
Programming Language Constructs Supporting Fault
Tolerance
Christina Houben1 and Sebastian Houben2

1 Rheinische Friedrich-Wilhelms-Universität
Chemical Institutes, Bonn, Germany
c-k-houben@uni-bonn.de

2 Ruhr-Universität Bochum
Institute for Neural Computation, Bochum, Germany
http://orcid.org/0000-0002-2036-419X
sebastian.houben@ini.rub.de

Abstract
In order to render software viable for highly safety-
critical applications, we describe how to incorporate
fault tolerance mechanisms into the real-time pro-
gramming language PEARL. Therefore, we present,
classify, evaluate and illustrate known fault toler-
ance methods for software. We link them together
with the requirements of the international standard

IEC 61508-3 for functional safety. We contribute
PEARL-2020 programming language constructs for
fault tolerance methods that need to be implemen-
ted by operating systems, and code-snippets as
well as libraries for those independent from runtime
systems.

2012 ACM Subject Classification Control Structures and Microprogramming Control Structure Re-
liability, Testing, and Fault-Tolerance, Programming Languages, Language Constructs and Features,
Computers in Other Systems, Real-time, Advanced Driver Assistance Systems, Space Flight
Keywords and phrases fault tolerance, functional safety, PEARL, embedded systems, software engineer-
ing
Digital Object Identifier 10.4230/LITES-v003-i001-a001
Received 2015-05-02 Accepted 2016-04-05 Published 2016-06-10

1 Introduction

Highly safety-critical applications need automation systems that are failsafe or at least fault
tolerant. An automation system is called failsafe if it falls back into a stable state with a sufficient
degree of functional safety. Functional safety is a system’s property guaranteeing that the risk to
harm human beings, environment or other assets is below a risk limit [3]. Automation systems
are increasingly composed of software, thereby allowing to control more complex applications
than pure hardware-based solutions, providing greater flexibility in adapting systems to changing
requirements [22], consuming less space than mechanical constructions [9], and permitting to
change system functionality by remote maintenance [17, 25]. Unfortunately, software cannot fall
back into a safe state, triggered by laws of nature, like hardware [22]. Therefore, software systems
have to use fault tolerance methods in order to provide functional safety as demanded in the
international standard IEC 61508-3 [3]. Fault tolerance (FT) refers to a system fulfilling a specified
function, even if a limited number of subsystems are erroneous [38]. FT methods rather prevent
the consequences of a software error than the occurrence of the error itself [41]. FT methods,
hence, are composed of error recognition and error treatment [38].

Our long-term objective is to adapt the real-time programming language PEARL-90 to
functional safety as defined in the normative part of IEC 61508-3 [3]. In this paper we focus on
the topic of fault tolerance by propagating syntax and semantics to its derivative PEARL-2020

© Christina Houben and Sebastian Houben;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 3, Issue 1, Article No. 1, pp. 01:1–01:20
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c-k-houben@uni-bonn.de
http://orcid.org/0000-0002-2036-419X
mailto:sebastian.houben@ini.rub.de
http://dx.doi.org/10.4230/LITES-v003-i001-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 Programming Language Constructs Supporting Fault Tolerance

and elucidating the rationale behind our adaptations. Introducing FT into PEARL is beneficial,
since PEARL was the first language providing user-friendly concurrency concepts. These simple
but powerful concurrency concepts render PEARL appropriate for highly safety-related software
[22] which leads to a wide deployment throughout Europe [31]. PEARL is particularly tailored to
process control due to its system part that addresses peripherals. It is standardised in DIN 66253-2
as PEARL-90 [4] and DIN 66253 Part 3 as Multiprocessor PEARL [1]. The latter is composed
of two parts: the first part is a parametrisation language for compilers, binders and loaders and
the second part describes various communication protocols for synchronous and asynchronous
task cooperation and message passing. For a detailed introduction we refer to [19]. Currently,
Müller and Schaible [32] map out a PEARL-90 compiler which will serve as a base for a future
PEARL-2020 compiler. In our paper we contribute to the topic of fault tolerance in software as
follows:

We provide a complete overview of fault tolerance methods including their definition, classifi-
cation and one or more coding examples, and
present an evaluation of each FT method according to the insights from the examples with
respect to stumbling blocks for programmers and suitability as language elements, code snippets
or library implementations. In detail, we arrive at (c.f. Table 4):

additional PEARL syntax elements and semantics for assertions, load shedding, monotone
tasks and the Byzantine method,
code snippets in PEARL for forward recovery, functional and implementation diversity,
PEARL library implementations for majority voting and other plausibility checks,
further changes to the PEARL-90 programming language, i.e. judiciously removing backward
recovery, temporal redundancy and dynamic reconfiguration.

The outline of this paper is as follows. We start with related work in Section 2. Section 3
presents a comprehensive set of known fault tolerance methods for software with their classification
and examples. A few examples came from literature, most of them are devised by ourselves in the
application domains space flight and advanced driver assistance systems. Only one example per
FT method will be realised in the final language standard, but we state them for comparison. This
is the base for our framework addressing fault tolerance for software, in particular for PEARL.
The framework comprises examples, code-snippets, library procedures and language primitives.
In Section 4, we further explain the rationale behind this subdivision and link the FT methods
with requirements from IEC 61508-3. We publish our implementations under the following web
addresses:

concrete examples and general fault tolerance handlers for PEARL-90:
http://sourceforge.net/projects/openpearl/files/Example
a fault tolerance library for PEARL-2020:
http://www.real-time.de/service/downloads.html

2 Related Work

Most of the literature focuses on a single FT method. There are few papers that aim at combining
more than one method: Shelton [36] derived patterns from three different FT methods considering
task allocation and graceful degradation. DanYong and YongDuan [15] and Chen et al. [13]
inspected fault tolerance from the mathematical point of view setting up differential equations in
order to assess discrepancies from nominal values. Anwar [6] monitors a mainly software driven
system and switches to a redundant mechanical system only in case of an error. A different area
of application is treated by [30] who invented a fault tolerant TTP/C communication protocol. In
contrast to these, our paper targets a larger amount of FT methods as can be seen in Table 4.

http://sourceforge.net/projects/openpearl/files/Example
http://www.real-time.de/service/downloads.html

C. Houben and S. Houben 01:3

PEARL encompasses multiple derivatives, several of which already provide approaches for
integrating FT. Multiprocessor PEARL offers keywords for dynamic reconfiguration. PEARL-90
allows for redundancy with the help of its easy to use concurrency concepts. This language
derivative is branched into four subsets by [24], each addressing one of the four safety integrity
levels (SILs) of IEC 61508. These subsets are Table-PEARL for SIL 4, Verifiable PEARL for SIL 3,
Safe PEARL for SIL 2 and High Integrity-PEARL for SIL 1. Out of these, High Integrity-PEARL
entails language elements to state alternative procedure bodies. Object-oriented derivatives of
PEARL are PEARL* and Object-PEARL. PEARL* differs from PEARL-90 by keywords for
objects and interfaces. Object-PEARL implements alternative methods and monotone tasks as
FT concepts [14].

Fault tolerance in other languages is covered in Ada and languages like GRAFCET [2] for
programmable logic controllers (PLCs). SPARK and Ravenscar inherit from Ada but restrict its
variability for highly safety-critical applications. SPARK avoids error-prone language constructs
and provides a certified tool chain for compiling [7], while Ravenscar parametrises the scheduling
policy used in runtime systems in order to detect deadlocks and to guarantee timely task execution.
PLC languages are standardised with libraries encompassing building blocks that support fault
tolerance.

3 Fault Tolerance Methods

Fault tolerance methods are composed of error recognition and error treatment [38]. Error
recognition is covered in the next section. A categorisation of error treatment methods is given in
Section 3.2 and their elementary techniques in Section 3.3.

3.1 Error Recognition
In order to recognise an error, an automation system needs additional information on the range
of values of an expected result. This additional information can either entail functional content,
checked by voters, or is based on flow of control, checked by watchdogs. Examples for watchdogs
are given in Table 1. Voters can be classified into absolute or relative voters. Absolute voters
use hard-coded predicates as additional information, while relative voters compare the results of
various implementations [10]. As a conclusion, absolute voters return whether a result is feasible
or not. Since hard-coded predicates can be checked faster and more easily, they are predominantly
used for dynamic redundancy. In contrast, a relative voter additionally returns a certain value of
the output range or a combination of the output values. Examples of both types of voters are
shown in Table 1.

Our first PEARL example is a majority voter. It can be used for N floating point numbers and
returns the majority value if more than N // 2 units possess a similar value or ERROR_FLOAT if
not. Similar values are found by initial clustering. Afterwards, the cluster with most elements is
processed.

MajorityVoting : PROCEDURE (Values () FLOAT IDENT) RETURNS (FLOAT);
DCL Precision FLOAT INIT (0.01) ,

CntClasses FIXED INIT (0) ,
(RoundValues (N), ClassValues (N)) FLOAT ,
CntClassMembers (N) FIXED , Found BIT ,
(CntMaxMembers , IdxMaxMembers) FIXED ;

! Clustering of input values .
FOR i FROM 1 TO N REPEAT

RoundValues (i) := ROUND (Values (i) / Precision) * Precision ;
Found := ’0’B;
FOR k FROM 1 TO CntClasses REPEAT

IF RoundValues (i) EQ ClassValues (k) THEN
! Existing class gets new member .

LITES

01:4 Programming Language Constructs Supporting Fault Tolerance

Table 1 Types of watchdogs and voters. This table shows error recognition methods that can be
applied before any fallback state of a fault tolerance method is triggered.

watchdogs:
heartbeat to monitor the system’s availability
compatibility of actual with formal arguments [8]
checking data integrity with respect to contents and structure [8]
supervision of infinite loops or other unintended branching of the control flow, realisable by
diverse conditions in branches [8]
monitoring of runtime expenditure of tasks and noticing anomalies like frequent interruptions [8]

absolute voters:
pre- and post-conditions
assertions
invariants of loops or objects

relative voters:
majority voting, i.e. at least dn

2 e units out of n must provide the same result
consensus voting, i.e. largest number of members with equal results [42]
combinations like arithmetic mean, weighted sum, median or fuzzy logic [42]
statistical prediction, e.g. Kalman filtering [18]
test against the inverse of a function [8], e.g. matrix inversion by A ·A−1 = I [33]
checksums and parity bits, e.g. checksums for matrix multiplication [33]

CntClassMembers (k) := CntClassMembers (k) + 1;
Found := ’1’B;
EXIT ;

FIN;
END;
IF Found EQ ’0’B THEN

! A new class has to be created .
CntClasses := CntClasses + 1;
ClassValues (CntClasses) := RoundValues (i);
CntClassMembers (CntClasses) := 1;

FIN;
END;
! Find class with max member count .
CntMaxMembers := -1;
IdxMaxMembers := -1;
FOR i FROM 1 TO CntClasses REPEAT

IF CntClassMembers (i) > CntMaxMembers THEN
CntMaxMembers := CntClassMembers (i);
IdxMaxMembers := i;

FIN;
END;
IF CntMaxMembers > N // 2 THEN

RETURN (Result);
ELSE

RETURN (ERROR_FLOAT);
FIN;

END;

3.2 Error Treatment

3.2.1 Redundancy

Redundancy means deploying more resources than necessary [38]. Redundant units increase
functional safety, because automation systems with n redundant and independent resources are
robust against failing of n − 1 resources. Furthermore, failsafe hardware does not need an error
detection unit, since it fails due to environmental effects. Software, however, is in need of additional
error detection. If a software implementation produces an erroneous result, this is revealed by the
results from the other redundant implementations. For this reason, software is only robust against

C. Houben and S. Houben 01:5

Table 2 Matrix explaining hierarchy of error treatment with software fault tolerance.

redundancy graceful degradation
homogeneous diversity homogeneous diversity

functional diversity 3 3

load shedding 3

milestone method 3

implementation diversity 3 3

backward recovery 3 3

temporal redundancy 3

forward recovery 3 3

timed forward recovery 3 3

timed data diversity 3

dynamic reconfiguration 3

Byzantine method 3

less than n − 1 errors. Hierarchical redundancy refers to nesting different fault tolerance methods.
Redundancy is further divided into temporal, analytic, static and dynamic methods [36, 23]. We
explain these types later on.

3.2.2 Diversity
Plain redundancy refers to a homogeneous composition of multiple units, while diversity is a form
of redundancy with each unit being different from the others. Diversity is differentiated into the
types implementation, functional, physical, manufacturing diversity and diversity of operating
conditions [22]. Physical and manufacturing diversity refer to hardware-based automation systems.
Since we consider software safety, we will not target hardware topics in the following. The other
diversity types are integrated into the presented fault tolerance methods later on. For software,
only diverse implementations increase functional safety. Homogeneous implementations would
contain the same errors by definition [23]. Exceptions to this rule are race conditions and transient
hardware errors influencing registers used by a program.

3.2.3 Graceful Degradation
An automation system degrades gracefully if it provides reduced albeit specified automation
behaviour in case of too many errors [40]. Here, a system can degrade either in functionality or
availability [40]. Graceful degradation comes along with all fault tolerance methods for software
aside from static redundancy.

3.3 Elementary Techniques for Error Treatment
After the error recognition step one or more of the following treatment methods are applied
for fault tolerance. These elementary treatment methods can be categorised into homogeneous
redundancy, diversity and graceful degradation as described above, see Table 2.

3.3.1 Analytical or Functional Diversity
The diverse components in a system using analytical redundancy or functional diversity, respectively,
possess different specifications. They provide distinct although related functions. The relationship
between the components allows either to restore a corrupted value with the help of the other

LITES

01:6 Programming Language Constructs Supporting Fault Tolerance

functions, or permits relative plausibility checks. One example is distance, velocity and acceleration
[36] linked by the formula a = v̇ = s̈. Another one describes the dynamics of gas [36] inside a
combustion chamber given by the formula pV = nRT , where T is the temperature, p the pressure,
V the gas volume, n the amount of substance and R the gas constant. Advantages and drawbacks
of analytical redundancy can be studied by the following implementation:

TYPE TFunction REF PROC RETURNS (FLOAT);
TYPE TRelation REF PROC (Values () INV FLOAT IDENT) RETURNS (FLOAT);

TYPE TRelatedFunctions STRUCT (/
Count FIXED ,
Functions (1: Max) TFunction ,
Results (1: Max) FLOAT ,

/* Results = measured values retrieved by Functions */
Relations (1: Max) TRelation ,
Restored (1: Max) FLOAT

/* Restored = calculated values retrieved by Relations */
/);

Initialisation : PROC (RelFuns TRelatedFunctions IDENT) GLOBAL ;
FOR i FROM 1 TO RelFuns . Count REPEAT

RelFuns . Results (i) := RelFuns . Functions (i);
END;
FOR i FROM 1 TO RelFuns . Count REPEAT

RelFuns . Restored (i) := RelFuns . Relations (i)(RelFuns . Results);
END;

END;

Plausibility : PROC (RelFuns TRelatedFunctions INV IDENT) RETURNS (BIT) GLOBAL ;
FOR i FROM 1 TO RelFuns . Count REPEAT

IF ABS(RelFuns . Results (i) - RelFuns . Restored (i)) GT Epsilon THEN
RETURN (False);

FIN;
END;
RETURN (True);

END;

Restoration : PROC (RelFuns TRelatedFunctions IDENT , Index FIXED) GLOBAL ;
RelFuns . Results (Index) := RelFuns . Relations (Index)(RelFuns . Results);
FOR i FROM 1 TO RelFuns . Count REPEAT

RelFuns . Restored (i) := RelFuns . Relations (i)(RelFuns . Results);
END;

END;

The precision of plausibility checks depends on the choice of the acceptance gap between the
measured input values and the values calculated from the given formulas [33], see Epsilon in
Plausibility.
Plausibility checks between all participating diverse functions’ results do not reveal which
result is corrupt.
This fault tolerance type is not suited as library implementation due to the following drawbacks:
The complexity of this method is not situated in the library procedures, but in the implement-
ation of the diverse functions.
Additionally, the library procedures increase the program’s complexity, since the linkage of
the measured input values to arguments of the relationship functions has to be realised by a
generic array TRelatedFunctions.Results in Restoration with no relation to the original
variables’ nomenclature.
The restore-functions’ signatures depend on the type of relationship, e.g. direct calculation in
the case of gas dynamics vs. multiple inputs for derivatives in the case of movements.

In the next example we show how to use the library implementation from above in order to
realise the gas dynamics formula. Line 3 shows the problem of mapping the application-related
variables (p, V, n, T) to the formal parameters of the library Values(1:Max), which is only
viable by error-prone pointers (REF in PEARL):

C. Houben and S. Houben 01:7

DCL Max FIXED INIT (4);
DCL Values (1: Max) FLOAT ;
DCL (p, V, n, T) REF FLOAT INIT (Value (1) , Value (2) , Value (3) , Value (4));
DCL Funs () TFunction INIT (Piezo .Read , Flow.Read , GasScale .Read , Thermo .Read);
SPC (Pressure , Volume , Substance , Temperature) TRelation ;
DCL Relations () TRelation INIT (Pressure , Volume , Substance , Temperature);
DCL GasChamberFuns TRelatedFunctions INIT (Max , Functions , Values , Relations);

Pressure : PROC (Values () INV FLOAT IDENT) RETURNS (FLOAT);
RETURN (n * R * T / V);

END;

Volume : PROC (Values () INV FLOAT IDENT) RETURNS (FLOAT);
RETURN (n * R * T / p);

END;

Substance : PROC (Values () INV FLOAT IDENT) RETURNS (FLOAT);
RETURN ((R * T) / (p * V));

END;

Temperature : PROC (Values () INV FLOAT IDENT) RETURNS (FLOAT);
RETURN ((n * R) / (p * V));

END;

GasChamberControl : TASK MAIN ;
REPEAT

AFTER 5 MSEC RESUME ;
Initialisation ;
IF NOT Plausibility (GasChamberFuns) THEN

...
Restoration (GasChamberFunctions , ErrIdx);
...

FIN;
END;

END;

3.3.2 N-Version Programming
With N-version programming, a software part addressing a certain problem provides at least
two solution methods with the same in- and output interface. These solutions can be diverse
implementations or further enrichment of a result. A solution may be fortified with information
from a task that may also be skipped, or with information from a task that provides more precise
results the longer it is executed. N-version programming is divided into three sub-methods, namely
sieve method, milestone method and implementation diversity [29].

3.3.3 Load Shedding or Sieve Method
If a hazardous or unanticipated situation occurs, an embedded computing system might react by
scheduling more tasks than in normal mode. The higher the number of unanticipated requests is,
the higher the number of tasks to be executed will be. In such situations, not all of these tasks
can meet their deadlines. A fault tolerance method handling such cases is load shedding or the
sieve method. There are two variants, i.e. skipping all tasks of minor importance and extending
the periods [34]. Properties are:

In contrast to hardware redundancy, load shedding does not underutilise processors when no
overloads occur, at the expense of losing minor functionality [34].
The difference to monotone tasks is, that sieve methods shall be either completed or skipped
entirely, because there is no benefit to partly execute them [29].
A programmer shall be able to group sieve methods, since for some applications, it is useless
or even flawed to execute certain tasks if others were skipped.
Load shedding is interwoven with the runtime system, since the applied scheduling strategy
must allow to detect transient overloads before important tasks miss their deadlines. Earliest

LITES

01:8 Programming Language Constructs Supporting Fault Tolerance

deadline first (EDF) is applicable as scheduling strategy. Moreover, worst case execution times
(WCETs) must be determined by a compiler, as explained in the following paragraph.
Load shedding needs a mechanism for stating which tasks to skip primarily. On one hand,
this can be done by priorities as in the next example, on the other hand, by modes as in the
example thereafter.

If load shedding is to be applied, worst case execution times for each affected task should be
provided by the compiler in the declaration part. A compiler can determine WCETs statically by
summing up known maximum runtimes for each assembler instruction, multiplying them for loops,
and using the worst case branch on conditional program jumps [22]. This procedure nearly always
yields too pessimistic WCETs [37]. Therefore, compilers can build upon one of the following three
alternatives:

restricting language constructs (e.g. prohibit unbounded loops) [22],
simplifying processor architecture (e.g. omit pipelining and caches, only fixed point arithmetic)
[8],
assessing WCETs empirically with the help of very pessimistic cache trashers (guaranteeing
maximum number of cache misses) [20].

The following PEARL specifications illustrate language constructs for load shedding in the
context of space vehicles. TIMING and LOADSHEDDING are module parts like SYSTEM and PROBLEM.
The timing part is a synopsis of the timing analysis of all tasks, where WCET states the worst case
execution time determined by a compiler and RESPONSE states the available response duration
determined by an engineer. The first example shows how to state priorities. In case of transient
overloads, a runtime system has to remove all tasks beginning with those carrying the smallest
priority value. It gradually removes all tasks with the next priority value until all remaining tasks
can meet their deadlines.

TIMING ;
TelescopeAdjustment :

WCET (5.1 MSEC) RESPONSE (10 MSEC);
...

LOADSHEDDING ;
PRIO (1): ! skip first when in emergency mode

TelescopeAdjustment , AntennaAdjustment ;
PRIO (2): ! skip second when in emergency mode

EngineFineControl , SolarCellsFineControl ;

The aforementioned solution is based on two modes, namely normal and emergency mode
[26], whereas the second example uses multiple modes and tasks assigned to them. The TIMING
part equals the example from above, while the LOADSHEDDING part consists of several modes with
several tasks, each of which is executed when the runtime system finds itself in the respective
mode. SCIENCEMODE is the default and desired operating state. However, if no timely execution
can be guaranteed, the runtime system switches into one of the other modes. In the worst case,
SAFEMODE has to be executed. The mode is chosen as follows: Each time the schedule changes, i.e.
a task is activated, suspended or terminated, the runtime slack of all active tasks is computed. If
the slack is negative, the system has to switch into a lower mode. This is iterated until the slack
is non-negative or SAFEMODE is reached. On positive slack the runtime system can change into a
higher mode. In order to avoid toggling between two modes in both our examples, the following
options are viable:

the slack on the active mode must exceed a given threshold,
after a given period of time, the system automatically switches into the next higher mode,
the emergency mode is revoked by a human operator.

C. Houben and S. Houben 01:9

TIMING ;
MainEngineRoughControl :

WCET (2.7 MSEC) RESPONSE (8 MSEC);
...

LOADSHEDDING ;
SCIENCEMODE :

EngineFineControl , SolarCellsFineControl ,
TelescopeAdjustment , AntennaAdjustment ;

INTERMEDIATE :
...

SAFEMODE :
RollControl , EngineRoughControl , ...;

3.3.4 Monotone Tasks or Milestone Method
Monotone tasks produce results with higher quality the longer they are running. If such tasks are
terminated before final completion, they return the most recent valid result. Each intermediate
result represents a milestone. A monotone task is decomposable into a mandatory part and a
number of optional parts [29]. In the following, we evaluate three implementation types for the
milestone method:

DCL Flag BIT;
ZeroByNewton :

PROCEDURE ((F, D) TFunction) RETURNS (FLOAT);
DCL Xi FLOAT INIT (0.0) ;
DCL MaxLoops INV FIXED INIT (20);
DCL Loops FIXED INIT (0);
WHILE (NOT Flag) AND (Loops <= MaxLoops)
REPEAT

Xi := Xi - F(Xi)/D(Xi);
Loops := Loops + 1;

END;
RETURN (Xi);

END;

DCL Result FLOAT ;
ZeroByNewton : PROCEDURE ((F, D) TFunction);

DCL Xi FLOAT INIT (0.0) ;
FOR i FROM 1 TO 20 REPEAT

Xi := Xi - F(Xi)/D(Xi);
Result := Xi;
UPDATE ;

END;
END;

ZeroByNewton :
PROCEDURE ((F, D) TFunction) RETURNS (FLOAT);
DCL Xi FLOAT INIT (0.0) ;
MILESTONE (Xi);
ON EARLYEND : BEGIN RETURN (Xi); END;
FOR i FROM 1 TO 20 REPEAT

Xi := Xi - F(Xi)/D(Xi);
END;
RETURN (Xi);

END;

LITES

01:10 Programming Language Constructs Supporting Fault Tolerance

The first implementation uses a flag for each task that can be terminated beforehand. To
terminate a task, its flag has to be set. This implementation suffers from interspersing the pure
task functionality with milestone checks and the unbounded duration between two milestones.
Another implementation type by [14] is to introduce a keyword UPDATE. At each such update
point the scheduler can decide whether to terminate or to continue the task. The drawbacks
are the same as in the implementation before. Moreover, the result variable must be non-local.
Our third proposition is to forbid termination heteronomy. Instead, a TERMINATE instruction
for a monotone task shall produce a signal EARLYEND, which must be caught by monotone
tasks. A signal handler inside such tasks, then, releases all resources and returns the most
recent result. With this method, monotone tasks can be terminated at arbitrary points in
time. The WCET of the signal handler is clear to state and allows to bound the termination’s
duration in an intelligible way. This implementation type needs atomic sections, which are not
interruptible by signals in order to avoid race conditions for assignments to the result variable.
Therefore, all commands executed on variables stated in a MILESTONE list are compiled as
atomic.

3.3.5 Implementation Diversity
Implementation diversity uses at least two alternatives that fulfil the same function, but with
different designs or implementations [22]. With respect to software, one can vary architecture,
algorithms, data representations on the one hand, and operating systems, runtime systems,
compilers, programming languages, integrated development environments and test methods on the
other [23]. Implementation diversity can be used dynamically or statically. Dynamic execution
means that a scheduler decides at runtime which alternative to execute next. In static execution,
it is known beforehand that all alternatives are executed and, afterwards, a voter receives all
results to determine the correct one. With the static variant, the alternatives can be executed
sequentially or in parallel [23]. The following three implementations show these FT types by
conventional PEARL constructs, while the fourth example demonstrates new language constructs
proposed by [22].

With respect to functional safety, one can vary the alternatives in simplicity or in runtime
complexity. These categories are not exclusive. Simplicity increases the quality of an alternative,
since less complex solutions contain less programming errors [36]. Using the runtime consideration,
one alternative shall produce an exact result with long processing time, the other an imprecise
result with short processing time. Before executing an alternative, the scheduler calculates the
amount of time available and chooses the alternative with the highest result quality under the
constraint of timeliness. Table 3 shows which execution types are reasonable to combine. Dynamic
implementation diversity is related to recovery blocks, as we will explain further on.

Without using specialised PEARL syntax, the following three examples demonstrate how to
realise the aforementioned three implementation diversity types. By contrast, the fourth example
uses specialised syntax from [22]. Therein, DIVERSE introduces a block of alternatives, where
each block starts with ALTERNATIVE. The keyword ASSURE signals the beginning of the plausibility
check.

SequentialStaticRedundancy : PROC (Input STRUCT , Output STRUCT IDENT) RETURNS (BIT);
DCL Results (1:N) STRUCT ;
/* execute all alternatives */
Results (1) := Alternative1 (Input);
...
Results (N) := AlternativeN (Input);
/* relative plausibility check */
RETURN (VoterDecision (Results , Output));

END;

C. Houben and S. Houben 01:11

Table 3 Implementation diversity types: In dynamic implementation diversity, a scheduler decides at
runtime which alternative to execute next, while static means that all alternatives are executed and the
results are passed on to a voter. These alternatives can be executed sequentially or in parallel. During
design of the alternative functions one can aim at optimising simplicity, runtime or other goals.

dynamic static static
sequential sequential parallel

simplicity 7 3 3

runtime 3 7 7

other 3 3 3

DCL Input STRUCT ;
DCL Results (1:N) STRUCT ;
DCL Barrier (1:N) SEMAPHORE PRESET (1);

ParallelStaticRedundancy : PROCEDURE (X STRUCT , Y STRUCT IDENT) RETURNS (BIT);
Input := X;
/* execute all alternatives */
ACTIVATE Alternative1 ;
...
ACTIVATE AlternativeN ;
/* join with all alternatives */
REQUEST Barrier (1);
...
REQUEST Barrier (3);
/* relative plausibility check */
RETURN (VoterDecision (Results , Y));

END;

DynamicRedundancy : PROCEDURE (X STRUCT , Y STRUCT IDENT) RETURNS (BIT);
/* execute first alternative */
Y := Alternative1 (X);
/* absolute plausibility check */
IF PlausiCheck (X,Y) THEN RETURN (’1’B); FIN;
/* evtl . execute and check others */
...
/* evtl . execute last alternative */
Y := AlternativeN (X);
/* absolute plausibility check */
IF PlausiCheck (X,Y) THEN RETURN (’1’B); FIN;
/* return error if all tasks failed */
RETURN (’0’B);

END;

DIVERSE
ALTERNATIVE

Segments1 := RegionGrowing (Bitmap);
ALTERNATIVE

Segments2 := EnergyMinimisation (Bitmap);
ASSURE

IF Diff(Segments1 , Segments2) < 0.2 THEN
RETURN (Intersect (Segments1 , Segments2));

ELSE
INDUCE Error ;

FIN;

3.3.6 Recovery Blocks

Recovery blocks are a fault tolerance method, where the “blocks” represent diverse implementations
executed dynamically in sequential order and “recovery” refers to variables that need to be kept
in memory for roll-back in order to restore a stable program status if a block failed. The following
subsections describe both variants, namely backward and forward recovery.

LITES

01:12 Programming Language Constructs Supporting Fault Tolerance

3.3.7 Backward Recovery

Backward recovery is employed as follows [35, 36]: At first, backward recovery uses a checkpoint, if
one of the following alternative blocks changes input- or program-state-variables during execution.
A checkpoint is a snapshot of at least all the variables that could be changed by one of the
diverse alternatives in the recovery block. Second, a primary implementation representing the
conventional algorithm is applied. Third, an absolute plausibility test is evaluated after each
alternative has been processed. This test is called acceptance test. It can contain an alternative’s
own post-condition or the post-condition of all alternatives. If the acceptance test fails, the system
is rolled back to the last checkpoint, i.e. all variables are restored, and the next alternative is
executed. When passing the acceptance test, all other alternatives of the block are ignored. If all
alternatives fail, a computation error has to be reported followed by a fall-back to a surrounding
fault tolerance level. Further reasons to roll back and retry are internal computation errors like
division by zero and time-outs. Backward recovery embodies the following properties:

− Building a checkpoint consumes runtime and memory even if no error occurs [39]. For a
supercomputer, creating a checkpoint file on a disc is reported to consume up to 25 min [11].

− Rolling back to a checkpoint takes runtime, but only in case of errors [39].

− Restoring a checkpoint takes time as well [11].

± If preventive checkpoints are not possible due to runtime overhead, periodic checkpointing can
be applied [11].

± The post-conditions must be simple and ideally proven correct in order to prevent introducing
further design errors [22].

± For checkpointing, it would be beneficial to have a primitive at hand, that closely packs
all checkpoint variables without padding in order to transfer a single memory block with
one instruction. The packing becomes an optimisation problem if different checkpoints are
necessary.

Segmentation : PROCEDURE RETURNS (TSegments);
DCL (PreSegments , Segments) TSegments ;
PreSegments := PreSegmentation ;
! checkpoint
Segments := PreSegments ;
! primary implementation
RegionGrowing (Bitmap , Segments);
! acceptance test
IF Quality (Segments) < 0.5 THEN

! roll - back
Segments := PreSegments ;
! alternative
EnergyMinimisation (Bitmap , Segments);
! acceptance test
IF Quality (Segments) < 0.5 THEN

! fall - back
INDUCE Error ;

END;
FIN;
RETURN (Segments);

END;

If only one alternative is executed multiple times, backward recovery degrades to temporal
redundancy. It is not reasonable to execute the same code twice due to the systematic nature
of software errors. Hence, an error would be produced twice [22]. This is only useful in case of
corrupt data, e.g. flipped bits, or race conditions.

C. Houben and S. Houben 01:13

3.3.8 Forward Recovery
Forward recovery is a fault tolerance method working in the same way as backward recovery with
the sole difference that each alternative has its own pre-condition. The first alternative whose
pre-condition is fulfilled is executed [21].

The pre-conditions of forward recovery allow to skip alternatives if it is known beforehand
that certain data would cause an alternative to fail.
This fact saves runtime and decreases the hazard of executing program errors that could render
the program unstable.
Moreover, pre-conditions facilitate reading and understanding of the program text and contrib-
ute information for program verification.
If an alternative triggers a peripheral process that irrevocably changes the program state,
checkpointing is not possible, but forward recovery is [21].
The diverse alternatives must employ different input interfaces in such a way that each
subsequent pre-condition is not stronger than its predecessors’ pre-conditions, i.e. weaker or
not related. Otherwise, the program would contain unreachable code.
The order of alternatives and their pre-conditions shall be checked during compilation.

EdgeDetection : PROCEDURE RETURNS (BIT);
DECLARE Success BIT;
CALL CopyImages ;
IF Weather . Bright AND Weather .Dry THEN

Success := SobelOperator (VisualImage);
IF Success THEN RETURN (True);
ELSE CALL RestoreImages ; FIN;

FIN;
IF Weather .Dark AND Weather .Dry THEN

Success := SobelOperator (InfraredImage);
IF Success THEN RETURN (True);
ELSE CALL RestoreImages ; FIN;

FIN;
IF Weather .DARK AND (Weather .Fog OR Weather .Rain) THEN

Success := SobelOperator (RadarImage);
IF Success THEN RETURN (True);
ELSE CALL RestoreImages ; FIN;

FIN;
RETURN (False);

END;

TYPE TVoid REF STRUCT (/ /);
TYPE TProcedure REF PROC ;
TYPE TFunction REF PROC (TVoid) RETURNS (BIT);
TYPE TBlock REF PROC (TVoid) RETURNS (TVoid);

TYPE TAlternative STRUCT (/
Precondition TFunction ,
Implementation TBlock ,
Postcondition TFunction

/);

ApplyForwardRecovery : PROCEDURE (
Alternatives () INV TAlternative IDENT ,
Input TVoid) RETURNS (TVoid) GLOBAL ;
DCL (Checkpoint , Output) TVoid ;
DCL Next BIT INIT (True);
Checkpoint := Input ;
FOR i FROM 1 TO UPB(Alternatives) REPEAT

IF Alternatives (i). Precond (Input) THEN
Output := Alternatives (i).Impl(Input);
IF Alternatives (i). Postcond (Output)

THEN RETURN (Output);
ELSE Input := Checkpoint ;

FIN;
FIN;

END;
RETURN (NIL);

END;

LITES

01:14 Programming Language Constructs Supporting Fault Tolerance

The preconditions can be restricted on response times, in order to meet deadlines in case of
transient overloads. Here, a scheduler decides which alternative to execute depending on the
response time the system must achieve and the WCET of the alternatives. The first example
shows the syntax of [22], while the second one shows the syntax of [14].

EvasiveManeuvre : TASK RUNTIME SELECTABLE ;
BODY

ALTERNATIVE WITH RUNTIME 2500 MSEC ;
CALL ParticleFilter ;
! the best parameter estimation
! out of many simulations

ALTERNATIVE WITH RUNTIME 25 MSEC ;
CALL SimulationOnlyWithAvr ;
! improves based on average value
! with only one simulation

FIN;
END;

BrakeControl CLASS [
EvasiveManeuvre : PROCEDURE RETURNS (FLOAT) VIRTUAL ;

CALL ParticleFilter ;
END;
EvasiveManeuvre :: ALTPROCEDURE ;

CALL SimulationOnlyWithAvr ;
END;

];

3.3.9 Time-constrained Data Diversity

Data diversity means that the same algorithm is executed with input data that is represented
in different ways. Data diversity is split into three further types [5]. One type uses dynamic
redundancy, where data is reformulated if the used implementation raises an error. Another type
uses static redundancy, where data is reformulated n times and each version is processed by the
same algorithm. Afterwards, a voter decides which output to return. Both methods circumvent
errors due to unstable algorithms, but we recommend to use forward recovery instead and to use
algorithms that are stable for a certain input space. In contrast, the third data diversity type can
be employed to meet deadlines by resizing data to a smaller extent. For the implementation of a
procedure using time-constrained data diversity, the procedure needs the remaining processing
time and a worst case execution time with respect to a certain data size. Apart from that, an
implementation is very clear to read.

ImageProcessing : PROCEDURE (Image TBitmap , RemainingTime DURATION);
DCL WCETperPixel INV DURATION INIT (7 MSEC);
Compress (Bitmap , Image . Width * Image . Height * WCETperPixel / RemainingTime);
...

END;

3.3.10 Dynamic Reconfiguration

After a watchdog has detected an error, it sets an error flag and, thereby, provokes the runtime
system to shift certain task sets from one processor to another processor or node. Multiprocessor-
PEARL realises dynamic reconfiguration by a CONFIGURATION part [1]. Its organisation is similar
to High Integrity-PEARL, that uses STATEs with Boolean expressions and LOAD...TO as well
as REMOVE...FROM keywords to shift task sets [22]. Dynamic reconfiguration creates a host of
drawbacks:

C. Houben and S. Houben 01:15

− Dynamic reconfiguration suffers from hard-wiring of peripheral components to certain processors
such that a shifted task cannot access certain resources [22].

− Some processors have to be reserved as spare units [11].
− Moreover, reconfiguration is a dynamic language construct. This implies that shifting a task

set to another processor can cause unanticipated timing behaviour complicating the program
schedule, provoking transient overload, or causing failures due to consuming an unexpected
high amount of memory.

In order to avoid a system shut-down during reconfiguration, preventive migration together
with error prediction can be applied [11]. Here, software execution continues, but processing speed
slightly degrades during preventive migration. Preventive migration has to be combined with
other fault tolerance methods if an error was not predicted [11].

3.3.11 Rejuvenation and Byzantine Method
Rejuvenation is restarting a system from a checkpoint [42]. The restart can be of the form
rebooting, garbage collection, swapping space etc. [12]. It can be used for the whole system, a
node or a task [12]. The Byzantine method uses rejuvenation for n systems that are restarted
periodically, each at a different point in time [27]. After a spare unit restarts, it uses the state
stored by the other units.

+ The Byzantine method can bridge the time of switching to another processor [25].
+ Rejuvenation can be used to discharge a processor from radiation [25].
+ It avoids numerical error accumulation [12].
± The downtime for rejuvenation is planned and, therefore, less hazardous than an unplanned

downtime due to an error [12].
± It is applicable when system resources are exhausted or data is corrupt [12]. In this case,

rejuvenation is a crude method, because the error source is not detected.
− Program execution is interrupted during reboot [11].

4 Conclusions for PEARL-2020

After insights in multiple fault tolerance methods for software and their implementations, we select
appropriate methods for highly safety-critical applications. Table 4 gives a synopsis of all methods
presented, their objective, their linkage to IEC 61508-3 regulations and recommendations with
respect to the four safety integrity levels (SILs). The higher the SIL is, the higher the integrity
of an automation system has to be. The SIL is determined by questions considering extent
and limitation of damage for human beings, environment and assets, probability of failure and
duration of stay in a danger area. We marked which methods are applicable and recommend which
implementation type to use in PEARL-2020, the new standard that shall substitute PEARL-90
and Multiprocessor-PEARL. Therefore, we can choose from four implementation types, namely
hand-coded, code-snippets, library procedures and language primitives. For election, we consider
the following constraints formulated with respect to language primitives. This leads us to the aim
of devising language primitives only for FT methods that must be monitored by a runtime system.

+ If a language provides more primitives than necessary, a programmer can choose the best-suited
one, which improves readability of the source text.

− With too many primitives, programs become unintelligible if the primitives are mixed [28].

LITES

01:16 Programming Language Constructs Supporting Fault Tolerance

Table 4 Synopsis of the presented fault tolerance methods.

fault tolerance method objective IEC SIL PEARL implementation
61508 1 2 3 4 2020

abs. plausibility checks correctness A.2.3a + + + ++ 3 primitives
rel. plausibility checks correctness A.2.3b ± + + ± 3 library
functional diversity correctness A.2.3e ± ± + ++ 3 code-snippets
load shedding timeliness − 3 primitives (states)
milestone method timeliness − 3 primitives (update)
implementation diversity correctness A.2.3d ± ± ± + 3 code-snippets
backward recovery correctness A.2.3f + + ± − 7 −
temporal redundancy correctness A.2.4a + + ± ± 7 −
forward recovery correctness − 3 code-snippets
timed forward recovery timeliness − 3 code-snippets
timed data diversity timeliness − 3 hand-coded
dynamic reconfiguration correctness A.2.6 ± −− −− −− 7 −
Byzantine method correctness − 3 primitives

− Libraries are more appropriate than programming language constructs tailored to a certain
area of application since the latter can become deprecated and cannot be exchanged easily if
application areas develop further [16].

− With a minimum of language primitives, a language is easier to learn, better to understand
and verify [22].

+ With FT primitives, a compiler can choose whether to translate into sequential or parallel
execution [22].

± Primitives as well as libraries allow to change program behaviour with only little adaptations
to the source text, either by parametrisation of the compiler or by exchanging class and module
names.

4.1 Individual Language Design Decisions
We suggest to introduce absolute plausibility checks by the primitives PRECOND for pre-conditions,
POSTCOND for post-conditions and ASSERT for invariants within a procedure body. The explicit
distinction of those three keywords addresses semi-automatic program verification for the pre- and
post-conditions. Whether or not to check those assertions is to be parametrised in the compiler.
Relative plausibility checks will be provided by a library implementation since the necessary
checks, e.g. for majority voting, tend to be more complex and regulation A.2.8 from IEC 61508-3
demands to use verified software components.

We advocate for providing functional diversity and implementation diversity by use of code-
snippets, because mapping the nomenclature of a program’s area of application to arguments of
an FT handler is misleading and IEC 61508-3 regulation B.1.5 advises against the use of pointers,
refer to the example from Section 3.3.1. Benefits of code-snippets are that they guide programmers
to best-practice and allow to easily switch from sequential to parallel execution or vice versa.

Regarding load shedding, two design decisions have to be made: First, whether to provide two
states (normal and emergency) and assign a priority to every task group or to provide multiple
user-defined states with associated tasks, second, how to indicate state transitions to the runtime
system. We also point out that we neglect regulation A.2.3g from IEC 61508-3 which recommends a
stateless program design. We prefer to define multiple states in the program system part since they

C. Houben and S. Houben 01:17

allow to discard but also re-enable tasks if a transient overload becomes more critical. Considering
the second design choice there are two possible solutions as well: define the current state only
by using the current processor load or let the transitions be initiated by the programmer. Both
options bear the risk of toggling between two or more states. We prefer the second option since it
allows to query diverse conditions. The conditions have to be stated within the LOADSHEDDING
part of a PEARL module due to readability.

We base the milestone method on the language primitive UPDATE as proposed by [14], but with
a single change: instead of using a global return variable we use PEARL’s conventional function
header syntax with the new attribute MONOTONE that entails the name of the return variable. With
the example from Section 3.3.4 in mind, this means ZeroNewton: PROC((F, D) TFunction)
RETURNS(FLOAT) MONOTONE(Xi); The hand-coded variant with flags is inappropriate, since abort
conditions and setting the flag can be misimplemented by a programmer. The termination
heteronomy variant is insufficient to handle semaphore operations in case of early function exits.

We decided to drop language constructs for backward recovery and temporal redundancy, as
they are not recommended by IEC 61508-3 for higher SILs. Furthermore, backward recovery
should be substituted by forward recovery and temporal redundancy only aims at race conditions
that should be eliminated beforehand. Dynamic reconfiguration is left out as well, because IEC
61508-3 strongly advises against it due to its dynamic nature as stated in regulation B.1.2. In
order to prevent the disadvantages that come with dynamic reconfiguration we support the use of
the Byzantine method.

Forward recovery should be supported with code-snippets that entail sequential IFs for pre-
conditions and nested IFs for post-conditions. Language primitives are ruled out, because they
unnecessarily enlarge the set of keywords. Library procedures are excluded, since they imply the
need for parametric polymorphism or inheritance. The code-snippet for time-constrained forward
recovery extends the forward recovery code-snippet by one further input argument for the response
duration. Time-constrained data diversity, on the other hand, should be hand-coded, because
data can be simply and readably resized before the actual function implementation.

The rejuvenation of the Byzantine method has two aspects: what to rejuvenate and how. Since
subsystems are addressed by other FT methods, we restrict it to the whole embedded system.
Therefore, the time period and offset for rejuvenation of certain processors can be stated within
the program’s ARCHITECTURE part. We allow only restarting, since it enables radiation discharging
without complicating the language with other options. PEARL is a real-time programming
language, hence, memory operations, e.g. garbage collection, are forbidden. In principle, compiler
hints for swapping would be allowed, but we prefer not to intervene into these processes. Finally,
there is a need for a hand-coded initialisation procedure based on program states of the other
Byzantine processors.

4.2 Criteria of Effectiveness
We conclude our paper with several measures on how to obtain quantitative results to demonstrate
the effectiveness of the proposed approach, see Table 5. The coverage of IEC regulations can be
derived from column IEC 61508 of Table 4 for fault tolerance methods. For general language
constructs, PEARL-2020 is as well-suited as other safety-related languages like MISRA-C, but no
other language provides such powerful fault-tolerance language constructs. Thus, PEARL-2020
has a higher coverage than state-of-the-art languages. The IEC regulations enforce functional
safety. The programmers, hence, are relieved from checking them explicitly and may concentrate
on program validation and verification. Likewise, official certification authorities require less effort.
Another criterion of effectiveness would be to compare accident statistics from programs developed
with PEARL-2020 and other safety-related languages. We want to address this issue in future
work.

LITES

01:18 Programming Language Constructs Supporting Fault Tolerance

Table 5 Criteria of effectiveness.

main goal: functional safety
↗ coverage of IEC regulations (see column IEC 61508 of Table 4)
↗ seamless implementation of various functional safety concepts, programmers do not need to

address them explicitly
↘ programming effort and more effortless verification
↘ examination effort for certification authorities [22]
? accident statistics for machines and plants that are programmed with PEARL-2020 compared

to other languages like MISRA-C (future work)
↗ maintainability and debuggability

side constraints: resources
↗ length of source code
→ memory for application data
→ runtime

We would like to juxtapose general program metrics of PEARL-2020 to other languages in a
qualitative fashion: The length of PEARL-2020 source code is expected to become longer as many
diverse checks are demanded. Memory requirements are equivalent to that of other safety-related
languages because, even today, all devices implement diverse memory in agreement with IEC
regulations. Runtime should remain at the same level.

Acknowledgement. We thank Daniela Horn for thoroughly proofreading the manuscript and
the anonymous reviewers for their invaluable comments.

References
1 DIN 66253 Part 3. PEARL for Distributed Sys-

tems. Beuth, 1989.
2 IEC 60848. GRAFCET Specification Language for

Sequential Function Charts. IEC, 2013.
3 IEC 61508-3. Functional safety of electrical/elec-

tronic/programmable electronic safety-related sys-
tems – Part 3: Software requirements. IEC, 2010.

4 DIN 66253-2. PEARL-90. Beuth, 1998.
5 Paul Ammann and John C. Knight. Data diversity:

An approach to software fault tolerance. IEEE
Trans. Computers, 37(4):418–425, 1988. doi:10.
1109/12.2185.

6 Sohel Anwar, editor. Fault Tolerant Drive
By Wire Systems: Impact on Vehicle Safety
and Reliability. Bentham, 2011. doi:10.2174/
97816080530701120101.

7 John Barnes. High Integrity Ada – The SPARK
Approach. Addison-Wesley, 1997.

8 Juliane Benra and Wolfgang A. Halang, edit-
ors. Software-Entwicklung für Echtzeitsysteme.
Springer, 2009. URL: http://www.springer.com/
de/book/9783642015953.

9 William Bolton. Mechatronics: Electronic Control
Systems in Mechanical and Electrical Engineering,
volume 3. Prentice Hall, 2004.

10 Josef Börcsök. Funktionale Sicherheit. VDE, 4th
edition, 2014. URL: https://www.vde-verlag.de/
buecher/483590/funktionale-sicherheit.html.

11 Franck Cappello, Henri Casanova, and Yves
Robert. Checkpointing vs. migration for post-
petascale supercomputers. In 39th International
Conference on Parallel Processing, ICPP 2010,
San Diego, California, USA, 13-16 September
2010, pages 168–177. IEEE Computer Society,
2010. doi:10.1109/ICPP.2010.26.

12 Vittorio Castelli, Richard E. Harper, Philip Heidel-
berger, Steven W. Hunter, Kishor S. Trivedi,
Kalyanaraman Vaidyanathan, and William P.
Zeggert. Proactive management of software
aging. IBM Journal of Research and Development,
45(2):311–332, 2001. doi:10.1147/rd.452.0311.

13 Henan Chen, Yongduan Song, and Danyong
Li. Fault-tolerant tracking control of fw-steering
autonomous vehicles. In 2011 Chinese Control and
Decision Conference (CCDC), pages 92–97, May
2011. doi:10.1109/CCDC.2011.5968152.

14 Matjaž Colnarič and Domen Verber. Dealing with
tasking overload in object oriented real-time applic-
ations design. In 6th Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS 2001),
8-10 January 2001, Rome, Italy, pages 214–222.
IEEE Computer Society, 2001. doi:10.1109/
WORDS.2001.945133.

15 Li DanYong and Song YongDuan. Adaptive fault-
tolerant tracking control of 4ws4wd road vehicles:
A fully model-independent solution. In Chinese
Control Conference (CCC), volume 31, pages 485–

http://dx.doi.org/10.1109/12.2185
http://dx.doi.org/10.1109/12.2185
http://dx.doi.org/10.2174/97816080530701120101
http://dx.doi.org/10.2174/97816080530701120101
http://www.springer.com/de/book/9783642015953
http://www.springer.com/de/book/9783642015953
https://www.vde-verlag.de/buecher/483590/funktionale-sicherheit.html
https://www.vde-verlag.de/buecher/483590/funktionale-sicherheit.html
http://dx.doi.org/10.1109/ICPP.2010.26
http://dx.doi.org/10.1147/rd.452.0311
http://dx.doi.org/10.1109/CCDC.2011.5968152
http://dx.doi.org/10.1109/WORDS.2001.945133
http://dx.doi.org/10.1109/WORDS.2001.945133

C. Houben and S. Houben 01:19

492. IEEE, July 2012. URL: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=6389978.

16 Leberecht Frevert. Lösung von Echtzeitproblemen
mit PEARL90-Objekten, 1998. URL: http://www.
real-time.de/service/misc/GrundlagenOOP.pdf.

17 Kevin Fu. Trustworthy medical device software.
Public Health Effectiveness of the FDA 510(k)
Clearance Process – Measuring Postmarket Per-
formance and Other Selected Topics, 2011. URL:
http://www.nap.edu/read/13020/chapter/10.

18 Arthur Gelb, editor. Applied Optimal Estimation.
MIT Press, 1974. URL: https://mitpress.mit.
edu/books/applied-optimal-estimation.

19 GI-Working Group 4.4.2 “Real-Time Program-
ming, PEARL”. PEARL 90 Language Report,
September 1998. Version 2.2. URL: http:
//www.real-time.de/service/misc/PEARL90-
LanguageReport-V2.2-GI-1998-eng.pdf.

20 Julian Godesa and Robert Hilbrich. Framework für
die empirische Bestimmung der Ausführungszeit
auf Mehrkernprozessoren. In Wolfgang A. Halang,
editor, Funktionale Sicherheit, Echtzeit 2013,
Fachtagung des gemeinsamen Fachausschusses
Echtzeitsysteme von Gesellschaft für Informatik
e.V.(GI), VDI/VDE-Gesellschaft für Mess- und
Automatisierungstechnik (GMA) und Information-
stechnischer Gesellschaft im VDE (ITG), Bop-
pard, 21. und 22. November 2013, pages 77–86.
Springer, 2013. doi:10.1007/978-3-642-41309-
4_9.

21 Wolfgang A. Halang and Matjaž Colnarič. Deal-
ing with exceptions in safety-related embedded sys-
tems. In 15th IFAC World Congress, pages 983–
988. Elsevier, 2002. doi:10.3182/20020721-6-ES-
1901.00985.

22 Wolfgang A. Halang and Rudolf M. Konakovsky.
Sicherheitsgerichtete Echtzeitsysteme. Springer,
2013. URL: http://www.springer.com/de/book/
9783642372971.

23 Wolfgang A. Halang and Rudolf J. Lauber.
Echtzeitsysteme I. FernUniversität Hagen, 2009.

24 Wolfgang A. Halang and Janusz Zalewski. Pro-
gramming languages for use in safety-related ap-
plications. Annual Reviews in Control, 27(1):39–
45, 2003. doi:10.1016/S1367-5788(03)00005-1.

25 F. Hubert. Handbuch der Raumfahrttechnik,
volume 4, chapter Datenmanagement. Hanser,
2011.

26 Farnam Jahanian and Aloysius K. Mok. Safety
analysis of timing properties in real-time systems.
IEEE Trans. Software Eng., 12(9):890–904, 1986.
doi:10.1109/TSE.1986.6313045.

27 Leslie Lamport, Robert E. Shostak, and Mar-
shall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401,
1982. doi:10.1145/357172.357176.

28 Edward A. Lee. The problem with threads. IEEE
Computer, 39(5):33–42, 2006. doi:10.1109/MC.
2006.180.

29 Jane W. S. Liu, Kwei-Jay Lin, Riccardo Bettati,
David Hull, and Albert Yu. Use of imprecise
computation to enhance dependability of real-
time systems. In Gary M. Koob and Clifford G.
Lau, editors, Foundations of Dependable Com-
puting: Paradigms for Dependable Applications,

pages 157–182. Springer US, Boston, MA, 1994.
doi:10.1007/978-0-585-27316-7_6.

30 Reinhard Maier, Günther Bauer, Georg Stöger,
and Stefan Poledna. Time-triggered architecture:
A consistent computing platform. IEEE Micro,
22(4):36–45, 2002. doi:10.1109/MM.2002.1028474.

31 Peter Marwedel. Embedded Systems Design.
Springer, 2006. URL: http://www.springer.com/
us/book/9789400702561.

32 Rainer Müller and Marcel Schaible. Die Program-
mierumgebung OpenPEARL90. In Wolfgang A.
Halang and Herwig Unger, editors, Industrie 4.0
und Echtzeit – Echtzeit 2014, Fachtagung des ge-
meinsamen Fachausschusses Echtzeitsysteme von
Gesellschaft für Informatik e.V.(GI), VDI/VDE-
Gesellschaft für Mess- und Automatisierungstech-
nik (GMA) und Informationstechnischer Gesell-
schaft im VDE (ITG), Boppard, 20. und 21.
November 2014, Informatik Aktuell, pages 31–40.
Springer, 2014. doi:10.1007/978-3-662-45109-
0_4.

33 Paula Prata and João Gabriel Silva. Algorithm
based fault tolerance versus result-checking for
matrix computations. In Digest of Papers: FTCS-
29, 29th Annual International Symposium on
Fault-Tolerant Computing, Madison, Wisconsin,
USA, June 15-18, 1999, pages 4–11. IEEE Com-
puter Society, 1999. doi:10.1109/FTCS.1999.
781028.

34 Parameswaran Ramanathan. Fault-tolerance in
real-time control applications using (m, k)-firm
guarantee. In Digest of Papers: FTCS-27,
27th Annual International Symposium on Fault-
Tolerant Computing, Seattle, Washington, USA,
June 24-27, 1997, pages 132–141. IEEE Computer
Society, 1997. doi:10.1109/FTCS.1997.614086.

35 B. Randell. System structure for software fault tol-
erance. ACM SIGPLAN Notices – International
Conference on Reliable Software, 10(6):437–449,
April 1975. doi:10.1145/390016.808467.

36 Charles Preston Shelton. Scalable Grace-
ful Degradation for Distributed Embedded Sys-
tems. PhD thesis, Carnegie Mellon University,
jun 2003. URL: https://users.ece.cmu.edu/
~koopman/thesis/shelton.pdf.

37 Paulo Baltarejo Sousa, Konstantinos Bletsas,
Eduardo Tovar, Pedro Souto, and Benny Akesson.
Unified overhead-aware schedulability analysis for
slot-based task-splitting. Real-Time Systems, 50(5-
6):680–735, 2014. doi:10.1007/s11241-014-9204-
x.

38 Jürgen J. Stoll. Fehlertoleranz in verteilten
Realzeitsystemen: Anwendungsorientierte Tech-
niken, volume 236 of Informatik-Fachberichte.
Springer, 1990.

39 Dwight Sunada, David Glasco, and Michael J.
Flynn. Multiprocessor architecture using an audit
trail for fault tolerance. In Digest of Papers:
FTCS-29, 29th Annual International Symposium
on Fault-Tolerant Computing, Madison, Wiscon-
sin, USA, June 15-18, 1999, pages 40–47. IEEE
Computer Society, 1999. doi:10.1109/FTCS.1999.
781032.

40 Matthias Tichy and Holger Giese. Extending
Fault Tolerance Patterns by Visual Degradation
Rules. In 2005 Workshop on Visual Modeling

LITES

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6389978
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6389978
http://www.real-time.de/service/misc/GrundlagenOOP.pdf
http://www.real-time.de/service/misc/GrundlagenOOP.pdf
http://www.nap.edu/read/13020/chapter/10
https://mitpress.mit.edu/books/applied-optimal-estimation
https://mitpress.mit.edu/books/applied-optimal-estimation
http://www.real-time.de/service/misc/PEARL90-LanguageReport-V2.2-GI-1998-eng.pdf
http://www.real-time.de/service/misc/PEARL90-LanguageReport-V2.2-GI-1998-eng.pdf
http://www.real-time.de/service/misc/PEARL90-LanguageReport-V2.2-GI-1998-eng.pdf
http://dx.doi.org/10.1007/978-3-642-41309-4_9
http://dx.doi.org/10.1007/978-3-642-41309-4_9
http://dx.doi.org/10.3182/20020721-6-ES-1901.00985
http://dx.doi.org/10.3182/20020721-6-ES-1901.00985
http://www.springer.com/de/book/9783642372971
http://www.springer.com/de/book/9783642372971
http://dx.doi.org/10.1016/S1367-5788(03)00005-1
http://dx.doi.org/10.1109/TSE.1986.6313045
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1007/978-0-585-27316-7_6
http://dx.doi.org/10.1109/MM.2002.1028474
http://www.springer.com/us/book/9789400702561
http://www.springer.com/us/book/9789400702561
http://dx.doi.org/10.1007/978-3-662-45109-0_4
http://dx.doi.org/10.1007/978-3-662-45109-0_4
http://dx.doi.org/10.1109/FTCS.1999.781028
http://dx.doi.org/10.1109/FTCS.1999.781028
http://dx.doi.org/10.1109/FTCS.1997.614086
http://dx.doi.org/10.1145/390016.808467
https://users.ece.cmu.edu/~koopman/thesis/shelton.pdf
https://users.ece.cmu.edu/~koopman/thesis/shelton.pdf
http://dx.doi.org/10.1007/s11241-014-9204-x
http://dx.doi.org/10.1007/s11241-014-9204-x
http://dx.doi.org/10.1109/FTCS.1999.781032
http://dx.doi.org/10.1109/FTCS.1999.781032

01:20 Programming Language Constructs Supporting Fault Tolerance

for Software Intensive Systems (VMSIS) at
the the IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC’05),
Dallas, Texas, USA, pages 67–74, September
2005. URL: http://www.upb.de/cs/ag-schaefer/
Veroeffentlichungen/Quellen/Papers/2005/
TG05.pdf.

41 Tjerk W. van der Schaaf and L. Kanse. Hu-
man Error and System Design and Management,

chapter Errors and Error Recovery, pages 27–38.
Number 253 in Lecture Notes in Control and In-
formation Sciences. Springer, 2000. URL: http:
//www.springer.com/us/book/9781852332341.

42 Hongyu Sun Zaipeng Xie and Kewal Saluja. A
survey of software fault tolerance techniques,
2006. URL: http://www.pld.ttu.ee/IAF0030/
Paper_4.pdf.

http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2005/TG05.pdf
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2005/TG05.pdf
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2005/TG05.pdf
http://www.springer.com/us/book/9781852332341
http://www.springer.com/us/book/9781852332341
http://www.pld.ttu.ee/IAF0030/Paper_4.pdf
http://www.pld.ttu.ee/IAF0030/Paper_4.pdf

	Introduction
	Related Work
	Fault Tolerance Methods
	Error Recognition
	Error Treatment
	Redundancy
	Diversity
	Graceful Degradation

	Elementary Techniques for Error Treatment
	Analytical or Functional Diversity
	N-Version Programming
	Load Shedding or Sieve Method
	Monotone Tasks or Milestone Method
	Implementation Diversity
	Recovery Blocks
	Backward Recovery
	Forward Recovery
	Time-constrained Data Diversity
	Dynamic Reconfiguration
	Rejuvenation and Byzantine Method

	Conclusions for PEARL-2020
	Individual Language Design Decisions
	Criteria of Effectiveness

