for real-time embedded systems, in which the results may become useless or even
harmful to the client if the deadlines are missed.

Our Contributions. In this paper, computation offloading is exploited for real-time systems to
meet the timing constraints. We consider frame-based real-time tasks with the same period and
relative deadline under given response time guarantees from the servers. Our model is more
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applicable for real-time embedded systems than the existing related work [16, 9, 17, 10, 6, 3, 12],
in which (1) the client can execute another task locally while some offloaded tasks are executed
on the servers, and (2) the server is not dedicated to a client to provide the service immediately,
but provide a certain response timing assurance for the offloaded tasks. Our contributions are as
follows:

We prove that the offloading problem is NP-complete even for frame-based real-time tasks
with the same period and relative deadline without a specified execution order.
We develop algorithms for deciding which tasks to be offloaded and how the tasks are executed to
meet the timing constraints, for frame-based real-time tasks. We consider two cases, depending
on whether the execution order of the tasks on the client is given or not. In case the order is
given, the problem can be solved efficiently. Otherwise, we develop a pseudo-polynomial-time
algorithm to derive a feasible schedule, if and only if it exists.
We also provide an approximation scheme to trade the error made from the algorithm and the
time/space complexity.
Our algorithms can also be extended to maximize the sampling rate of the frame-based tasks
by minimizing the period/relative deadline of the tasks.
We evaluate for our proposed algorithms using a case study of a real-world application and
randomly synthesized benchmarks. In our case study, a surveillance system is used to capture
images periodically and execute four tasks within a deadline (i. e. sampling period).

The remainder of this paper is organized as follows: Section 2 summarizes the related work on
computation offloading. Section 3 provides system model. Section 4 presents an efficient algorithm
when the execution order is given. The hardness of the studied problem is shown in Section 5.
Section 6 presents our approaches when the execution order is not given. Experimental results are
presented in Section 7, and Section 8 concludes the paper.

2 Related Work

Computation offloading has been adopted in the literature to satisfy real-time requirements [12],
improve performance [16], save energy [9, 17, 10, 6], and improve the quality of service [3].

For reducing the execution time and also the response time, Nimmagadda et al. [12] propose
an offloading framework for mobile robots to satisfy the real-time constraints. Also, Wolski et
al. [16] formulate computation offloading as a statistical decision problem by considering both
the client and the servers are in computational grids. Offloading decisions in both of the above
approaches are based on the comparison between two values: (1) the local execution time, and
(2) the summation of the expected remote execution time in the server(s) and data transfer time.
If the second value is less than the first one for a specific task, then this task is offloaded to the
server(s) [12, 16].

Hong et al. [6] present an offloading strategy with three offloading options to reduce the
energy consumption. Their strategy is dedicated for content-based image retrieval applications in
mobile systems. For handheld devices, Li et al. [9] develop a scheme to run a program (task) by
characterizing its corresponding client subtasks and server subtasks for executing on the client
and servers, respectively. They build a cost graph for each program and use a branch-and-bound
algorithm to minimize the energy consumption of the client. Moreover, Li et al. [10] also develop a
computation offloading scheme by applying the standard maximum-flow/minimum-cut algorithm
for deciding the server and client subtasks. For reducing the energy consumption, Xian et al. [17]
apply timeout mechanism so that a task will be offloaded to a server if it cannot be finished before
the timeout (timestamp) set for it. A middleware for mobile Android platforms is developed by
Kovachev et al. [8] to offload the computation-intensive tasks from the mobile device to a remote

LITES
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Figure 2 Timing parameters for two tasks.

cloud. The Offloading decision is represented as an optimization problem and solved using Integer
Linear Programming (ILP).

3 System Model

We consider a system of one client and one or more servers for computation enhancement. Servers
may provide higher computation capability than the client. On the client side, a set of frame-based
real-time tasks arrive periodically and require execution within a common relative deadline. The
tasks can be offloaded to the servers, but the results should be returned in time, i. e., no later
than the deadline. The tasks are independent in execution without precedence constraints. The
client has to schedule task executions to satisfy the real-time constraints.

3.1 Client Side
Suppose that we are given a set T of n independent frame-based real-time tasks. Each task τi
in T (for i = 1, 2, . . . , n) represents an execution unit, and it can be considered as an infinite
sequence of instances, which called jobs. All the tasks have the same arrival time 0, period D and
relative deadline D, i. e., with implicit deadlines. Each task τi ∈ T is associated with the following
timing parameters:

Worst-case local execution time Ci: If task τi is decided to be executed locally on the client,
the worst-case execution time required to finish task τi is up to Ci.
Setup time Si: is the execution time required on the client so that the required information
can be sent to a corresponding server for offloading. It includes transmission time to the server
and any local pre-processing operations such as data compression and transformation. As a
result, when a task τi is offloaded, it has to be executed on the client for up to Si amount of
time, we say that τi is settled for offloading. After the setup time finishes on the client for
offloading, the corresponding server can start task processing on its side.1
Round-trip offloading time Ii: the interval length starting from the end of setting up Si for
task τi until getting the result from the server. If a server, or a processor, with a speed-up
factor of α is dedicated for each offloaded task, then Ii is equal to the execution time on its side
which can be computed as Ci

α . Otherwise, when the server may handle more than one task,
the server has its own scheduling policy and it provides a response time guarantee Ii for each
task. The client contacts the server/s before scheduling to get the values of Ii. Subsection 3.3
describes how this value can be calculated.

1 If the transmission time can be estimated with the worst case when the communication fabric is timing predictable,
the worst-case transmission time can be used for guaranteeing the setup time. Otherwise, a pessimistic estimation can
be used for providing soft timing analysis. For example, the transmission time can be computed as Z

β , where Z is the
estimated maximum size of the offloaded data and β is the estimated lowest network bandwidth between the client and
the server.
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Figure 2 shows these timing parameters for two tasks, where task τ1 is locally executed and
task τ2 is offloaded. We assume that the results returned from the servers need very short post
processing time, which is negligible. For instance, the returned results in our case study are
the coordinates of the moving object or the distance between it and the cameras. Therefore, an
offloaded task is said to meet the deadline/timing constraint if the result can return before the
deadline. Our model is a special case of a general model (where each task has its own arrival time,
period and relative deadline) that has never been considered before for offloading. Also, we prove
that the offloading problem for this model is NP-complete.

We say that a task is locally executed if it is processed on the client, while a task is called
offloaded if it is processed on a server. The finishing time of a locally-executed task is the time
that the task finishes its local execution. The finishing time of an offloaded task is its round-trip
offloading time plus the time that this task is settled for offloading.

3.2 Server Side
The server can provide offloading services for more than one client, and the offloading decisions
from a client will not control how the servers schedule the tasks. The servers can have their own
scheduling policies to handle the tasks that are offloaded from the clients. They can decide how to
provide the response time guarantee by themselves. For example, servers can use Earliest Deadline
First (EDF) scheduling algorithm or resource reservation servers to ensure Ii. The response time
guarantee can be either (1) hard if the scheduling in the servers and the communication fabric
between the client and the servers are both timing predictable, or (2) soft if only the scheduling
in the servers is timing predictable. However, for each case, when the client has the information
about the round-trip offloading time, the open problem is how to meet the timing constraint by
exploiting the services provided from the servers.

3.3 Calculating the Value of Ii

To calculate the value of Ii, the server has to provide a response time guarantee for the offloaded
tasks. Resource reservation technique [2] (the resource here is the CPU of the server) can be used
to provide such guarantee, and then satisfy the real-time constraints. In Resource Reservation
Server2 (RRS) model, the client can be given a bandwidth or a budget guarantee. In this paper,
we consider the Total Bandwidth Server (TBS) model [14, 15] as a RRS on the server side. In this

2 This is a logical server, inherited from the literature.

LITES



02:6 Computation Offloading under Given Server Response Time Guarantees

model, the server reserves a specific bandwidth (or utilization) U ck for each requesting client, if it
is possible. U ck represents the fraction of the processor bandwidth of the server that is assigned to
the client k, where 1 ≤ k ≤ m and m is the total number of clients. The total reserved (or given)
utilization for all clients should not exceed 100 %, i. e.,

∑m
k=1 U

c
k = 100 %. Using this technique,

the server is able to provide offloading services for more than one client without violating the
real-time constraints.

For a client k with a given bandwidth of U ck and n tasks, the server allocates a TBS for each
task τi with a utilization of Ui, such that

∑n
i=1 Ui = U ck to preserve the system feasibility. Figure 3

shows how the utilization of the server can be distributed. A client k with a given utilization
of U ck can divided it equally over all of its tasks, i. e., Ui = Uck

n , or with different ratios based on
a specific algorithm. A task τi with a given utilization of Ui seems to be executed alone on a
processor (TBS) which is 1

Ui
times slower than the processor of the server. The TBS assigns an

absolute deadline di(t) for each offloaded task τi as follows:

di(t) = max{t, di(t−)}+ Ri
Ui

,

where t is the arrival time of the task at the server side, di(t−) is the absolute deadline of the
previous instance (or frame), Ri is the remote execution time of the task (the execution time on
the server side), and di(0−) is defined as 0. The offloaded tasks are scheduled on the server side
using the Earliest Deadline First (EDF) algorithm based on the assigned TBS deadlines.

The candidate tasks for offloading are the tasks with Si + Ii ≤ D, i. e., feasible for offloading.
Therefore, all the offloaded tasks finish within the deadline D (before the next frame), and then
t > di(t−). Also, the task τi arrives at the server side immediately after the setting up time Si
(the transmission time is included in Si). So, the round-trip offloading time can be calculated as
Ii = Ri

Ui
. In this way, each task can be executed independently of the behavior or the order of the

other tasks.

3.4 Problem Definition

The problem explored in this paper is defined as follows:
Given a set T of n frame-based real-time tasks, the SElective Real-Time Offloading (SERTO)
problem is to schedule the tasks and to decide when and what to offload without violating timing
constraints for a client.

We consider two types of input instances of the SERTO problem, depending on whether the
task execution ordering on the client is given or not. When the execution order is given and has
to be preserved, we suppose that τi is executed on the client (either with Si amount of time for
offloading or Ci amount of time for local execution) before τj if i < j.

A schedule of a set T of tasks for the SERTO problem is an assignment of the executions
of the tasks either on the client locally or on a remote server with computation offloading. A
schedule is feasible if the finishing times of all locally-executed and offloaded tasks are within
the deadline D. A scheduling algorithm is said to be optimal offloading scheduling algorithm if
it is able to find a feasible schedule, if and only if one exists. Moreover, as we are dealing with
frame-based real-time tasks, we always consider how to scheduling within a frame, starting from
time 0. Therefore, the response time of a task is the same as the finishing time of a task.

Suppose that xi is equal to 1 if task τi is decided to be offloaded; otherwise, xi is 0. We use a
vector ~xn = (x1, x2, . . . , xn) to denote an offloading decision for the given n tasks.
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Algorithm 1 GMF
1: t1 ← 0;
2: for i = 1 to n do
3: if Si < Ci and ti + Si + Ii ≤ D then
4: τi is assigned for offloading;
5: ti+1 ← ti + Si;
6: else if ti + Ci ≤ D then
7: τi is assigned for local computation;
8: ti+1 ← ti + Ci;
9: else

10: return “There is no feasible schedule”;
11: end if
12: end for

4 Greedy Minimum Finishing Algorithm

In this section we consider a set T of tasks with a given execution order. Let the tasks be indexed
based on the given execution order from 1 to n, where n is the number of tasks. The problem is
to decide whether a task should be executed locally or to be offloaded without violating timing
constraints.

Under the given ordering, the SERTO problem can be solved by a greedy algorithm, called
Greedy Minimum Finishing (GMF). Suppose that ti is the time when task τi can start to execute
in the client, either offloaded or locally executed. The greedy algorithm simply makes the decision
to offload a task τi if it is beneficial and feasible: that is, if Si < Ci (beneficial for offloading)
and ti + Si + Ii ≤ D (feasible for offloading). If it is either not beneficial (Si ≥ Ci) or not
feasible (ti + Si + Ii > D) for offloading, the algorithm checks if it can be executed locally, i. e.,
ti +Ci ≤ D. Otherwise, there is no feasible solution. Algorithm 1 presents the pseudo-code of the
GMF algorithm. The time complexity of the algorithm is O(|T |).

I Theorem 1. The GMF algorithm is an optimal offloading scheduling algorithm for the SERTO
problem when the execution ordering is given.

Proof. This theorem can be proved by an induction on the value ti. We claim that ti+1 in the
GMF algorithm is the earliest time on the client that τi finishes its local execution or is settled
for offloading and τi+1 can start to run by following the given ordering. For the base case, when
i = 1, the statement is correct by definition.

Inductive step: Assume that tk+1 is the earliest time on the client that τk finishes its local
execution or is settled for offloading and τk+1 can start to run, for k ≥ 2. There are two cases to
run task τk+1:

τk+1 is offloaded: For such a case, we know that tk+1 + Sk+1 + Ik+1 ≤ D and Sk+1 ≤ Ck+1.
τk+1 is locally executed: For such a case, we know that either tk+1 + Sk+1 + Ik+1 > D or
Sk+1 > Ck+1.

For both cases, we know that tk+2 is also the earliest time on the client that τk+1 finishes its local
execution or is settled for offloading and τk+2 can start to run.

Clearly, if task τk+1 cannot finish before the deadline D, the schedule is infeasible and there is
no feasible schedule for the first k + 1 tasks. Therefore, based on the induction hypothesis, this
theorem is proved. J
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Figure 4 Example of optimal ordering for a set of tasks.

5 Hardness of the SERTO Problem

This section presents the NP-completeness of the SERTO problem. Throughout this section, we
implicitly consider the case that the execution ordering is not specified. Before presenting the
hardness, we need the following lemma for deciding the optimal execution order on the client,
provided that the computation offloading decisions have been made.

I Lemma 2. If the execution order is not specified, all the offloaded tasks should be executed
before any locally-executed task.

Proof. Suppose that τi is decided to be locally executed, while task τj is to be offloaded. If a
feasible schedule executes τi on the client before the next task τj in the schedule starts on the
client, we can also swap the execution ordering of τi and τj on the client to be still feasible. Let τi
starts to run on the client at time t at the original schedule. So, the total finishing time of the two
tasks τi and τj is equal to t+Ci + Sj + Ij ≤ D (because the schedule is feasible). After swapping,
the finishing time of τj is now at most t+Sj +Ij , the finishing time of τi now is at most t+Sj +Ci,
and the total finishing time of both tasks is at most max{t+Sj+Ij , t+Sj+Ci}. Therefore, the the
total finishing time of the two tasks after swapping is less than before swapping without violating
the feasibility of the schedule, because max{t+ Sj + Ij , t+ Sj + Ci} < t+ Ci + Sj + Ij ≤ D.

After swapping, the worst-case finishing time of the other tasks does not change. By repeating
the above procedure, we know that the statement in the lemma holds. J

When the offloading decision ~xn for the tasks is known, we define di = xi(D−Ii)+(1−xi)D as
the virtual offloaded deadline. If there is a feasible schedule based on an offloading decision ~xn, then
executing the tasks by following the order of di = xi(D − Ii) + (1− xi)D non-decreasingly is also
a feasible schedule. This ordering is called Earliest Virtual Offloaded Deadline First (EVODF).
Please refer to Figure 4, as an illustration example for an optimal ordering for a given set of five
tasks. We have the following lemma for EVODF.

I Lemma 3. If the execution order is not specified and there is a feasible schedule based on the
offloading decisions, the schedule by using EVODF is also a feasible schedule.

Proof. Suppose that a given schedule is feasible. By Lemma 2, we can reorder the execution
ordering, such that any locally-executed task should be executed after the offloaded tasks, to
maintain the feasibility. Now, for two consecutively offloaded tasks τi and τj in that feasible
schedule, if di > dj and τi starts its execution at time t on the client before τj , we can still swap
these two jobs to maintain the feasibility. Suppose that the server returns the result of task τi
at time fi = t+ Si + Ii and τj at time fj = t+ Si + Sj + Ij , respectively. By the definition of
di > dj , we know that Ii < Ij .
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Figure 5 Illustration for the N P-completeness proof of the SERTO problem.

Clearly, due to the feasibility before swapping, we know that fi = t + Si + Ii ≤ D and
fj = t+Si+Sj+Ij ≤ D. Therefore, the finishing time f ′j of τj after swapping is f ′j = t+Sj+Ij ≤ D,
and the finishing time of τi after swapping is f ′i = t+ Sj + Si + Ii < t+ Sj + Si + Ij ≤ D. Clearly,
after swapping, the worst-case finishing time of the other tasks does not change.

By repeating the above procedure, we know that the schedule by using (EVODF) is also a
feasible schedule. J

Based on Lemma 3, we have the following lemma for testing whether an offloading decision
results in a feasible schedule or not.

I Lemma 4. Suppose that tasks τi ∈ T for i = 1, 2, ..., n are ordered non-decreasingly according to
D − Ii. An offloading decision ~xn, xi = {0, 1}, results in a feasible schedule (by using EVODF)
if and only if (a)

∑n
j=1 xjSj + (1− xj)Cj ≤ D and (b) xkIk +

∑k
j=1 xjSj ≤ D,∀k = 1, 2, . . . , n.

Proof. This comes directly from Lemma 3. J

Now, we will prove the NP-completeness of the SERTO problem when the execution ordering
is unknown.

I Theorem 5. The SERTO problem is NP-complete if the execution order is not given.

Proof. Due to Lemma 3, verifying whether an offloading decision with EVODF scheduling is
feasible or not can be done in polynomial time. Therefore, the SERTO problem is in NP. The
NP-completeness can be proved by a reduction from the SUBSET SUM problem [4]: Given a
set of integers V = {v1, v2, . . . , vn} and an integer A, the problem is to find a subset V] of V such
that

∑
vi∈V] vi = A. For each vi in V, the reduction creates τi with

Ci = 2vi, Si = vi,
Ii = I = 2((

∑
vj∈V vj)−A), and

D = 2
∑
vj∈V vj −A.

Since all the tasks have the same round-trip offloading time and by Lemma 4, for an offloaded
task set T ] (with the corresponding set V]), the resulting EVODF schedule is feasible if and only
if
∑
τi∈T ] Si ≤ D − I and

∑
τi∈T ] Si +

∑
τi∈T \T ] Ci ≤ D, see Figure 5.

By the construction of task set T , we know that∑
vi∈V]

vi =
∑
τi∈T ]

Si ≤ D − I = A (1)

and ∑
τi∈T ]

Si +
∑

τi∈T \T ]
Ci ≤ D

⇒ 2
∑
vi∈V

vi −
∑
vi∈V]

vi ≤ 2
∑
vj∈V

vj −A ⇒
∑
vi∈V]

vi ≥ A. (2)
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Figure 6 An example for illustrating the dynamic programming parameters.

Therefore, by (1) and (2), we know that there exists such a V] with
∑
vi∈V] vi = A, if and only

if the reduced input instance for the SERTO problem has a feasible schedule by offloading the
corresponding task set T ] created from V].

Since the reduction is in linear time complexity, we know that the SERTO problem is NP-
complete. J

6 Algorithms for Tasks without Specified Ordering

In this section, we consider real-time tasks without any specified ordering, and present our
proposed scheduling algorithms for the SERTO problem. We will present a pseudo-polynomial-
time algorithm and an approximation algorithm with polynomial-time complexity. At the end of
the section, we will extend our algorithms to find the minimum D for executing the frame-based
real-time tasks to maximize the performance.

6.1 Dynamic Real-time Scheduling Algorithm
Based on dynamic programming, we introduce Dynamic Real-time Scheduling (DRS) algorithm to
find a feasible solution for the SERTO problem. At the beginning, tasks τi ∈ T for i = 1, 2, ..., n
are ordered non-decreasingly according to D − Ii.

An offloading decision ~xi for the first i tasks, i. e., {τ1, τ2, . . . , τi}, is said partially feasible for
offloading (or a partially feasible offloading decision) if the offloaded tasks can finish the execution
in the servers before the given deadline D. Similar to Lemma 4, we know that a vector ~x is partially
feasible for offloading for {τ1, τ2, . . . , τi} if and only if xkIk +

∑k
j=1 xjSj ≤ D,∀k = 1, 2, . . . , i.

Our strategy is to build a dynamic programming table by maintaining and storing some
scheduling results for the partially feasible offloading decisions for the first i tasks. Specifically,
among all the partially feasible offloading decisions for {τ1, τ2, . . . , τi}, let G(i, t) be the minimum
total local execution time for the locally-executed tasks under the constraint that the total setup
time for the offloaded tasks in {τ1, τ2, . . . , τi} is less than or equal to t. Figure 6 presents an
example of four tasks {τ1, τ2, τ3, τ4} with the dynamic programming parameters, where {τ1, τ2}
are offloaded and {τ3, τ4} are executed locally. That is, for a given i and t, the value G(i, t) is the
objective function of the following integer linear programming (ILP):

minimize
i∑

j=1
(1− xj)Cj (3a)

s.t.
i∑

j=1
xjSj ≤ t (3b)

xkIk +
k∑
j=1

xjSj ≤ D ∀k = 1, 2, . . . , i (3c)

xj ∈ {0, 1} ∀j = 1, 2, . . . , i. (3d)
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For notational brevity, when the above ILP has no feasible solution, G(i, t) is defined as ∞.
Moreover, G(i, t) =∞ when t < 0.

The optimal solution for (3) is also called optimal partially offloaded decision when the total
local setup time for the offloaded tasks in these i tasks is no more than t. Clearly, when i is 1, we
know that

G(1, t) =
{

0 if S1 ≤ t ≤ D − I1
C1 otherwise . (4)

Instead of solving the above ILP for building G(i, t), the construction of G(i, t), for i ≥ 2, can
be achieved by using the following recurrence:

G(i, t) = min


{
G(i− 1, t− Si) if t ≤ D − Ii
∞ otherwise

G(i− 1, t) + Ci

. (5)

Suppose that ~x]i−1 is the corresponding partially feasible offloading decision for {τ1, τ2, . . . , τi−1}
with respect to the result in G(i − 1, t− Si). Similarly, let ~x†i−1 be the corresponding partially
feasible offloading decision for {τ1, τ2, . . . , τi−1} with respect to the result in G(i − 1, t). The
recursive function in (5) represents the selection of the minimum solution by comparing two cases:

Case 1: task τi is offloaded when its local setup execution finishes at time t. For such a case,
if t + Ii > D, offloading τi is an infeasible offloading decision; otherwise, we consider the
offloading decision ~x]i−1 for the first i− 1 tasks, in which the total local execution time of this
solution is as the same as that in ~x]i−1, i. e., G(i− 1, t− Si).
Case 2: task τi is locally executed. Therefore, we consider the offloading decision ~x†i−1 for the
first i− 1 tasks. As a result, the total local execution time of this solution is the sum of Ci
and the total local execution time in solution ~x†i−1. That is, Ci +G(i− 1, t).

We assume in this subsection that Si is a non-negative integer for a task τi in T . The
standard dynamic-programming procedure can be applied by constructing a table with n rows for
i = 1, 2, . . . , n and bDc+ 1 columns for t = 0, 1, 2, . . . , bDc.

I Lemma 6. For given integers i and t, the recursive function defined in (4) and (5) computes
the optimal solution for G(i, t).

Proof. The optimality is proved by induction on i. For the base case, G(1, t) = 0 if there
is enough time for feasible offloading of task τ1. Otherwise τ1 is locally executed, and then
G(1, t) = C1, which is optimal.

Inductive step: Assume that G(i − 1, t) is optimal for the subproblem for the first i − 1
tasks with i ≥ 2 for any given t ≥ 0 (i. e., the ILP described in (3)). Recall that the two
offloading decisions ~x]i−1 and ~x†i−1 which represent the optimal partially offloading decisions for
{τ1, τ2, . . . , τi−1} when the total local setup time for the offloaded tasks in these i− 1 tasks is no
more than t− Si and t, respectively.

Suppose for contradiction that ~x∗i is a partially feasible offloading decision for {τ1, τ2, . . . , τi}
in which

∑i
j=1 x

∗
jSj ≤ t and

∑i
j=1(1− x∗j )Cj < G(i, t). There are two cases for task τi in ~x∗i .

Case 1: x∗i is 0 (τi is locally executed) in ~x∗i . Clearly, under the assumption
∑i
j=1(1−x∗j )Cj <

G(i, t), we know that
i∑

j=1
Cj(1− x∗j ) =Ci +

i−1∑
j=1

Cj(1− x∗j ) < G(i, t) ≤1 Ci +
i−1∑
j=1

Cj(1− x†j),
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where ≤1 comes from the construction of G(i, t) in (5). Hence, the offloading decision ~x∗i−1
by excluding x∗i from ~x∗i is a partially feasible offloading decision for the first i− 1 tasks with∑i−1
j=1 Sjx

∗
j ≤ t and

∑i−1
j=1 Cj(1− x∗j ) <

∑i−1
j=1 Cj(1− x

†
j), which contradicts the optimality of

G(i− 1, t).
Case 2: x∗i is 1 (τi is offloaded) in ~x∗i . Clearly, we know that Si ≤ t ≤ D − Ii for such a case;
otherwise, ~x∗i is not a partially feasible offloading decision. With this case, we know that

i∑
j=1

Cj(1− x∗j ) =
i−1∑
j=1

Cj(1− x∗j ) < G(i, t) ≤
i−1∑
j=1

Cj(1− x]j).

Therefore, the offloading decision ~x∗i−1 by excluding x∗i from ~x∗i is a partially feasible offloading
decision for the first i−1 tasks with

∑i−1
j=1 Sjx

∗
j ≤ t−Si and

∑i−1
j=1 Cj(1−x∗j ) <

∑i−1
j=1 Cj(1−x

]
j),

which contradicts the optimality of G(i− 1, t− Si).
Hence, based on the induction hypothesis, the lemma is proved. J

Now, based on Lemma 6, for an input task set T , to verify whether a feasible schedule exists
for the SERTO problem or not, we just have to check whether there exists 0 ≤ t ≤ D with
G(n, t) + t ≤ D.

I Theorem 7. There exists t with G(n, t) + t ≤ D if and only if there exists a feasible schedule
for the SERTO problem.

Proof. If: Suppose ~xn is the corresponding offloading decision for a feasible schedule of the SERTO
problem. Let ` be the maximum index with x` = 1. That is, xj is 0 for j > `. As the schedule is
feasible, we know that ~xn is also a partially feasible offloaded decision when t is set to

∑`
j=1 Sjxj .

Therefore, based on Lemma 6, we have
∑n
j=1 Cj(1 − xj) ≥ G(n,

∑`
j=1 Sjxj). The necessary

condition for being a feasible schedule for the SERTO problem, is
∑`
j=1 Sjxj+

∑n
j=1 Cj(1−xj) ≤ D.

This implies that
∑`
j=1 Sjxj +G(n,

∑`
j=1 Sjxj) ≤ D. Therefore, when t is

∑`
j=1 Sjxj , we know

that G(n, t) + t ≤ D.
Only-If: Suppose t∗ is with G(n, t∗) + t∗ ≤ D. We can backtrack the dynamic programming

table to obtain an offloading decision ~x∗n for the given n tasks such that it satisfies the constraints
described in (3) when t is set to t∗ and i is set to n. Since G(n, t∗) + t∗ ≤ D, based on Lemma 4,
we know that the resulting schedule by using EVODF scheduling policy is a feasible schedule. J

I Theorem 8. The DRS algorithm is an optimal offloading scheduling algorithm with time
complexity O(n logn+ nD) for the SERTO problem when there is no specified execution ordering.

Proof. The optimality comes from Theorem 7. The time complexity of constructing G(i, t) for
i = 1, 2, . . . , n and t = 0, 1, 2, . . . , bDc is O(n logn+ nD), since it takes O(n logn) to sort task set
T and O(nD) to build the dynamic-programming table. For back-tracking a solution from an
entry t with G(n, t∗)+ t∗ ≤ D, the time complexity is O(n). Therefore, the overall time complexity
is O(n logn+ nD), which is pseudo-polynomial time. The space complexity is O(nD), but it can
be improved to O(D) by discarding the entries G(i− 2, t) when building G(i, t). J

6.2 Approximation for DRS Algorithm
As the SERTO problem is NP-complete, solving the problem in polynomial time is not possible
unless NP = P. To allow a polynomial-time algorithm, some approximation is needed. This
subsection presents a methodology to reduce the time complexity so that the user can trade the
complexity with the approximation of the derived solution.
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Figure 7 Approximation example.

Let K = εD
n be the time unit after approximation, where ε > 0 is a user-specified parameter

that determines the approximation granularity. This means that a time unit after approximation
is equal to K amount of time before approximation. The exact algorithm requires the assumption
that all the timing parameters are integers and has pseudo-polynomial complexity. However, if the
timing parameters are real numbers, the algorithm will not work. In this case, the real numbers
can be rounded up to the nearest integers. But, this will affect the accuracy of the algorithm.
Also, in the case of a large value of D, the time and space complexities of the algorithm will be
high. Therefore, the approximation is used to trade the accuracy with time and space complexities
for both cases, depending on the user parameter ε. Both complexity and accuracy are inversely
proportional to the value of ε, which determines the value of K. If the value of K is less than
1, the timing parameters are scaled up to increase the accuracy. But, it will also increase the
complexity of the algorithm. On the other hand, if the value of K is greater than 1, the timing
parameters are scaled down which is used to reduce the complexity of the algorithm for a large
value of D. As a consequence, we will get a less accurate result. For K = 1, the approximation
does not have any effect.

For each task τi, we construct a corresponding task τ ′i as follows:
S′i = K

⌈
Si
K

⌉
(rounded up to the nearest time unit, i. e. integer multiples of K),

I ′i = Ii − (S′i − Si), and
C ′i = Ci.

Figure 7 shows an approximation example, where the time unit after approximation (K) is
equal to 4 and the setup time Si is rounded-up to the next time unit (2K).

Let T ′ be the resulting task set after transformation. Moreover, we also set D′ either to D or to
(1 + ε)D, to be explained later. As all the setup times are integer multiples of K, we can construct
the dynamic programming table by considering only the integer multiples of K. Therefore, we
define G′(i, t) as the minimum total local execution time for the locally executed tasks under the
constraint that the total rounded-up setup time for the offloaded tasks in {τ ′1, τ ′2, . . . , τ ′i} is less
than or equal to t ·K

G′(1, t) =
{

0 S′1
K ≤ t ≤

D′−I′i
K

C ′1 otherwise
. (6)

For i ≥ 2,

G′(i, t) = min


{

G′(i− 1, t− S′i
K ) ∀t ≤ D′−I′i

K

∞ otherwise

G′(i− 1, t) + C ′i

. (7)
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The time t in the equations above represents the time after approximation, which is represented
in K unit of time. Therefore, the timing parameters S′i and D′ − I ′i should be divided by K to be
consistent with the new time scale.

I Lemma 9. For given integers i and t, the recursive function defined in (6) and (7) computes
the optimal solution for a partially feasible offloading decision for the first i tasks in T ′.

Proof. This is similar to the proof for Lemma 6 J

The following theorem shows the feasibility by adopting the dynamic programming for the
resulting solutions.

I Theorem 10. When D′ is set to D, and there exists t with 0 ≤ t ≤
⌊
D′

K

⌋
and G′(n, t)+t·K ≤ D′,

the offloading decision by backtracking the dynamic programming table built for T ′ is a feasible
schedule of the original task set T by using EVODF scheduling policy.

Proof. This basically comes directly from the definition of T ′. Suppose that ~xn is an offloading
decision for such a t after by backtracking the dynamic programming table built for T ′. Therefore,
with the fact

∑n
j=1 xjS

′
j ≤ t ·K, we know that

t ·K ≥
n∑
j=1

xjS
′
j ≥

n∑
j=1

xjSj ,

and, for all k = 1, 2, . . . , n, as I ′k + S′k is equal to Ik + Sk and xkI ′k +
∑k
j=1 xjS

′
j ≤ D, we have

D ≥ xk(Ik + Sk) +
k−1∑
j=1

xjS
′
j ≥ xkIk +

k∑
j=1

xjSj .

Therefore, we know that ~xn is a partially feasible offloading decision with
∑n
j=1 xjSj ≤ t · K.

Since G′(n, t) + t ·K ≤ D′, the statement holds due to Lemma 4. J

I Theorem 11. If there exists a feasible schedule for T , then there exists t with 0 ≤ t ≤
⌊
D′

K

⌋
and G′(n, t) + t ·K ≤ D′ when D′ is set to (1 + ε)D.

Proof. Suppose that ~x∗n is the offloading decision of a feasible schedule for T . By Lemma 4,∑n
j=1 x

∗
jSj + (1− x∗j )Cj ≤ D and x∗kIk +

∑k
j=1 x

∗
jSj ≤ D for k = 1, 2, . . . , n.

By the definition of T ′ and K = εD
n , we know that

n∑
j=1

x∗jS
′
j ≤

n∑
j=1

x∗j (Sj +K) ≤ K · n+
n∑
j=1

x∗jSj ≤ εD +
n∑
j=1

x∗jSj . (8)

Similarly, for k = 1, 2, . . . , n, we have

x∗kIk +
k∑
j=1

x∗jSj ≤ x∗k(Ik + Sk) +
k−1∑
j=1

x∗jS
′
j ≤ x∗k(Ik + Sk) + εD +

k−1∑
j=1

x∗jSj ≤ (1 + ε)D.

Let t′ be
∑n

j=1
x∗jS

′
j

K , in which t′ is an integer and t′ ≤
⌊
D′

K

⌋
. Then, by Lemma 9 for the

optimality in G′(i, t′), we know that G′(n, t′) ≤
∑n
j=1(1− x∗j )Cj . Therefore, together with (8),
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we know that

G′(n, t′) + t′ ·K = G′

(
n,

∑n
j=1 x

∗
jS
′
j

K

)
+

n∑
j=1

x∗jS
′
j

≤
n∑
j=1

(1− x∗j )Cj +
n∑
j=1

x∗jSj + εD ≤ (1 + ε)D = D′,

which proves the theorem. J

We now analyze the time complexity.

I Theorem 12. For a given ε > 0 and D′, evaluating whether there exists exists t with 0 ≤ t ≤⌊
D′

K

⌋
and G′(n, t) + t ·K ≤ D′ is with time complexity O(n

2

ε ).

Proof. The construction of task set T ′ takes only O(n). The construction of G′(i, t) requires
O(nDK ) = O(n

2

ε ), since K is set to εD
n . J

6.3 Maximizing the Sampling Rate
The SERTO problem so far is for determining a feasible schedule if there exists. Another extension
is to minimize the deadline/period D for the frame-based real-time tasks so that the sampling
rate of the frame-based tasks can be maximized. The DRS algorithm can be adopted to find
the optimal value of D with a binary search. Suppose that Dlower and Dupper are the lower and
upper bounds of the feasible deadlines in the current iteration in the binary search, respectively.
Initially, Dupper is

∑n
i=1 Ci and Dlower is

∑n
i=1 min{Si, Ci}.

Moreover, suppose that ~xn is the offloading decision for a feasible schedule by setting D to
Dlower +Dupper

2 . We also know that setting D to

D] = max
{

max1≤k≤n{xkIk +
∑k
j=1 xjSj},∑n

j=1(1− xj)Cj + xjSj

}
is also feasible. Therefore, if such an offloading decision ~xn is found, the efficiency, with respect
to the time complexity, of the binary search can be further improved by setting the next D
to Dlower +D]

2 , as any D > D] has feasible schedules. Clearly, the whole procedure is still with
pseudo-polynomial time.

When the approximation in Section 6.2 is adopted, the above binary search still works with
polynomial-time complexity. Due to Theorems 10 and 11, the derived solution is at most (1 + ε)
times the minimum feasible deadline of the input instance, by ignoring the error due to the
termination condition of the binary search.

7 Experimental Results

In our experiments, our DRS algorithm, with and without approximation, is evaluated by adopting
a surveillance system as a case study and synthesis workload simulation.

7.1 Case Study of a Surveillance System
We use a surveillance system that performs four real-time tasks to evaluate our DRS algorithm,
and compare it with Nimmagadda et al. [12] algorithm and by offloading all the tasks. The system
captures two images at the same time, left and right, periodically. Left and right images are used
for a stereo vision task. For the other tasks, one image is used for processing. The tasks are
frame-based real-time tasks and independent, described as follows:
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Table 1 Timing parameters of case study tasks (ms).

τi Description Ci
With encoding Without encoding

Si Ii - Multi. Ii - Single Si Ii - Multi. Ii - Single
τ1 Motion Detection 30 31 33 117 7 21 141
τ2 Object Recognition 220 3 102 102 2 102 102
τ3 Stereo Vision 88 34 47 115 16 41 127
τ4 Motion Recording 18 31 29 115 7 14 148

Motion Detection: The motion is detected using the background subtraction technique [13].
The system computes the running average of the captured frames, and each new frame is
subtracted from the moving average. Then, the output is processed to get the contours of the
moving objects [5].
Object Recognition: It is used to recognize a given object from the input image. Scale
Invariant Feature Transform (SIFT) method [11] is used to extract features, which are not
affected by object size, position or rotation.
Stereo Vision: Stereo vision is used to generate a depth map for left and right images to
calculate the distance between the surveillance system and the object of interest. Stereo
imaging [1] is adopted in the implementation.
Motion Recording: It records video for detected motion for further human check.

The system remains idle until a motion is detected. Then, it starts executing all the tasks
above. Before sending an image to the server(s), scaling, encoding, or both of them may be
performed on the image. Although scaling and encoding can reduce the size of the transfered
image for reducing the communication overhead, they consume more time on the local device for
scaling and encoding. The time used for scaling, encoding, and sending on the client for a task is
considered as the setup time in our case study. For the server side, we consider two cases. First, a
dedicated server (or processor) for each task, if offloaded. Second, we assume that we have only
one server where a scheduling algorithm is used to schedule all the offloaded tasks, in which Ii
may be larger than Ci for some task τi.

We consider four scenarios: (Scenario 1 ) images are encoded before sending and a dedicated
server is used for each offloaded task (multiple servers), (Scenario 2 ) images are encoded before
sending and only one server is used for all the offloaded tasks (single server), (Scenario 3 ) images
are sent without encoding and a dedicated server is used for each offloaded task, and (Scenario 4 )
images are sent without encoding and only one server is used for all the offloaded tasks.

Timing parameters for the tasks in the four scenarios are given in Table 1, where the time
values are in milliseconds based on measurements. If the system performs all the tasks locally,
they will finish by 356 ms, which will be considered as the deadline (sampling period) in our case
study here. We explore the three offloading approaches to reduce the local finishing time, i. e.,
increase the sampling rate.

Figure 8 shows the total local finishing time on the client side, and the time at which the last
result returns back from the server side. In Scenario 1, tasks τ2 and τ3 are offloaded in both DRS
and Nimmagadda et al. [12] algorithms. Although the offloading decisions in the previous scenario
are the same for both algorithms, the total finishing time in DRS is shorter. This is because DRS
algorithm continues local execution after offloading, while Nimmagadda et al. [12] remains idle
waiting for the results from the server side. The decision of the Nimmagadda et al. [12] algorithm
in Scenario 2 is the same as in Scenario 1. It does not change by having multiple servers because
Nimmagadda et al. [12] algorithm remains idle during offloading. DRS algorithm just offloads
task τ2 in Scenario 2 and 4.
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Figure 8 Case study results.

In Scenarios 3, DRS algorithm offloads all the tasks because their setup time Si is less than
their local execution time Ci, and they are feasible for offloading. Nimmagadda et al. [12] algorithm
offloads all the tasks except task τ4 in Scenario 3 and 4, because its local time is less than the
summation of the expected remote execution time and the data transfer time. We observe that all
the three evaluated algorithms reduce the local finishing time, but our algorithm has the minimum
finishing time in all scenarios.

7.2 Simulation Setup and Results
We also perform simulations by using synthetic workload for task τi generated as follows:

Ci: Randomly generated integer values from 1 to 50 ms with uniform distribution.
Si: Randomly generated integer values from 1 to Ci with uniform distribution.
Ii: Ii = Ci

α , where α is the speed-up factor of the server, i. e., the response time from the server
is α times faster than the execution time of the local client. α is randomly generated such that
0 < α ≤ m, where m is the maximum value of α.

We perform 100 rounds in the experiment. In each round, a set of 25 frame-based real-time
tasks is randomly generated according to the above conditions. Each task set is evaluated by
ten different settings according to m values, where m = {0.005, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8}.
By using small m values, we simulate servers that require longer response time than the local
execution time for tasks. While by using large m values, we simulate servers that are faster than
the client and can process almost immediately for any offloaded tasks.

The normalized finishing time reduction of an algorithm for a task set is the finishing time for
the task set execution after using the derived schedule divided by the finishing time for the same
task set if all tasks are executed locally. Also, the normalized sampling period is the finishing time
for the input task set using the approximation DRS algorithm described in 6.2 divided by the
finishing time for the same task set using the DRS algorithm.

For the rest of this section, we will discuss the simulation results for the three offloading
approaches using the task sets described above. Also, we evaluate the approximation DRS
algorithm described in Section 6.2. Figure 9 shows the number of offloaded tasks for different m
values. Nimmagadda et al. [12] algorithm offloads tasks only when the server is faster than the
client. But, DRS algorithm offloads tasks even to server(s) with longer response time, while they
are feasible. Also, we observe that the number of the offloaded tasks increases proportionally to
m value.
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Figure 10 illustrates the average finishing time for the generated task sets. Nimmagadda et
al. [12] algorithm reduces the local execution time only when the server is faster than the client,
because it doesn’t offload tasks with m ≤ 1 as shown in Figure 9. The improvement of DRS
algorithm, compared to Nimmagadda et al. [12] algorithm, is up to 44.7 %.

Figure 11 shows the average normalized finishing time reduction. Again, Nimmagadda et
al. [12] algorithm does not help in finishing time reduction for the same reason in Figures 9 and
10. Furthermore, the finishing time reduction in DRS algorithm is more than in Nimmagadda
et al. [12] algorithm because Nimmagadda et al. [12] algorithm remains idle during offloading.
In Figure 11, offloading all the tasks is not useful for m ≤ 2 and the finishing time exceeds the
summation of local execution for all the tasks, because the round-trip offloading time for most
of the tasks is relatively large. DRS algorithm reduces the finishing time in all cases because it
offloads only the beneficial and optimal tasks for offloading. The average finishing time using DRS
algorithm is reduced up to 52 % of the local execution.

Figure 12 shows the average execution time of DRS algorithm, where n is the number of input
tasks. The algorithm is evaluated with different number of input tasks (5, 10, 15, 20 and 25) and
different deadlines (300, 400, 500, 600 and 700 ms). As the deadline value increases, the average
execution time also increases, but more rapidly for larger number of tasks. Nevertheless, the
execution time of the algorithm is very short and negligible relative to the deadline.
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Figure 11 Finishing time reduction for synthesized tasks.
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Figure 12 Execution time of DRS algorithm.

The above results are based on the DRS algorithm. Now, we will present the results based on
the approximation in Section 6.2. Figure 13 shows the effect of the approximation parameter ε
on the finishing time of approximation DRS algorithm for different m values. As the m value
increases, which also implies an increase in the number of offloaded tasks, the average normalized
sampling period also increases, because the offloading decision is affected by the rounded-up setup
time for the offloaded tasks. For m ≥ 0.5, the average normalized sampling period is nearly
the same because almost all of the tasks are offloaded in this case. Clearly, the ε value affects
the accuracy of the approximation for DRS algorithm. When the value ε increases for worse
approximation, the finishing time of the tasks also usually, but not always, increases.

8 Conclusion

In this paper, we present two offloading algorithms, GMF and DRS, for real-time embedded
systems. Our algorithms can be used to schedule tasks with and without specified execution order
to meet the deadline. Also, they can be used to maximize the sampling rate for tasks execution.
Our experimental results show that, even by offloading to server(s) with shorter response time,
using DRS algorithm can result in significant finishing time reduction. The experiments also
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reveal that DRS algorithm reduces the finishing time up to 52 % of the total local execution time,
and improves the finishing time of other existing offloading algorithms up to 44.7 %.
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Abstract
A mixed criticality (MC) workload consists of com-
ponents of varying degrees of importance (or “crit-
icalities”); the more critical components typically
need to have their correctness validated to greater
levels of assurance than the less critical ones. The
problem of executing such a MC workload upon
a preemptive processor whose effective speed may
vary during run-time, in a manner that is not com-
pletely known prior to run-time, is considered.

Such a processor is modeled as being character-
ized by several execution speeds: a normal speed
and several levels of degraded speed. Under normal
circumstances it will execute at or above its normal
speed; conditions during run-time may cause it to

execute slower. It is desired that all components of
the MC workload execute correctly under normal
circumstances. If the processor speed degrades, it
should nevertheless remain the case that the more
critical components execute correctly (although the
less critical ones need not do so).

In this work, we derive an optimal algorithm
for scheduling MC workloads upon such platforms;
achieving optimality does not require that the pro-
cessor be able to monitor its own run-time speed.
For the sub-case of the general problem where there
are only two criticality levels defined, we addition-
ally provide an implementation that is asymptoti-
cally optimal in terms of run-time efficiency.
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1 Introduction

As stated in the title, this paper is concerned with the implementation of mixed-criticality systems
upon varying-speed processors. We start out by explaining these terms.

Varying-speed CPUs. Due to cost and related considerations, there is an increasing trend in
embedded computing towards implementing safety-critical systems upon commercially available
general-purpose processors (commonly known as commercial off-the-shelf or COTS processors).
The special-purpose processors previously used in implementing safety-critical systems were
designed to be highly predictable in the sense that tight bounds on the run-time behavior of a
system could be a priori determined during system design time itself. However, such design-time
predictability is difficult to achieve with COTS processors that are typically engineered to provide
good average-case performance rather than worst-case guarantees. Such design-time predictability
is nevertheless essential for safety-critical functionalities whose correctness must be validated to
very high levels of assurance prior to system deployment. In this paper, we focus upon one aspect of
guaranteeing real-time performance upon COTS processors despite their inherent unpredictability:
worst-case execution time (WCET).

The WCET abstraction plays a central role in the analysis of real-time systems. For a specific
piece of code and a particular platform upon which this code is to execute, the WCET of the code
denotes (an upper bound on) the amount of time the code takes to execute upon the platform.
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Determining the exact WCET of an arbitrary piece of code is provably an undecidable problem.
Devising analytical techniques for obtaining tight upper bounds on WCET is currently a very
active area of research, and sophisticated tools incorporating the latest results of such research
have been developed (see [16] for an excellent survey). WCET tools require that some assumptions
be made about the run-time behavior of the processor upon which the code is to execute; for
example, the clock speed of the processor during run-time must be known in order to be able to
determine the rate at which instructions will execute. However, conditions during run-time, such
as changes to the ambient temperature, the supply voltage, etc., may result in variations in the
clock speed. For instance, a system may be designed to have its CPU clock speed(s) reduced
into a certain value temporarily whenever it is detected that core temperature gets higher than a
threshold. Such variation is likely to be further exacerbated in the future, with the increasing
trend in computer architecture towards Globally Asynchronous Locally Synchronous, or GALS,
circuit designs. In order to be able to guarantee that the values they compute are correct under
all run-time conditions, a WCET tool must make the most pessimistic assumptions regarding
clock speed: that during run-time the clock speed takes on the lowest possible value. If this lowest
possible value is highly unlikely to be reached in practice during actual runs, then a significant
under-utilization of the CPU’s computing capacity will be observed during run-time.

Mixed-criticality Systems. In safety-critical hard-real-time systems, there is little that can be
done about such under-utilization of platform resources. But as stated above, another increasing
trend in embedded computing is the move towards mixed-criticality (MC) systems, in which
functionalities of different degrees of importance or criticalities are implemented upon a common
platform. As a consequence the real-time systems research community has recently devoted much
attention to better understanding the challenges that arise in implementing such MC systems
(see [5] for a review of some of this work). The typical approach has been to validate the correctness
of highly critical functionalities under more pessimistic assumptions than the assumptions used
in validating the correctness of less critical functionalities. For instance, a piece of code may be
characterized by a larger WCET in the more pessimistic analysis and a smaller WCET in the
“normal” (less pessimistic) analysis [15]. All the functionalities are expected to be demonstrated
correct under the normal analysis, whereas the analysis under the more pessimistic assumptions
need only demonstrate the correctness of the more critical functionalities.

The results reported in this paper fall within the same framework as this prior work. However,
rather than considering variations in estimating WCET, we assume that each piece of code
is characterized by a single WCET, and focus instead on the variations in run-time speed of
the processing platform. As in earlier work, the mixed-criticality nature of the system that is
considered in this paper is reflected in the fact that while we would like all functionalities to
execute correctly under normal circumstances, it is essential that the more critical functionalities
execute correctly even under pathological conditions which, while extremely unlikely to occur in
practice, cannot be entirely ruled out. To express this formally, we model the workload of a MC
system as being comprised of a collection of real-time jobs – these jobs may be independent, or
they may be generated by recurrent tasks. Each job is characterized by a release date, a (single)
WCET, a deadline, and a criticality level ∈ {1, 2, . . . ,m} expressing its degree of importance,
with larger values denoting greater importance. We desire to schedule the system upon a single
preemptive processor. This processor is a varying-speed one that is characterized by a sequence of
m speeds 1 = s1 > s2 > . . . > sm. The run-time behavior of this processor is as follows: while
under normal circumstances it completes at least one unit of execution during each time unit
(equivalently, it executes as a speed-1, or faster, processor), its speed may degrade to lower values
during run-time. The precise manner in which the speed will vary during run-time is not a priori
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known. We seek a scheduling strategy that for all l, 1 ≤ l ≤ m guarantees to correctly execute
all those jobs that have criticality ≥ l, provided the processor speed never falls below sl during
run-time.

The following example illustrates this model.

I Example 1. Consider the following collection of two jobs, to be scheduled on a preemptive
processor with specified speeds s1 = 1 and s2 = 1

2 :

Job Criticality Release date WCET Deadline
J1 lo 0 3 5
J2 hi 1 4 10

An Earliest Deadline First (EDF) [12] schedule for this system prioritizes J1 over J2. This
is fine if the processor does not degrade: J1 executes over the interval [0, 3) and J2 over [3, 7),
thereby resulting in both deadlines being met.

Now suppose that the processor were to degrade at some instant within the time-interval [0, 10]:
a correct scheduling strategy should execute the hi-criticality job J2 to complete by its deadline
(although it may fail to execute J1 correctly). But consider the scenario where the processor
degrades to some speed s′ < 4

7 , or ≈ 0.55) starting at time-instant 3: in the EDF schedule J2
would obtain merely (10− 3)× s′ < 4 units of execution prior to its deadline at time-instant 10.
We therefore conclude that EDF does not schedule this system correctly.

An alternative scheduling strategy could instead execute jobs as follows on a normal (speed-1)
processor: J1 over the interval [0, 1); J2 over [1, 3); J1 again, over [3, 5); and finally J2 over [5, 7):

-

0 1 2 3 4 5 6 7 8 9 10

J1’s d’line

?

J2’s d’line

?
J1

J2 J1
J2

If the processor degrades to a speed < 1 at any instant during this execution then the processor
immediately switches to executing J2 until it completes.

It may be verified that this scheduling strategy will result in J2 completing by its deadline
regardless of when (if at all) the processor degrades to any speed ≥ 1

2 , and in both deadlines being
met if the processor remains normal (or degrades at any instant ≥ 5).

Contributions and Organization. As mixed-criticality (MC) systems increasingly come to be
implemented upon commodity processors, we believe it imperative that real-time scheduling
theory provide an understanding of how to implement these systems to meet the twin goals of
providing correctness guarantees at high levels of assurance to the more critical functionalities
while simultaneously making efficient use of platform resources. As discussed above, commodity
processors tend to execute at varying speeds as ambient conditions change; in order to make
correctness guarantees at very high levels of assurance upon such varying-speed processors, it
may be necessary to consider the possibility that the processor is executing at a very low speed.
In this paper, we seek to define a formal framework for the scheduling-based analysis of MC
systems that execute upon CPUs which may be modeled as varying-speed processors. To this
end, in Section 2 we describe a very simple model for representing MC systems. In Section 3
we propose, analyze, and evaluate an algorithm for the preemptive uniprocessor scheduling of
MC systems that can be represented using this model. In Section 4 we consider the special case
where there are only two criticality levels (such MC systems have been called dual-criticality
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systems in the literature), and provide a more efficient algorithm for this restricted case. In
Section 5, we discuss the computational complexity of the problem when preemption is forbidden.
In Section 6, recurrent tasks are considered and a scheduling strategy is provided when unbounded
preemption is permitted. We conclude in Section 7 by placing this work within the larger context
of mixed-criticality scheduling, and briefly enumerate some important and interesting directions
for further research.

Relationship to Prior Work. The years since Vestal’s seminal paper in 2007 [15] have seen a
large amount of research in mixed-criticality scheduling. Much of this research considers a model
in which each job is characterized by multiple WCETs. The results from this prior research can
be directly applied to our problem, in the following manner. Consider a job in our setting that
has WCET c and is being scheduled on a varying-speed processor with normal speed s1 = 1 and
degraded speeds s2, . . . , sm. This job may be represented in the multiple-WCET model as a job
with a normal WCET of c and more pessimistic WCETs of c/s2, . . . , c/sm; if all jobs execute for no
more than their normal WCETs then all jobs should execute correctly, while if some jobs execute
beyond their normal WCETs then only some of the jobs (those with criticality levels exceeding a
particular value) are required to execute correctly. It is not difficult to show that the algorithms
proposed in prior work for scheduling MC systems with multiple WCET specifications can be used
to schedule this transformed system, and that the resulting scheduling strategy correctly schedules
our (original) system upon the varying-speed processor. Hence, all the problems considered in
this paper could in principle be solved by simply transforming to the earlier, multiple-WCET,
model, and applying the previously-proposed solution techniques.

However, in [2] we showed that one can sometimes do better than such an approach. This was
observed to be because the problem we are considering here, of MC scheduling on varying-speed
processors, is simpler (from a computational complexity perspective) than the previously-considered
problem of MC scheduling with multiple-WCETs specified. For instance, whereas determining
preemptive uniprocessor feasibility for a collection of independent MC jobs specified according to
the multiple-WCET model is known [3] to be NP-hard in the strong sense, in Section 3 we will
present an optimal polynomial-time algorithm for solving the same problem in our model. For the
case of dual-criticality systems of implicit-deadline sporadic tasks on preemptive uniprocessors, a
speedup lower bound of 4/3 had been established [4] for the multiple-WCETs model, whereas [2]
had provided an optimal (speedup-1) algorithm.

This paper extends our recent work [2] in several significant directions. First (as stated above),
the results in [2] were only shown to hold for mixed-criticality systems that are implemented upon
varying-speed processors for which just two speeds are specified; this paper extends these results
to be applicable to mixed-criticality systems implemented upon varying-speed processors with an
arbitrary number of speeds specified. Second, [2] had derived a linear-programming (LP) approach
to solving the problem in the two-level case (thereby establishing that the problem could be solved
in polynomial time). In this paper, we derive an altogether different algorithm for solving the
two-speed case, that has a worst-case run-time of O(n logn) where n is the number of jobs in the
instance; this is more efficient than the earlier LP-based approach. And finally, the concept of
self-monitoring by processors was introduced [8] as a means of distinguishing between processors
that do or do not “know” at each instant during run-time, what their precise speeds are. While
the algorithms derived in [2] assume that the processor possesses the self-monitoring property, the
algorithms we derive here do not require this property to hold.

A Note. Although we have chosen to model the problem in terms of real-time jobs executing on
varying-speed processors, the model (and our results) are also applicable to the transmission of
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time-sensitive data on potentially bandwidth-varying communication media. Specifically, they
are particularly relevant to data-communication problems in which time-sensitive data and data-
streams must be transmitted over communications media which can provide a high bandwidth
under most circumstances but can only guarantee some lower bandwidths: the high bandwidth
would correspond to the normal processor speed, and the lower bandwidths to the degraded
speeds. We therefore believe that this work is relevant to problems of factory communication,
communication within automobiles or aircraft, wireless sensor networks, etc., in addition to
processor scheduling of mixed-criticality workloads.

2 Model

We start out considering mixed-criticality systems that can be modeled as collections of independent
jobs; a model for recurrent tasks is considered in Section 6. In our model, a mixed-criticality
real-time workload consists of basic units of work known as mixed-criticality jobs. Each mixed-
criticality (MC) job Ji is characterized by a 4-tuple of parameters: a release date ai, a WCET
ci, a deadline di, and a criticality level χi ∈ {1, 2, . . . ,m}. Note that this WCET ci is measured
based upon some constant unit-speed processor – a job with WCET of ci may require a period of
length ci/s when executing on a speed-s processor.

Let t1, t2, . . . , tk+1 denote the at most 2n distinct values for the release date and deadline
parameters of the n jobs, in increasing order (i. e., tj < tj+1 for all j). These release dates and
deadlines partition the time-interval

[
mini{ai},maxi{di}

)
into k intervals, which we will denote

as I1, I2, . . . , Ik, with Ij denoting the interval [tj , tj+1).
A mixed-criticality instance I is specified by specifying
a finite collection of MC jobs J = {J1, J2, . . . , Jn}, and
a varying-speed processor that is characterized by a normal speed s1 (without loss of generality,
assumed to be 1) and some specified degraded processor speeds s2, . . . , sm in strictly decreasing
order; i. e., sm < sm−1 < . . . < s2 < 1.

The interpretation is that the jobs in J are to execute on a single shared processor that has m
modes: a normal mode and (m− 1) degraded modes. In the normal mode, the processor executes
as a unit-speed processor and hence completes one unit of execution per unit time, whereas in
degraded mode l it completes fewer than sl−1, but at least sl, units of execution per unit time, for
l = 2, . . . ,m.

The processor starts out executing at its normal speed. It is not a priori known when, if at
all, the processor will degrade: this information only becomes revealed during run-time when the
processor actually begins executing at a slower speed. We seek to determine a correct scheduling
strategy, which is formally defined as follows:

I Definition 2 (Correct Scheduling Strategy). A scheduling strategy for MC instances is correct if it
possesses the property that upon scheduling any MC instance I = (J = {J1, J2, . . . , Jn}, s1, . . . , sm),
each job Ji completes by its deadline if the processor executes at speeds ≥ sχi

throughout its
scheduling window [ai, di).

3 A Scheduling Algorithm

In this section we present efficient strategies for scheduling preemptable mixed-criticality instances.
We start out with a general overview of our strategy. Given an instance I, prior to run-time we
will construct a scheduling table S(I) which prescribes the amounts of execution to be received by
each job during each interval. During run-time, scheduling decisions are made according to this
scheduling table. Amounts within each interval are executed in the decreasing order of criticality
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levels (greater criticality first). A job is dropped at its deadline if it has not completed execution by
then. Note that we do not discard a job with criticality level lower than ` even when the processing
speed is detected to have fallen to some value in the range (s`+1, s`]) – such a mechanism improves
the likelihood of lower criticality jobs meeting their deadlines despite processor degradation1

In the remainder of this section we present, and prove the correctness of, a simple linear-
programming based algorithm for constructing the scheduling table S(I) optimally. By optimal,
we mean that if there is a correct scheduling strategy (Definition 2 above) for an instance I,
then the scheduling strategy described above is a correct scheduling strategy with the scheduling
table we will construct. We start out identifying the following (obvious) necessary condition for
MC-schedulability:

I Lemma 3. In order that a correct scheduling strategy exists for MC instance I = (J , s1, . . . , sm),
it is necessary that for each criticality level l = 1, . . . ,m, EDF correctly schedules all the jobs in I
with criticality level ≥ l upon a speed-sl uniprocessor.

Given any instance I, it can be efficiently determined whether I satisfies the necessary conditions
of Lemma 3: for each l, simply simulate the EDF scheduling of all the jobs in I with criticality-level
≥ l upon a speed-sl processor. In the remainder of this section, let us therefore assume that any
instance under consideration satisfies these necessary conditions. (I.e., any instance that fails
these conditions can obviously not have a correct scheduling strategy, and is therefore flagged as
being unschedulable.)

Given an MC instance I = ({J1, J2, . . . , Jn}, s1, . . . , sm) that satisfies the conditions of
Lemma 3, we now describe how to construct a linear program (LP) such that a feasible so-
lution for this linear program can be used to construct scheduling table S(I).

To construct our linear program we define n× k variables xi,j , 1 ≤ i ≤ n; 1 ≤ j ≤ k. Variable
xi,j denotes the amount of execution we will assign to job Ji in the interval Ij , in the scheduling
table that we are seeking to build.

The following n constraints specify that each job receives adequate execution in the normal
schedule: ∑

j|tj≥ai∧di≥tj+1

xi,j

 ≥ ci, for each i, 1 ≤ i ≤ n; (1)

while the following k constraints specify the capacity constraints of the intervals:(
n∑
i=1

xi,j

)
≤ s1(tj+1 − tj), for each j, 1 ≤ j ≤ k. (2)

Within each interval, jobs will be executed in the priority order of their criticality levels; i. e.,
amounts from higher criticality level jobs get executed first. (That is, the interval Ij will have a
block of level-m criticality execution of duration

∑n
i:χi=m xi,j , followed by blocks of l-criticality

execution of duration
∑
i:χi=l xi,j with l from m− 1 down to 1, in order.) It should be evident

that any scheduling table generated in this manner from xi,j values satisfying the above (n+ k)
constraints will execute all jobs to completion upon a normal (non-degraded) processor. It now
remains to write constraints for specifying the requirements with respect to degraded conditions –
that the higher-criticality jobs complete execution even in the event of the processor degrading
into corresponding modes.

1 An example of such benefit will be shown in the execution analysis (Item 2) of Example 4, where J2 with
criticality level of 2 may meet its deadline despite the processor speed falling to below s2 during [a2, d2).
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Since within each interval, amounts are executed in decreasing order of criticality level, we
observe that the worst-case scenarios occur when the processing speed drops at the very beginning
of a time interval, since that would leave the minimum computing capacity. For each {p, l},
1 ≤ p ≤ k, 2 ≤ l ≤ m, we represent the possibility that the processor degrades into speed-sl mode
at the start of the interval Ip in the following manner:
(i) Suppose that the processor degrades into speed-sl mode at time-instant tp; i. e., the start of

the interval Ip. Henceforth, only jobs of criticality ≥ l must be fully executed in order to
meet their deadlines.

(ii) Hence for each tq ∈ {tp+1, tp+2, · · · , tk+1}, constraints must be introduced to ensure that the
cumulative remaining execution requirement of all jobs of criticality ≥ l with deadline at or
prior to tq can complete execution by tq on a speed-sl processor.

(iii) This is ensured by writing a constraint ∑
i|(χi≥l)∧(di≤tq)

q−1∑
j=p

xi,j

 ≤ sl(tq − tp). (3)

Note that for any job Ji with di ≤ tq,
(∑q−1

j=p xi,j
)
represents the remaining execution

requirement of job Ji at time-instant tp. The outer summation on the left-hand side is simply
summing this remaining execution requirement over all the jobs of criticality ≥ l that have
deadlines at or prior to tq.

(iv) A moment’s thought should convince the reader that rather than considering all tq’s in
{tp+1, tp+2, · · · , tk+1} as stated in (2) above, it suffices to only consider those that are
deadlines for some job of criticality ≥ l.

(v) The Constraints (3) above only prevent missing deadlines after tp when the (degraded)
processor is continually busy over the interval between tp and the missed deadline; what
about deadline misses when the processor is not continually busy over this interval (and
the right-hand side of the inequality of Constraints (3) therefore does not reflect the actual
amount of execution received)? We point out that for such a deadline miss to occur, it must
be the case that there is a subset of jobs of criticality ≥ l – those with release dates and
deadlines between the last idle instant prior to the deadline miss and the deadline miss itself
– that miss their deadlines on a speed-sl processor. But this would contradict our assumption
that the instance passes the necessary conditions of Lemma 3, i. e., all the jobs of criticality
≥ l together (and therefore, every subset of these jobs) execute successfully on a speed-sl
processor.

The entire linear program is listed in Figure 1, and the steps of our LP-based table-driven
mixed-criticality scheduling approach, titled Algorithm tdmc-LP, is described in Figure 2.

It is evident that during run-time Algorithm tdmc-LP is performing a typical interval-by-
interval execution – unless idleness is detected, no amount of execution that is assigned in later
intervals can be “promoted” (executed in an earlier interval).

Note that due to processor degradation, it is possible that some amounts of execution that
were assigned to an interval may not have completed by the end of the interval. In such a case,
we do not simply drop these execution amounts, but pass them over into the subsequent interval.
The reason for this additional modification during run time is that Constraints (3) only provide
guarantees as to the total amount of execution provided for each job until its deadline. This can
be done by adding the unfinished part of the amounts into the corresponding rows in the column
of the scheduling table at the end of each interval (as described in Step 2b)2. The rationale behind
such maintenance during run-time will also be shown in Example 4.

2 Note that here Ex(i, j) does not denote the total execution time of job Ji within Interval Ij – the processing
speed during run-time needs to be considered as well.
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Given: MC instance ({J1, J2, . . . , Jn}, s1, . . . , sm), with job release-dates and deadlines partition-
ing the time-line over [mini{ai},maxi{di}) into the k intervals I1, I2, . . . , Ik.
Determine values for the xij variables, i = 1, . . . , n, j = 1, . . . , k satisfying the following con-
straints:

For each i, 1 ≤ i ≤ n, ∑
j|tj≥ai∧di≥tj+1

xi,j

 ≥ ci. (1)

For each j, 1 ≤ j ≤ k,(
n∑
i=1

xi,j

)
≤ s1(tj+1 − tj). (2)

For each p, 1 ≤ p ≤ k, for each l, 2 ≤ l ≤ m, and for each q, p < q ≤ (k + 1) ∑
i|(χi≥l)∧(di≤tq)

q−1∑
j=p

xi,j

 ≤ sl(tq − tp). (3)

Figure 1 Linear program for constructing the scheduling table.

Given: J = ∪ni=1{Ji} to be scheduled on a varying-speed processor with speed thresholds
s1, . . . , sm.

Construct the scheduling table S according to Figure 1, with xi,j denoting the amount of
execution assigned to job Ji during the interval Ij , for each pair (i, j).
For each interval Ij , j = 1 up to k:
1. Higher-criticality execution is performed before lower-criticality ones within each interval,

while amounts with the same criticality level may be executed in any order.
2. At the end of the interval; i. e., at time t = tj

a. If tj is some unfinished job’s deadline, then the job is dropped; this is indicated by
setting xi,j ← −1 ∀i for which di = tj .

b. Other unfinished executions (if any) need to be carried over into the next interval; i. e.,
∀i such that di > tj , xi,j+1 ← xi,j+1 +xi,j−Ex(i, j), where Ex(i, j) denotes the amount
of execution that job Ji received within Interval Ij .

3. Whenever an idleness is detected, we may execute the (released) jobs with amounts assigned
to later interval(s) in the same priority order described in Step 1.

Figure 2 Basic steps of the proposed scheduling algorithm tdmc-LP.
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Ji ai ci di χi

J1 0 3 5 1
J2 2 1 5 2
J3 0 c3 d3 3

(a)

-

-

-

0 1 2 3 4 5 d3

J1

J2

J3

6 ?

6 ?

6 ?

(b)

-
0 1 2 3 4 5 6 7 8 9 10 11

I1 I2 I3

J3
J1 J2

J1 J3

(c)

Figure 3 Illustrating Example 4. The jobs are listed in (a), and depicted graphically in (b). The
scheduling table that is constructed is depicted in (c).

(We also point out that the execution order when an idleness is detected, as described in
Step 3, represents an optimization in run-time behavior that has nothing to do with correctness –
the proof of Theorem 5 will go through even if the processor is left idled until the end of such an
interval.)

Before proving its correctness and optimality, we first illustrate the operation of Algo-
rithm tdmc-LP by means of a simple example.

I Example 4. We will consider a MC instance I consisting of three jobs with parameters as
depicted in Figure 3(a), with c3’s value left unspecified for now, and d3 assumed to be larger
than 5.

The release dates and deadlines of these three jobs define three intervals: I1 = [0, 3); I2 = [3, 5);
I3 = [5, d3), as illustrated in Figure 3(b).

Since there are three jobs in I (n = 3), Constraints (1) of the LP will be instantiated to
the following three inequalities, specifying that all three jobs receive adequate execution in the
scheduling table S(I) to execute correctly on a normal (non-degraded) processor:

x11 + x12 ≥ 3;
x22 ≥ 1;

x31 + x32 + x33 ≥ c3.

There are also three intervals I1, I2, and I3. Constraints 2 of the LP will therefore yield the
following three inequalities, specifying that the capacity constraints of the intervals are met:

x11 + x21 + x31 ≤ 2;
x12 + x22 + x32 ≤ 3;
x13 + x23 + x33 ≤ d3 − 5.
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It remains to instantiate the Constraints (3), that were introduced to ensure correct behavior in
the event of processor degradation. In this example there are three criticality levels, and thus
a need to consider degradation cases of both speed-s2 and speed-s3. These must be separately
instantiated to model the possibility of the processor degrading at the start of each of the three
intervals I1, I2 and I3. We consider these separately:

Degradation at the start of I1. In this case, Constraints (3) is instantiated three times:
speed-s2 for tm = 5, and both speed-s2 and speed-s3 for tm = d3:

x21 + x22 ≤ (5− 0) s2;(
x21 + x22 + x23

)
+
(
x31 + x32 + x33

)
≤ (d3 − 0) s2;

x31 + x32 + x33 ≤ (d3 − 0) s3.

Degradation at the start of I2. This case is similar as the above one that Constraints (3) is
instantiated once for tm = 5 and twice for tm = d3:

x22 ≤ (5− 2) s2;(
x22 + x23

)
+
(
x32 + x33

)
≤ (d3 − 2) s2;

x32 + x33 ≤ (d3 − 2) s3.

Degradation at the start of I3. In this case, Constraints (3) is instantiated twice, for tm = d3
with speeds s2 and s3:

x33 ≤ (d3 − 5) s2;
x33 ≤ (d3 − 5) s3.

(Note that there are nine variables and fourteen constraints in this particular example.)

Continuing with this example, suppose that c3 and d3 are 3 and 11 respectively, with degraded
speeds s2 = 1/2 and s3 = 1/3. A possible solution to the LP would assign the xij variables the
following values: x11 x12 x13

x21 x22 x23
x31 x32 x33

 =

 1 2 0
0 1 0
1 0 2

 .
As a consequence, the scheduling table would be as depicted in Figure 3(c).

We can see that this scheduling table yields a correct scheduling strategy: observe that there
are three contiguous blocks of execution of criticality-level 2 or greater: [0, 1), [2, 3), and [5, 7),
and consider the possibility of the processor degrading during each:

If the processor degrades to speed-s2 during [0, 2), then J3 will execute over [0, 2) and [5, 9),
while J2 can execute over [2, 4). Both jobs of criticality ≥ 2 would thus meet their deadlines
on the speed-1/2 processor. J1 is executed over [4, 5) and dropped at t = 5.
If the processor degrades to speed-s3 during [0, 2), then for the first interval [0, 2), J3 will be
executed. However the assigned amount x31 = 1 may not be finished in case the processor
degrades early, say at t = 0. As a result, the scheduling table needs to be updated at time
t = 2 according to Step 2b in Figure 2: x32 ← (0 + 1− 2/3), or 1/3. J3 will therefore get to
execute over [2, 3) and [5, 11), and meet its deadline, on the speed-1/3 processor. Time interval
[3, 5) will be used to execute J2, and both J1 and J2 will be dropped at time t = 5 in the
worst case, leaving x12 and x22 the value of −1 for reference. In case the processor degrades to
speed-s3 late, say at t = 0.5 (while remaining at unit-speed beforehand), the assigned amount
x31 = 1 can be finished upon t = 2, and thus although under a slowest speed condition, J2
may finish on time be executing over [2, 5).
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If the processor degrades to a speed of either s2 or s3 during [2, 5), then J2 would execute prior
to J1 within this interval and gets finished on time. Job J3 will not continue its execution until
t = 5 since x32 = 0 – it only needs two additional units of execution which will be obtained by
executing over the third interval [5, 9).
If the processor degrades to speed-s2 (or s3) during [5, 7), J3 will still meet its deadline since
it has completed one unit of execution prior to the processor degradation – it needs two more
units, which will be obtained by executing over [5, 9) (or [5, 11)) on the speed-1/2 (or 1/3)
processor.

We thus see that the solution of the LP does indeed yield a feasible scheduling strategy according
to the proposed run time strategies in tdmc-LP. J

Observe that Algorithm tdmc-LP is performing “best-effort execution” – it only discards a
job if it has not completed by its deadline, and not merely because a processor degradation is
detected. We now formally show that it is guaranteed that the assigned execution amounts with
criticality level no lower than ` will nevertheless get executed so long as processing speed remains
at least as large as s` (as required under the correctness definition).

I Theorem 5. Algorithm tdmc-LP is correct.

Proof. The proof is by contradiction. Assume that some job Ji with criticality level χi has not
completed by its deadline di = tq (at the end of Interval Iq−1), while the processor remains at (or
above) a speed of sχi over the interval [ai, di).

From constraints (3), we know that total assigned amounts of execution with criticality level
no lower than χi for intervals that lie within [ai, di) cannot exceed sχi

× (di − ai). Given the fact
that no amount with lower criticality level(s) can be executed within the interval [ai, di) (since
else Ji would have been assigned and executed during the execution of lower criticality amounts),
there must be some “carry-in” amounts of execution with criticality level no lower than χi due
to Step 2b. Let tp denote the end of the last interval (before ai) with either idleness or some
execution of amounts with criticality level lower than χi (so that no amount assigned before tp
with criticality level ≥ χi can be “carried-in”). It is now evident that Constraints (3) must be
violated for Interval [tp, tq) under speed sχi

. J

I Theorem 6. Algorithm tdmc-LP is optimal – whenever it fails to maintain correctness, no
other algorithm can.

Proof. From Theorem 5, Algorithm tdmc-LP fails only when there is no feasible solution to the
LP described in Figure 1. Since the three set of constraints are all necessary ones according to
Lemma 3, violations of any of them indicates that the given instance is not schedulable under
some circumstances (e. g., speed performances during run-time). Thus no other algorithm can
maintain correctness as well. J

Bounding the Size of This LP. It is not difficult to show that the LP of Figure 1 is of size
polynomial in the number of jobs n in MC instance I as well as the number of criticality levels m:

The number of intervals k is at most 2n− 1. Hence the number of xi,j variables is O(n2).
There are n constraints of the form (1), and k constraints of the form (2). The number of
constraints of the form (3) can be bounded from above by (nkm), since for each p ∈ {1, . . . , k},
there can be no more than n tq’s corresponding to deadlines of jobs. Since k ≤ (2n− 1), it
follows that the number of constraints is O(n) +O(n) +O(n2m), which is O(n2m).

Since it is known [10, 9] that a linear program can be solved in time polynomial in its representation,
it follows that our algorithm for generating the scheduling tables for a given MC instance I takes
time polynomial in the representation of I.
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4 The Two-criticality-level Case

In this section, we revisit the same restricted version of the problem that was addressed in [2],
and derive a more efficient algorithm for solving it. That is, we consider dual-criticality systems
executing on a variable-speed processor characterized by just two speeds: a normal speed (assumed
as 1) and a degraded speed (designated as s, with s < 1). We use the standard designations of lo
and hi to denote the lower and higher criticality levels respectively. We propose an alternative
method to the Linear Programming approach presented in [2] (and extended for > 2 levels
in Section 3 above) for constructing the scheduling table, and show that this new method is
computationally very efficient.

At a high level, our algorithm is organized in a manner similar to the one described in Section 3:
Given a dual-criticality MC instance I, we will first construct a scheduling table S(I), and then
make run-time job-dispatch decisions in a manner that is compliant with this scheduling table.

To construct the scheduling table, we first identify (Step 1 below) the latest time intervals
during which the hi-criticality jobs must execute if they are to complete execution on a degraded
processor; having identified these intervals, we construct (in Step 2) an EDF schedule for the
hi-criticality jobs in these intervals.

Step 1. Considering only the hi-criticality jobs in the instance, determine the intervals during
which the jobs would execute upon a speed-s processor, if
1. each job executes for its hi-criticality WCET,
2. execution occurs as late as possible.

It is evident that these intervals may be determined by considering the jobs in non-increasing
order of their deadlines (i. e., latest deadline first), and taking the cumulative execution requirements
of these jobs. These intervals may therefore be determined in O(nhi lognhi) time (which comes
from the time complexity of EDF), where nhi denotes the number of hi-criticality jobs.

Step 2. Construct an EDF schedule for the hi-criticality jobs upon a preemptive processor that
has speed s during the intervals determined in Step 1 above, and speed zero elsewhere.

It follows from the optimality property3 of EDF that if this step fails to ensure that each
hi-criticality job receives adequate execution prior to its deadline, then no scheduling algorithm
can guarantee correctness (see Definition 2) for this instance. We would therefore report failure:
this MC instance is not feasible. The remainder of this section assumes that Step 2 above was
successful in completing each hi-criticality job prior to its deadline.

We now describe how to use this EDF schedule to construct the scheduling table – recall
that this scheduling table is used for job dispatch decisions upon both the normal and degraded
processor, and is therefore constructed assuming a normal-speed (i. e., speed-1) processor.

Step 3. To construct the scheduling table, partition the time-line over [mini{ai},maxi{di}] into
the k intervals I1, I2, . . . , Ik. (Recall, from Section 2, that these are the intervals defined by the
release dates and deadlines of all the jobs – lo-criticality and hi-criticality.)
3.1 For each hi-criticality job Ji and each interval I` in which it is scheduled in the EDF schedule

constructed in Step 2 above, execute Ji within this interval for an amount xi` which equals

3 Although the optimality proof of EDF in [12], which is based on a swapping argument, assumes that the
processor speed remains constant, it is trivial to extend the proof to apply to processors that are only available
during limited intervals, or indeed to arbitrary varying-speed processors.
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Ji ai ci di χi

J1 1 2 10 hi
J2 5 1 8 hi
J3 6 2 15 hi
J4 0 4 6 lo
J5 1 2 10 lo
J6 10 3 13 lo

Figure 4 All jobs considered in Example 7, where ai, ci, and di stands for release date, WCET, and
deadline respectively.

to the amount of execution that Ji is allocated during Interval I` in the EDF scheduled
constructed in Step 2 above.

3.2 Assign lo-criticality jobs by simulating the EDF-scheduling of the lo-criticality jobs in the
remaining capacity of the scheduling table – i. e., in the durations that are not already allocated
to the hi-criticality jobs during Step 3.1 above.

3.3 If during this EDF simulation there is any capacity left over within an interval (because the
supply of currently-active lo-criticality jobs has been exhausted), then move over hi-criticality
jobs, that had been assigned to later intervals in the scheduling table during Step 3.1 above,
into the current interval. In so doing favor earlier-deadline jobs over later-deadline ones.

Note that Step 3.3 is not necessary for correctness; rather, it is an optimization.

We illustrate this table construction process by means of the following example.

I Example 7. Consider the instance consisting of the six jobs J1–J6 shown in tabular form in
Figure 4, to be implemented upon a processor of minimum degraded speed s = 1/2.

In Step 1, we determine the intervals upon which the hi-criticality jobs J1–J3 would need to
execute if they were to complete as late as possible, upon a degraded processor (one of speed-1/2);
this is represented in the following diagram:

-
0 5 10 15

a1

6

a2

6

a3

6

d2

?

d1

?

d3

?

J1J2
J3

In Step 2, we construct an EDF schedule of thel hi-criticality jobs J1–J3 upon a speed-1/2
processor. Lettting xi,j denote the amount of execution accorded to job Ji in interval Ij , the
scheduling table S(I) looks like this:

Ij I1 = [0, 1) I2 = [1, 5) I3 = [5, 6) I4 = [6, 8) I5 = [8, 10) I6 = [10, 13) I7 = [13, 15)
J1 0 0.5 0 0.5 1 0 0
J2 0 0 0.5 0.5 0 0 0
J3 0 0 0 0 0 1 1

In Step 3, we now try to fill in this scheduling table with lo-criticality jobs, interval by
interval.

Interval I1 will be filled with the job J4.
Both J4 and J5 are in Interval I2; J4 has the earlier deadline. As a result, J4 receives 3 time
units and J5 takes the remaining 0.5 unit. Here we check that J4 has received enough execution
and meets its deadline.

LITES
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Interval I3 has 0.5 units of execution remaining for job J5.
The remaining one time unit capacity in I4 will be used by J5. Until now the scheduling table
for hi-criticality jobs has remained unchanged from the one constructed in Step 2 (and shown
in the above table).
For the Interval I5, there is no active lo-criticality job, and the pre-allocated hi-criticality
amount x1,5 = 1 can not fill this up. In this case, we try to move later-assigned hi-criticality
amounts into this interval. Specifically, we consider the next interval I6, where x36 should be
“promoted” as x35; i. e., the one time unit that originally belongs to Interval [10, 13) will be
executed now. Note that after this step, the scheduling table for hi-criticality jobs is changed
into the following one (with bold numbers highlighting changes).
Interval I6 is now empty and can be fully assigned to job J6. Here we check that J6 has
received enough execution and meets its deadline.
Nothing happens to Interval [13, 15).

At the end of Step 3, the scheduling table for all jobs looks like this:

Ij [0, 1) [1, 5) [5, 6) [6, 8) [8, 10) [10, 13) [13, 15)
J1 0 0.5 0 0.5 1 0 0
J2 0 0 0.5 0.5 0 0 0
J3 0 0 0 0 1 0 1
J4 1 3 0 0 0 0 0
J5 0 0.5 0.5 1 0 0 0
J6 0 0 0 0 0 3 0

J

Computational Complexity. Although an individual job in an EDF schedule for an instance of n
jobs may be preempted as many as (n− 1) times, it is known (see, e. g., [6]) that the total number
of preemptions in any EDF schedule for an n-job instance cannot exceed (n− 1). In each column
of the scheduling table, there should be at least one non-zero element unless all released jobs are
finished beforehand. Each more non-zero element denotes that either a job is preempted, or a job
finishes its execution within the corresponding interval. Since the number total finishing points is
fixed as nhi + nlo, the total preemption number cannot exceed (nhi + nlo − 1), and number of
total intervals is no greater than (2nhi + 2nlo), we know that the total number of non-zero entries
in the table of Step 3 cannot exceed (4nhi + 4nlo − 1), where nhi (nlo, respectively) denotes the
number of hi-criticality (lo-criticality, resp.) jobs in the instance.

We note that standard techniques (see, e. g., [14]) for implementing EDF are known, that allow
an EDF schedule for n jobs to be constructed in O(n logn) time. Consequently, we conclude that
the EDF-schedule of Step 2 can be constructed in O(nhi lognhi) time, and the total scheduler
overhead during run-time is also bounded from above by O(n logn) where n = nhi + nlo denotes
the total number of jobs.

5 Non-preemptive Scheduling

Recall that the scheduling strategy we adopted in Section 3 above is as follows. Given an instance
I, we construct a scheduling table S(I). During run-time scheduling decisions are initially made
according to this table. If at any instant it is detected that the processor has transited to degraded
mode, the scheduling strategy is immediately switched: henceforth, only hi-criticality jobs are
executed, and these are executed according to EDF. Such a scheduling strategy requires that the
job that is executing at the instant of transition can be preempted, and hence is not applicable for
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non-preemptive systems. In this section, we consider the problem of scheduling non-preemptive
mixed-criticality instances.

Non-preemptivity mandates that each job receive its execution during one contiguous interval
of time. Let us suppose that a lo-criticality job is executing when the processor experiences a
degradation in speed. We can specify two different kinds of non-preemptivity requirements:

1. This lo-criticality job does not need to complete – it may immediately be dropped.
2. This lo-criticality job cannot be preempted and discarded – it must complete execution

despite that fact that the processor has degraded and this job’s completion is not required for
correctness.

Although the first requirement – that the lo-criticality job may be dropped – may at first
glance seem to be the more reasonable one, implementation considerations may favor the second
requirement. For instance, it is possible that the lo-criticality job had been accessing some shared
resource within a critical section, and preempting and discarding it would leave the shared resource
in an unsafe state.

It has long been known [11] that the problem of scheduling a given collection of independent
jobs on a single non-preemptive processor (that does not have a degraded mode) is already
NP-hard in the strong sense [11]4. Since our mixed-criticality problem, under either interpretation
of the non-preemptivity requirements, is easily seen to be a generalization, it is also NP-hard.
In fact, although determining whether an instance of (regular, not MC) jobs that all share a
common release time can be non-preemptively scheduled on a fixed-speed processor is easily solved
in polynomial time by EDF, it turns out that even this restricted problem is NP-hard for MC
scheduling.

I Theorem 8. It is NP-hard to determine whether there is a correct scheduling strategy for
scheduling non-preemptive mixed-criticality instances in which all jobs share a common release
date.

Proof Sketch. We prove this first for the second interpretation of non-preemptivity requirements
(lo-criticality jobs that have begun execution must be executed to completion), and indicate how
to modify the proof for the first interpretation.

This proof consists of a reduction of the partitioning problem [7], which is known to be
NP-complete, to the problem of determining whether a given non-preemptive mixed-criticality
instance I can be scheduled correctly. The partitioning problem is defined as follows. Given a set
S of n positive integers y1, y2, . . . , yn summing to 2B, determine whether there is a subset of S
with elements summing to exactly B.

Given an instance S of the partitioning problem, we construct an instance of the mixed-
criticality scheduling problem I comprised of (n+ 1) jobs J1, J2, . . . , Jn+1. The parameters of the
jobs are

Ji =
{

(0, yi, 5B,hi), 1 ≤ i ≤ n;
(0, B, 2B, lo), i = n+ 1.

The normal processor speed is one; the degraded processor speed s is assigned a value equal to
half: s← 1/2.

We will show that there is a partitioning for instance S if and only if there is a correct
scheduling strategy for I.

4 Indeed, it seems that it is difficult to even obtain approximate solutions to this problem, to our knowledge,
the best polynomial-time algorithm known [1] requires a processor speedup by a factor of 12.
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There is a Partitioning for S. Let S′ ⊆ S denote the subset summing to exactly B. We construct
our scheduling table as follows. Jobs corresponding to the elements in S′ are scheduled over the
interval [0, B), after which Jn+1 is scheduled over [B, 2B), followed by the scheduling of the jobs
corresponding to the elements in (S \ S′) over [2B, 3B).

If the processor enters degraded mode prior to time-instant B, then only the hi-criticality jobs
need to complete execution; it may be verified that they will do so by their common deadline.
If the processor enters degraded mode over [B, 2B), then Jn+1 may execute for no more than
the interval [B, 3B). That still leaves adequate capacity for the jobs corresponding to elements
in (S \ S′) to complete execution by their deadline at 5B, on the speed-0.5 processor.
Otherwise, Jn+1 completes by time-instant 2B. That leaves adequate capacity for the jobs
corresponding to elements in (S \S′) to complete execution by their deadline at 5B, regardless
of whether the processor enters degraded mode or not.

There is No Partitioning for S. In this case, consider the time-instant to at which the lo-
criticality job Jn+1 begins execution. We consider three possibilities:

If to > B, the processor remains in normal mode but Jn+1 misses its deadline at time-instant
2B.
If to = B, then the processor must have been idled for some time during [0, B). If the processor
were to now enter degraded mode at this time-instant to, job Jn+1 will execute over [B, 3B),
after which the strictly more than B units of remaining hi-criticality execution would execute –
this cannot complete by the deadline of 5B on the speed-1/2 processor.
Now suppose that that to < B, and the processor enters degraded mode at this time-instant
to. It must be the case that ≤ to units of execution of the hi-criticality jobs has occurred prior
to time-instant to. Job Jn+1 will execute over [to, to + 2B), after which the at least (2B − to)
remaining units of hi-criticality work must complete. But on the speed-1/2 processor this
would not happen prior to the time-instant

≥ to + 2B + 2(2B − to)
= 6B − to
> 5B,

which means that some hi-criticality job misses its deadline.
We have thus shown that there is a correct scheduling strategy for the non-preemptive mixed-
criticality instance I if and only if S can be partitioned into two equal subsets.

The proof above assumed the second interpretation of non-preemptivity requirements, in which
lo-criticality jobs that begin execution need to complete even if the processor degrades. For the
first interpretation of non-preemptivity requirements (lo-criticality jobs that begin execution do
not need to complete if the processor degrades while they are executing), we would modify the
proof by assigning the jobs J1, J2, . . . , Jn a deadline of 4B (rather than 5B as above). It may be
verified that this modified MC instance can be scheduled correctly if and only if the S can be
partitioned into two equal subsets. J

The intractability result of Theorem 8 above implies that in contrast to the preemptive case, we
are unlikely to be able to obtain efficient (polynomial-time) optimal scheduling strategies for non-
preemptive MC scheduling. We are currently working on devising, and evaluating, polynomial-time
approximation algorithms for the non-preemptive scheduling of mixed-criticality systems.
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6 Recurrent Tasks

In Sections 3-5 above, we have considered mixed-criticality (MC) systems that can be modeled as
finite collections of jobs. However, many real-time systems are better modeled as collections of
recurrent processes that are specified using, e. g., the sporadic tasks model [12, 13]. In this section,
we briefly consider this more difficult problem of scheduling mixed-criticality systems modeled as
collections of sporadic tasks. As with traditional (i. e., non MC) real-time systems, we will model
a MC real-time system τ as being comprised of a finite specified collection of MC recurrent tasks,
each of which will generate a potentially infinite sequence of MC jobs. We restrict our attention
here to dual-criticality systems of implicit-deadline MC sporadic tasks. Each task is characterized
by a 3-tuple of parameters: τi = (Ci, Ti, χi), with the following interpretation. Task τi generates
a potentially infinite sequence of jobs, with successive jobs being released at least Ti time units
apart. Each such job has a criticality χi, a WCET Ci, and a deadline that is Ti time units after
its release. The quantity Ui = Ci/Ti is referred to as the utilization of τi. An implicit-deadline
MC sporadic task system is specified by specifying a finite number τ = {τ1, τ2, . . . , τn} of such
sporadic tasks, and the degraded processor speed s < 1 (as with MC instances of independent
jobs, it is assumed that the normal processor speed is one). Such a MC sporadic task system can
potentially generate infinitely many different MC instances (collections of jobs), each instance
being obtained by taking the union of one sequence of jobs generated by each sporadic task.

If unbounded preemption is permitted, then the scheduling problem for implicit-deadline MC
sporadic task systems on uniprocessors is easily and efficiently solved in an optimal manner. We
first derive (Theorem 9) a necessary condition for the existence of a correct scheduling strategy.
We then present a scheduling strategy, Algorithm preemptive-MC, and prove (Theorem 10) that it
is optimal.

I Theorem 9. A necessary condition for MC sporadic task system (τ, s) to be schedulable by a
non-clarivoyant correct scheduling strategy is that
1. the sum of the utilizations of all the tasks in τ is no larger than 1, and
2. the sum of the utilizations of the hi-criticality tasks in τ is no larger than s.

Proof. It is evident that the first condition is necessary in order that all jobs of all tasks in τ
complete execution by their deadlines upon a normal processor, and that the second condition
is necessary in order that all jobs of all the hi-criticality tasks in τ complete execution by their
deadlines upon a degraded (speed-s) processor. J

In order to derive a correct scheduling strategy, we first observe that using preemption we can
mimic a processor-sharing scheduling strategy, in which several jobs are simultaneously assigned
fractional amounts of execution with the constraint that the sum of the fractional allocations
should not exceed the capacity of the processor. (This is done by partitioning the time-line into
intervals of length ∆ where ∆ is an arbitrarily small positive number, and using preemption within
each such interval to ensure that each job that is assigned a fraction f of the processor capacity
gets executed for a duration f ×∆ within this interval.)

Consider now the following processor-sharing scheduling strategy:

Algorithm Preemptive-MC

1. Initially (i. e., on the normal – non-degradation – processor), assign a share Ui of the processor
to each task τi during each instant that is active.5

5 A task is defined to be active at a time-instant t if it has released a job prior to t and this job has not yet
completed execution by time t.
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2. If the processor transits to degraded mode at any instant during run-time, immediately discard
all lo-criticality tasks and execute the hi-criticality tasks according to EDF.

I Theorem 10. Algorithm preemptive-MC is an optimal correct scheduling strategy for the
preemptive uniprocessor scheduling of MC sporadic task systems.

Proof. Let τ denote a MC implicit-deadline sporadic task system satisfying the necessary conditions
for schedulability that have been identified in Theorem 9.

It is evident that Algorithm preemptive-MC meets all deadlines if the processor operates at its
normal speed, since the processor-sharing schedule ensures that each job of each task τi receives
exactly Ci units of execution between its release date and its deadline.

Suppose that the processor degrades at some time-instant to. If we were to immediately
discard all lo-criticality tasks, the second necessary schedulability condition of Theorem 9 ensures
that there is sufficient computing capacity on the degraded processor to continue a processor-
sharing schedule in which each hi-criticality task τi with an active job receives a share Ui of the
processor. The correctness of Algorithm preemptive-MC now follows from the existence of this
processor-sharing schedule, and the optimality property of preemptive uniprocessor EDF. J

If preemption is forbidden, then scheduling of MC sporadic task systems becomes a lot more
challenging. As with the collections of independent jobs (Theorem 8), this problem, too, can be
shown to be highly intractable.

7 Context and Conclusions

Advanced processors may need to be modeled as varying-speed ones: although they are likely to
execute at unit speed (or faster) during run-time, we can only guarantee that they will execute at
lower speeds – the greater the level of assurance at which such a guarantee is sought, the lower
the speed that can be guaranteed. Upon such a processor, the scheduling objective is to ensure
that all jobs complete in a timely manner if the processor executes at its normal speed, while
simultaneously ensuring that more critical jobs complete in a timely manner even if the processor
speed falls to below this normal value.

In this paper, we have presented a formal framework for the scheduling-based analysis of MC
systems that execute upon CPUs which may be modeled as varying-speed processors. We have
defined a very simple model for representing MC systems, and have derived, and proved the
correctness of, an optimal algorithm for the preemptive uniprocessor scheduling of MC systems that
can be represented using our model. For the special case where there are only two criticality levels
(such MC systems have been called dual-criticality systems in the literature), we have provided
a more efficient scheduling algorithm. We have also cataloged the computational complexity of
the problem when preemption is forbidden, and have derived a scheduling strategy for scheduling
recurrent mixed-criticality task systems when unbounded preemption is permitted.
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