
Optimal Scheduling of Periodic Gang Tasks
Joël Goossens1 and Pascal Richard2

1 Université Libre de Bruxelles (ULB)
50 av. F.D. Roosevelt 1050 Brussels, Belgium
joel.goossens@ulb.ac.be

2 LIAS/Isae-Ensma-Université de Poitiers
1 av. Clément Ader, BP 40109, 86961 Chasseneuil du Poitou, France
pascal.richard@univ-poitiers.fr

Abstract
The gang scheduling of parallel implicit-deadline
periodic task systems upon identical multiprocessor
platforms is considered. In this scheduling problem,
parallel tasks use several processors simultaneously.
We propose two DP-Fair (deadline partitioning) al-
gorithms that schedule all jobs in every interval of
time delimited by two subsequent deadlines. These
algorithms define a static schedule pattern that is
stretched at run-time in every interval of the DP-
Fair schedule. The first algorithm is based on linear
programming and is the first one to be proved op-

timal for the considered gang scheduling problem.
Furthermore, it runs in polynomial time for a fixed
number m of processors and an efficient implemen-
tation is fully detailed. The second algorithm is an
approximation algorithm based on a fixed-priority
rule that is competitive under resource augmen-
tation analysis in order to compute an optimal
schedule pattern. Precisely, its speedup factor is
bounded by (2 − 1/m). Both algorithms are also
evaluated through intensive numerical experiments.

2012 ACM Subject Classification Computer systems organization, Real-time systems, Embedded and
cyber-physical systems, Software and its engineering, Process management, Scheduling, Multithreading,
Theory of computation, Design and analysis of algorithms, Scheduling algorithms
Keywords and phrases Real-time systems, scheduling, parallel tasks
Digital Object Identifier 10.4230/LITES-v003-i001-a004
Received 2015-05-21 Accepted 2016-05-05 Published 2016-06-29

1 Introduction

We consider the preemptive scheduling of real-time tasks on identical multiprocessor platforms
(see [13]). We deal with parallel real-time tasks, the case where each job may be executed on
different processors simultaneously, i.e., we have job parallelism. Nowadays, the design of parallel
programs is common thanks to parallel programming paradigms like Message Passing Interface
(MPI [26, 28]) or Parallel Virtual Machine (PVM [40, 23]). Even better, sequential programs
can be parallelized using standards like OpenMP application programming interface (see [8] for
details).

Contributions. We define and prove correct a technique to schedule optimally periodic implicit
deadline rigid gang tasks (see Definition 1 for details) upon multiprocessors. The algorithm is based
on linear programming (LP) and runs in polynomial time for a fixed number m of processors. The
second proposed method is a fixed-task priority rule with a performance guarantee of (2− 1

m) under
resource augmentation analysis. These algorithms are compared through numerical experiments.

Organization. Section 2 presents the studied scheduling problem and the related work. Section 3
presents basic results about DP-Fair scheduling of parallel tasks. Section 4 presents the LP-based
optimal method and its implementation. Section 5 presents a gang heuristic and its worst-case

© Joël Goossens and Pascal Richard;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 3, Issue 1, Article No. 4, pp. 04:1–04:18
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joel.goossens@ulb.ac.be
mailto:pascal.richard@univ-poitiers.fr
http://dx.doi.org/10.4230/LITES-v003-i001-a004
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

04:2 Optimal Scheduling of Periodic Gang Tasks

performance analysis under resource augmentation. Section 6 presents numerical results comparing
both methods on randomly generated task systems. Then, Section 7 concludes the paper and
presents some future work.

2 Model, Problem and Related Work

2.1 Parallel Task & Job Models
We deal with jobs and tasks which may be executed on different processors at the very same
instant, in which case we say that job (or task) parallelism is allowed. Various kinds of parallel
task models exist. Goossens et al. [25] adapted parallel computing terminology [7] to recurrent
(real-time) tasks and jobs as follows.

I Definition 1 ([25] Rigid, Moldable and Malleable Job). A job is said to be (i) rigid if the number
of processors assigned to this job is specified externally to the scheduler a priori, and does not
change throughout its execution; (ii) moldable if the number of processors assigned to this job
is determined by the scheduler, and does not change throughout its execution; (iii) malleable if
the number of processors assigned to this job can be changed by the scheduler during the job’s
execution.

A recurrent task is said to be rigid if all its jobs are rigid, and the number of processors
assigned to the jobs is specified externally to the scheduler; a recurrent task is said to be moldable
if all its jobs are moldable; malleable if all its jobs are malleable.

Additionally at task level the literature distinguishes between at least three kinds of parallelism:
Multithread [12, 32, 39, 38, 1]. Each task is sequence of phases (multiphase in the following),
each phase is composed of several threads, each thread requires a single processor for execution
and threads can be scheduled simultaneously [38]. A particular case is the Fork-Join (see
e.g. [36]) task model where the phases are an alternate sequence of sequential and parallel
segments; task begins as a single master thread that executes sequentially until it encounters
the first fork construct, where it splits into multiple parallel threads which synchronize/join on
their terminaison and so on.
Dag task model [2, 6, 34]. The model generalizes the fork-join model, each task is represented
as a directed acyclic graph, which is a set of precedence-constrained sequential jobs. Any group
of jobs that are not constrained may execute in parallel.
Gang [11, 4, 25, 30]. Each task corresponds to e× k rectangle where e is the execution time
requirement and k the number of required processors with the restriction: the k processors
must execute task in unison (i.e., at the exact same time). This model is very representative
to real world parallel applications where, at the submission time, users or scheduler select the
number of processors for the task [14, 16] and consequently the number of generated threads
corresponds to the number of used processors like MPI [41] and OpenMP [9] tools do. The
threads communicate each other, they must be ready to communicate at the same time which
imposes the synchronous threads execution.

2.2 Our Task/Job Model and Scheduling Problem
At job-level we consider the preemptive scheduling of parallel jobs on a multiprocessor platform
upon m identical processors. We will focus on the problem of scheduling a set of rigid gang parallel
jobs, each job Jj

def= (rj , vj , ej , dj) is characterized by a release time rj , a required number of
processors vj , an execution requirement ej and an absolute deadline dj . The job Jj must execute

J. Goossens and P. Richard 04:3

for ej time units over the interval [rj , dj) on vj processors. We consider the scheduling of rigid
jobs since vj is fixed externally to the scheduler.

Our main scheduling problem concerns periodic (and sporadic —see discussion Section 5.3)
preemptive hard real-time systems. Let τ def= {τ1, . . . , τn} denote a set of n periodic implicit-
deadline rigid gang parallel tasks. Each task τi

def= (vi, Ci, Ti) will generate an infinite number of
jobs, where the kth job of task τi is ((k− 1) ·Ti, vi, Ci, k ·Ti). In the following ui

def= Ci

Ti
denotes the

utilization factor of task τi. This utilization is not related to the number of required processors
(vi) this is an horizontal notion. The execution requirement of a job of τi corresponds to a Ci × vi

rectangle.

This Research. We study the scheduling of preemptive periodic implicit-deadline rigid gang
real-time tasks. We address the feasibility and the schedulability questions by designing an
optimal scheduler. The proposed approach exploits the deadline partitioning of the schedule.
Precisely, in every slice delimited by two subsequent deadlines in the schedule, a static schedule
pattern is stretched according to the slice length. Two algorithms are proposed to define such
a pattern. The first algorithm is based on linear programming and is the first one to be proved
optimal for the considered gang scheduling problem. Furthermore, it runs in polynomial time
for a fixed number m of processors and an efficient implementation is fully detailed. The second
algorithm is an approximation algorithm based on a fixed-priority rule that is competitive under
resource augmentation analysis for computing a static schedule pattern. Precisely, its speedup
factor is bounded by (2− 1/m). Both algorithms are also evaluated through intensive numerical
experiments.

For the sake of simplicity we consider periodic tasks and we assume that Ci is the exact
duration of the task τi. Consequently, we consider an offline scheduling problem. The discussion
of Section 5.3 extends the scope of our result to the scheduling of sporadic tasks with Ci as the
worst-case execution time.

2.3 Related Work
Optimal solutions. To the best of our knowledge there is a single work which provides an optimal
solution for the scheduling of recurrent hard real-time parallel computing: the work of Collette
et al. [11] which considers sporadic implicit-deadline malleable gang scheduling. The authors
provide an optimal scheduler and an exact feasibility/schedulability test. The work we report in
this document provides an optimal scheduler and an exact feasibility/schedulability test as well,
except we consider a more realistic parallel task model since our task are rigid jobs—the degree of
parallelism is specified at design time and does not change at run-time—while the authors of [11]
consider malleable jobs.

Non optimal solutions. The other contributions to the scheduling of recurrent hard real-time
parallel computing consider non optimal schedulers and schedulability tests (sufficient or exact).
[30] considers the EDF (Earliest Deadline First [35]) scheduler for rigid gang sporadic tasks and
proposes a sufficient schedulability test. [25, 4] consider FTP (Fixed Task Priority, such as Rate
Monotonic [35]) periodic gang scheduling and provide an exact/sufficient schedulability tests. [12]
considers FTP and periodic multithread tasks and proposes an exact schedulability test. [32]
consider Deadline Monotonic scheduling of fork-join tasks, they provide a competitive analysis for
that suboptimal scheduler. [39] considers EDF and FTP scheduling for multiphase multithread
periodic tasks and provides a task decomposition technique and a competitive analysis. [38]
considers optimal schedulers for sequential tasks (e.g., DP-Fair described Section 3.4), implicit

LITES

04:4 Optimal Scheduling of Periodic Gang Tasks

deadline multiphase multithread recurrent tasks, for which the authors propose a decomposition
technique and a competitive analysis. More recent works [6, 34] consider DAG tasks model (which
generalizes fork-join model). The authors study the competitiveness of global EDF and global RM.

3 Basic Results

3.1 Hardness for arbitrary number of processors
Assuming that the number of processors is an input in the problem model, it is easy to show that
the preemptive Gang scheduling problem is equivalent to the Bin Packing problem. Such a result
was observed (without proof) for the non preemptive scheduling problem of parallel (Gang) tasks
having unit processing times [5]. Hereafter, we provide a basic proof sketch to clearly exhibit the
reducibility among both problems.

I Theorem 2. Preemptive Gang scheduling is NP-hard in the strong sense for problem instances
with an arbitrary number of processors.

Proof. (Sketch) We transform from Bin Packing [22]: Finite set A of items, a rational size
s(a) ∈ Q+ for each a ∈ A, a positive integer bin capacity B, and a positive integer K; is there a
partition A into disjoint A1, A2, . . . , AK such that the sum of the sizes of the items in each Ai is
no more than B?

Without loss of generality we assume that all s(a) have a common denominator and B is scaled
accordingly, we define a Gang scheduling instance as follow:

m = B processors,
each item a ∈ A is model as a unit-length task of period K, τa = (va, ea,K), such that ea = 1
and va = s(a).

The Bin Packing decision problem is equivalent to determine if there is a feasible schedule of period
K? (i.e., a schedule with no more than m processors are simultaneously used at any time). J

The previous transformation shows that preemptive Gang Scheduling with an arbitrary number
of processors contains the bin packing problem as a particular case (i.e., with all task execution
times equal to 1). It is also known that the Bin Packing problems can be solved in polynomial
time for any fixed B by exhaustive search [22]. Such a property will be also exploited for defining
our optimal polynomial time algorithm for scheduling periodic Gang real-time tasks.

3.2 Maximum Rectangle Utilization Bound

In our task model (see Section 2.2), the task utilization ui
def= Ci/Ti represents an horizontal

utilization. In this section we introduce the notion of total rectangle task set utilization which is
by definition

∑n
i=1

Ci×vi

Ti
.

The maximum rectangle utilization bound Ub of a scheduler guarantees that every system of
tasks whose total utilization is smaller than or equal to Ub will be correctly scheduled. Beyond
this utilization limit, and if the bound is said to be tight, then there exist systems of tasks which
are not schedulable.

First notice that, since our scheduling problem of parallel tasks is a generalization of the
popular scheduling problem of periodic sequential tasks, we have to report a negative result: the
maximum rectangle utilization bound is 1/m.

I Theorem 3. The maximum rectangle utilization bound for the scheduling of periodic Gang tasks
is 1/m.

J. Goossens and P. Richard 04:5

1

3
2

1

3
2

3

Figure 1 Non-predictability of gang FJP schedulers. Job 1 has the highest priority, job 3 has the lowest
one and job 2 in the middle, and they all arrive at time 0.

Proof. The result will be established using a simple parallel task set with two tasks1: τ1(1, 1, 1)
and τ2(m, ε, 1), where ε is an arbitrary small positive infinitesimal number. This system is trivially
infeasible and the total task rectangle utilization is 1/m. J

3.3 Scheduling Anomalies
We have to report a second negative result concerning our scheduling problem: FJP (Fixed Job
Priority, such as Earliest Deadline First [35]) and consequently FTP gang scheduling are not
predictable [25] 2. Here is an example task system, on 2 processors and three jobs3 (see Figure 1):

J1 = (0, 1, 3, 3), J2 = (0, 2, 1, 4), J3 = (0, 1, 2, 2) .

Using the priority assignment J1 > J2 > J3, Gang FJP schedules the set of jobs (J3 completes at
time-instant 2). Unfortunately, if the actual duration of J1 is 1, J2 will preempt J3 at time t = 1
and J3 will complete later, at time-instant 3. Then, J3 does not miss its deadline in the “worst
case” scenario, but misses it if J1 uses less than its worst case execution time C1. Thus, reducing
an execution time can delay the completion of another job.

3.4 DP-Fair Scheduling for Sequential Tasks
While this research concerns parallel tasks we will introduce a scheduling technique defined for
sequential tasks (in the next section —Section 3.5— we will show how to apply the very same
technique to gang tasks). Consequently, we assume in this section the scheduling of n sequential
and implicit-deadline tasks upon m identical processors. Each task τi

def= (Ci, Ti) is characterized
by a worst-case execution duration Ci and a period Ti. Seminal optimal multiprocessor scheduling
techniques were based on the notion of proportionate fairness, it is the case for instance of the PF
(Proportionate Fairness) scheduler [3]. This type of algorithm assumes that time is discrete.

The quantum-by-quantum construction of the scheduling is not necessary in order to define an
optimal algorithm [42, 20, 24]. DP (Deadline Partitioning) scheduling techniques do not decompose
the tasks into single-time unit (sub)-tasks. The construction of the scheduling is done over time
intervals delimited by two consecutive deadlines called blocks. In each block, every task receive a
workload that is proportional to its utilization so that the fairness property is satisfied at each
deadline in the schedule.

Let Lj be the length of the block j delimited by two subsequent task deadlines, every implicit
deadline periodic task τi receives an amount of processor equal to Lj × ui. Consequently, a task
τi has received an execution times equal to ui × Ti = Ci for each of its deadlines.

1 (vi, Ci, Ti)
2 a scheduling algorithm is predictable if reducing an execution requirement cannot increase the completion of

tasks.
3 (rj , vj , ej , dj)

LITES

04:6 Optimal Scheduling of Periodic Gang Tasks

The previous algorithms assume that time is by its nature discrete: the times at which the
scheduler can be activated are integers (in other words correspond to the clock ticks of the
real-time operating system). Discrete time is by its nature a source of complexity in multiprocessor
scheduling and for this reason, algorithms which exploit the continuous nature of time have been
defined.

We will now detail the simplest algorithm in this category: the DP-Wrap algorithm.
The DP-Wrap algorithm is a very simple deadline fair algorithm which is optimal for tasks

with implicit deadlines [20]. Contrarily to the previous algorithms, DP-Wrap considers that the
time is continuous. The scheduling is broken down into blocks delimited by deadlines/periods.
The distribution of the tasks into each interval is equal to the length of the interval multiplied by
the utilization of the task, i.e., ui

def= Ci/Ti. Thus, in the interval [sj , sj+1), each task τi is given
Ci(j)

def= ui × (sj+1 − sj). Consequently, at each deadline, the tasks have received an execution
time equals to ui × Ti = Ci. The scheduling (distribution) in each block is done by McNaughton’s
algorithm, which has been proposed in 1959 [37].

In the next section, we show how to reuse the deadline partitioning technique in order to define
an optimal static gang scheduling algorithm.

3.5 DP-Fair and Gang Scheduling
The next result (Theorem 4) shows that concerning our parallel scheduling problem (gang
scheduling defined Section 2.2) we can, without loss of generality, consider DP-Fair scheduling,
i.e., schedule where the same pattern is replicated (and stretched) in each interval delimited by
deadline/period. In Section 4 we will define a technique to build such pattern optimally.

I Theorem 4. Every feasible parallel task set is schedulable with a DP-Fair schedule.

Proof. Assume we have a feasible schedule, then we show how to define a feasible DP-Fair schedule.
Since parallel tasks are strictly periodic and are simultaneously released, the whole schedule is
periodic and has a period equal to the hyperperiod. Within the hyperperiod H, every task is
executed for H

Ti
Ci = Hui. To define a DP-Fair schedule:

Schedule pattern: stretch the complete schedule within unit time slots.
Stretch the pattern accordingly in every block of the schedule.

The corresponding schedule is DP-Fair. At every block boundary t, every task τi, 1 ≤ i ≤ n

receives exactly t · ui. Hence, for every time instant t corresponding to a deadline of task τi (i.e.,
t = kTi) the task τi receives exactly kTiui = kCi and thus has been executed to completion by its
deadline. J

4 Optimal Pattern Definition

4.1 Research Method
Firstly, we will revisit a non real-time scheduling problem and its solution (the work of Błazewicz
et al. [5]) where the main goal is to minimize the schedule length of non recurrent rigid gang
jobs. We will show how that technique can be optimally adapted to our hard real-time scheduling
problem.

4.2 The work of Błazewicz et al. revisited
Principles. In [5] the authors consider the scheduling of n rigid gang jobs, each job Ji is
characterized by the couple (ui, vi), i.e., a duration ui and a required number of processors vj , all

J. Goossens and P. Richard 04:7

these jobs are released simultaneously at time origin. Upon an identical multiprocessor platform
the scheduling problem is to find a schedule which minimizes the schedule length, the first instant
where the jobs are completed or equivalently to minimize the makespan.

The authors present a polynomial time algorithm for a fixed number of processors m, based on
linear programming, for computing an optimal schedule in the general case. Particular cases are
also considered but not useful in our framework. Notice that the problem is NP-hard for arbitrary
number of processors (i.e., m is an input of the problem) [15].

The method decomposes the schedule as a sequence of slices. Remember, a feasible allocation
of jobs is the one that uses no more than m processors. Each slice σi is characterized by the set
Si of feasible jobs and the duration xi of their execution. The algorithm computes the length for
every feasible allocation of jobs. As a result, the slices having a positive length are sequenced in
arbitrary order. Moreover the method minimizes the

∑M
i=1 xi, i.e., the makespan to define an

optimal schedule.

I Definition 5 (Feasible allocation). A feasible allocation of jobs is a subset s of job indexes that
can be processed simultaneously on the platform:

∑
i∈s vi ≤ m. By definition we have a finite

number of different feasible allocation sets. In the following M is the number of different feasible
allocation sets. Thus the set of all feasible allocation subsets is denoted S = {S1, . . . , SM}.

I Example 6. For instance, consider three jobs J1, J2, J3 with v1 = 1, v2 = 2, v3 = 1, u1 = 3, u2 = 1
and u3 = 2. For m = 2 the feasible allocations are S1 = {1}, S2 = {2}, S3 = {3} (jobs can be
executed alone); S4 = {1, 3} (J1 and J3 can be executed in parallel). Remark that J2 cannot be
executed with J1 nor J2.

Notice that S has a cardinality of M def= |S| ≤
∑m

k=1
(

n
k

)
≤ (n)m. It is important to notice

that the number of subsets M (i.e., number of variables in the linear program) is in O(nm) that is
polynomial for fixed values of m.

Let Qj be the set of those subset indexes which contain job Jj . Let xi be the processing time
of the subset Si in the schedule and used to define variables in the linear program. The linear
program computes the schedule as a set of slices of length xi. Every value xi such that xi > 0
defines a slice in the schedule in which the jobs of Si are executed. Slices are executed in an
arbitrary order without any inserted delays between them. Hence, the computed makespan is∑M

i=1 xi.
The objective function is to minimize the makespan:

∑M
i=1 xi; and the linear program must

enforce that all jobs are completed. The corresponding constraint is:
∑

i∈Qj
xi = uj , j = 1 . . . n.

Hence, the schedule with the smallest length (i.e., makespan) is defined as follows:

Algorithm 1: Optimal Schedule Pattern construction by Linear Programming.

Minimize
∑M

i=1 xi

subject to
∑

i∈Qj
xi = uj j = 1 . . . n

A solution for Example 6 is x1 = 1 (duration of the execution of J1 only), x2 = 1 (duration of
the execution of J2 only), x3 = 0 and x4 = 2 (duration of the joint execution of J1 and J3) which
corresponds to the schedule of Figure 2.

In the previous linear program, there are: M variables and n constraints. It can be solved in
polynomial time using for instance Khachiyan’s algorithm [31]. This is pretty much what Błazewicz
et al. [5] did to solve optimally and polynomially their scheduling problem. We first show how

LITES

04:8 Optimal Scheduling of Periodic Gang Tasks

1
2

1

3

x1 x2 x4

Figure 2 A solution for Example 6.

that technique can be used to solve our hard real-time scheduling problem (Section 4.3). Then,
we will show how to speedup the resolution time by defining an efficient problem construction
before calling the LP solver (Section 4.4).

4.3 Minimizing the Makespan vs. Meeting Hard Real-time Deadline of
Recurrent Tasks

The next property establishes an equivalence between the Błazewicz et al. optimal solution and
an optimal scheduler for our real-time scheduling problem thanks to the DP-Fair scheduling
theory [33].

I Theorem 7. A periodic implicit deadline rigid gang scheduling system (vi, Ci, Ti)i=1···n is feasible
⇔ the set of synchronous jobs (ui, vi)i=1···n has a minimum makespan not larger than the unity.

Proof. ⇐ Assuming the makespan of the set of synchronous jobs (ui, vi)i=1···n is not larger than
the unity we have a schedule pattern which executes each task for a duration of ui in a unit-length
interval. Using deadline partitioning fairness theory (DP-Fairness, see [33, 20, 10, 18, 21, 19])
we can schedule our original periodic task set. The main idea of that kind of schedule is the
deadline partitioning of the timeline: the time is divided in slices bounded by two successive job
deadlines [33, 20]. All tasks are assigned a local execution time which is the length of the current
slice times the task utilization ui. As basically DP-Wrap [20] we use an identical pattern (the
solution of the LP) in each time slice, i.e., the unitary pattern is stretched according to the length
of the slice. Thanks to the DP-Fair theory, we know that for each time interval [kTi, (k+ 1)Ti) the
task τi executes during uiTi = Ci time units on vi processors simultaneously. Consequently, the
periodic gang task is feasibly scheduled.
⇒ We will show the contra-positive, i.e., assuming that all schedules of the synchronous job

set have a length larger than one. Since DP-Fair is optimal for periodic implicit-deadline systems
and since the technique of Błazewicz et al. determines the minimal makespan we can conclude
that it is necessary for the schedulability of periodic implicit-deadline tasks that in each slice the
active task τi executes for ui times the slice length. Hence, slices where all tasks are active (like
the first one in the synchronous case) cannot execute ui times the slice length since the solution
of the LP is larger than one, consequently (because DP-Fair is optimal), the periodic system is not
schedulable on m unit-speed processors. J

4.4 LP implementation issues
Efficient generation of the set of all feasible allocations S (Definition 5) is the main combinatorial
problem in the linear program construction (Algorithm 1) in order to setup the linear program
that will compute the optimal schedule pattern. Even if the size of the problem is polynomially
bounded for fixed values of m, the brute force definition of the set of all feasible allocations S

J. Goossens and P. Richard 04:9

⊥

1

12 13

2

23

3

Figure 3 Search tree with nodes defined by task indexes in subsets; black nodes are feasible subsets
whereas red nodes are infeasible subsets.

requires a huge amount of time for n > 20. This stage is the bottleneck of the approach since the
linear program is solved quickly as it will be shown in the experimental section.

A simple way to implement a Brute Force generation of all subsets of tasks is to represent
every feasible allocation by an integer in which the binary encoding represents the tasks selected
in a subset. There are 2n subsets of a set with n elements, exactly as there are 2n different ways
to write numbers with n bits. Let s denote such an integer, if ith binary digit is 1 in s, then it
indicates that task τi is in the feasible allocation represented by s. With such a binary encoding,
the brute force enumeration of all feasible allocations of n tasks simply consists in counting from
1 to 2n − 1 and defining subsets from the binary encoding. Subsets corresponding to feasible
allocations are those that do not use more than m processors.

Using the same binary encoding principles for feasible allocations, we define an efficient
generation using Depth First Search with lexicographic ordering of enumerated subsets. Tasks
are sorted in non increasing order of vi. As a consequence, vertices corresponding to infeasible
allocations are efficiently pruned. A branch in the search tree is pruned if the current vertex
in the tree corresponds to subset of tasks that use more than m processors. The search tree is
illustrated in Figure 3 for three tasks: {τ1, τ2, τ3} which respectively use 3, 2 and 1 processors.
The considered platform has 3 processors. Nodes define indexes of tasks in a subset. Black nodes
are feasible subsets whereas red ones are infeasible (i.e., requires more than 3 processors). During
the search, the node {123} is not defined since {12} is already infeasible (i.e., the branch is pruned
or fathomed). Using a Depth First Search, the search tree simply consists in the list of unexplored
subsets (i.e., encoded as one integer each) and its size is upper-bounded by O(n2) subset entries.
Our Matlab implementation of this algorithm, denoted DFSLex hereafter, is limited to 64 tasks
(i.e., due to Matlab 64-bit integers). Brute Force and DFSLex methods will be compared in the
section dedicated to numerical experiments. The performance of the LP for optimally solving
Gang scheduling problems will be also presented in Section 6.

In the next section, we propose an heuristic that avoids the previous combinatorial problem.
This heuristic has a performance guarantee in terms of resource augmentation (i.e., speedup
factor).

5 Gang heuristic

This section presents a scheduling heuristic for defining the schedule pattern. As for the optimal
solution presented in the previous section, we consider a DP-Fair schedule in which the pattern
will be stretched in every block delimited by two subsequent deadlines of tasks.

The heuristic algorithm is a fixed-task priority scheduling rule that runs in O(n logn) for an
arbitrary number of processors. We provide a resource augmentation analysis to compare its
worst-case performance against the optimal method.

LITES

04:10 Optimal Scheduling of Periodic Gang Tasks

5.1 Fixed-Task Priority Scheduling gang-h
[29] presents an heuristic for minimizing the makespan of preemptive parallel jobs. We shall reuse
the basis of the algorithm for defining a fixed-task priority algorithm, denoted gang-h hereafter.
As in the previous section, the algorithm is used to define the pattern of tasks to schedule in every
time slot (i.e., block) of the DP-Fair schedule. As in the optimal method, the pattern is defined as
a unit-length schedule in which utilization factors of tasks play the role of execution requirements.
For each block in the schedule, the rule is simultaneously used to:

allocate the portion of each task to processors.
sequence tasks within the block.

gang-h is a fixed-task priority scheduling rule that works as follows [29]:
1. Priorities are assigned in non-increasing order of the number of requested processors (i.e.,

non-increasing order of vi); ties are broken arbitrarily.
2. Scheduling decisions are taken every time a job is released or completed. At such event, all tasks

are preempted and the priority list is used to allocate ready tasks to the processors greedily as
feasibly while the current job can be scheduled on the remaining available processors.

The complete algorithm is described in Algorithm 2. This algorithm considers synchronous
jobs and will be used to define the pattern of jobs to be scheduled in every block of the schedule
(as in the optimal algorithm).

5.2 Optimality under resource augmentation
The scheduling rule gang-h is obviously not optimal for minimizing the pattern makespan in our
DP-Fair approach. Nevertheless, we next prove that it is as powerful as an optimal algorithm if it is
allowed to use a faster processor than the optimal algorithm executed upon a unit-speed processor.
Such a performance guarantee quantifies the price being paid for using gang-h. Precisely, we
establish that the speedup factor is bounded by 2− 1/m. We first recall the speedup factor metric.

I Definition 8. (Speedup factor) A scheduling algorithm A has a speedup factor f , f ≥ 1, if it
can schedule any task set that can be scheduled on a given platform by an optimal algorithm,
provided that A is able to schedule the same task set upon a platform in which each processor is
f times as fast as the processors available to the optimal algorithm.

For proving the resource augmentation performance guarantee for our real-time scheduling
problem, we reuse the following results that establish the competitive ratio for the makespan
minimization problem.

I Lemma 9. (Theorem 3.1 in [29]) Let wL be the makespan computed by gang-h and w0 be the
optimal makespan, then:

wL ≤ (2− 1
m

)w0 (1)

The approximation bound of (2− 1/m) can be easily proved to be tight by using the same
task set that has been proposed in [27]: m2 −m + 1 jobs. This job set is defined by (m2 −m)
unit-length jobs and one job of length m. Every task uses exactly one processor. Since ties
are broken arbitrarily, assume that gang-h assigns the lowest priority to the job of length m.
Consequently, gang-h defines a schedule that first allocates all unit-length jobs to the m processors
and lastly the last job. This schedule is of length m − 1 + m = 2m − 1, whereas the optimal
makespan ism by allocating the long job to a dedicated processor and by scheduling the unit-length
jobs on m− 1 remaining processors.

J. Goossens and P. Richard 04:11

Algorithm 2: gang-h (synchronous jobs).
input :

n jobs Jj(uj , vj), 1 ≤ j ≤ n ;
m: number of processors;

output :
Slice lengths S(s), s = 1, 2, . . .;
Scheduled jobs j in slice s: Sched(s,j) ∈ {0, 1}, 1 ≤ j ≤ n ;

List=Sort(J1, . . . , Jn) ; /* Jobs are sorted in non increasing order of vj */
s = 0 ; /* Number of slices */
rj := uj ∀j = 1 · · ·n ; /* Job remaining execution times rj */
while ∃j, rj > 0, 1 ≤ j ≤ n do

/* create a new slice */
s = s+ 1 ; /* Number of slices */
K = m ; /* Remaining processors */
` =∞ ; /* Slice length upper bound */
Sched(s,j)=0 1 ≤ j ≤ n ; /* Empty Slice */
foreach j ∈ List do

/* For each job j in priority List */
if vj ≤ K then

/* the job j is schedulable in current slice */
Sched(s,j)=1;
` = min(`, rj); /* update slice length */
K = K − vj ; /* remaining processors */

end
end
S(s)=l; /* Slice length */
for j = 1 . . . n do

/* Update remaining execution times */
if Sched(s, j) then

rj = rj − `;
end

end
end

The following lemma states that gang-h always produces the same distribution of tasks among
identical processors whatever the platform speed.

I Lemma 10. Let P be the schedule pattern computed by gang-h on m unit-speed processors and
w be its makespan, then gang-h produces a pattern P ′ of length w/s if a platform is of speed s > 0.

Proof. All jobs in a pattern are simultaneously available at the beginning of the schedule. Thus,
scheduling decisions are only taken by gang-h when a job is completed. Using m speed-s processors
will stretch execution times to the value Ci/s for every task τi. Hence, the pattern is of length
w/s. J

I Theorem 11. gang-h has a speedup factor not exceeding (2− 1
m).

Proof. Consider a task set τ on a platform Π defined by m unit-speed processors. Assume that τ
is feasible upon Π and let w0 be the length of the pattern computed by an optimal algorithm, then

LITES

04:12 Optimal Scheduling of Periodic Gang Tasks

by Lemma 9, gang-h produces a pattern of length not exceeding (2− 1
m)w0 on Π. Now consider a

platform Π′ where each processor is of speed s = 2− 1
m . The task set corresponding to τ , denoted

τ ′, has an execution requirement defined by Ci/s for every tasks. By Lemma 10, the length of
the schedule defined by gang-h upon Π′ is not exceeding (2− 1

m)w0/s = w0. Hence, the pattern
defined by gang-h is feasible. J

Thus, a processor speedup of 2− 1/m is an upper bound on the price being paid for using the
presented gang heuristic for defining the schedule pattern to be stretched in every block of the
DP-Fair schedule.

5.3 Extending the scope of the results
For the sake of simplicity we considered implicit-deadline periodic tasks and we assumed that
Ci is the exact duration of the task τi. In this section we discuss straightforward extensions
(constrained-deadlines, asynchronous systems and Ci as the worst-case execution requirement)
and possible extensions which are left as future work (sporadic and arbitrary deadlines).

Constrained-deadlines. We considered in this work implicit-deadline rigid gang parallel tasks.
Constrained-deadline tasks are characterized by an additional parameters Di ≤ Ti the relative
deadline. Each constrained-deadline task τi

def= (vi, Ci, Ti, Di) will generate an infinite number of
jobs, where the kth job of task τi is ((k− 1) ·Ti, vi, Ci, (k− 1) ·Ti +Di). DP-Fair techniques can be
obviously extended for constrained-deadlines by considering the task density δi

def= Ci/Di instead
of task utilization. DP-Fair is not longer optimal for constrained-deadline and sequential tasks,
but if the makespan of gang jobs {(δi, vi) | i = 1, . . . , n} is not larger than the unity our method
schedule feasibly constrained-deadline gang tasks. Funk et al. extended for instance DP-Wrap for
constrained- deadlines [20].

Asynchronous periodic tasks. Asynchronous periodic tasks are characterized by an additional
parameters Oi the release time of the first job of τi. Each task τi

def= (vi, Ci, Ti, Oi) will generate
an infinite number of jobs, where the kth job of task τi is (Oi + (k − 1) · Ti, vi, Ci, Oi + k · Ti).
Once again the technique can be used for that asynchronous system: we define the pattern for
the synchronous job scenario and we apply the deadline partitioning method and stretching
accordingly that pattern.

Early completion. We assumed in this work that Ci is the exact duration of the task τi. Mean-
while, from applicative perspective this is incorrect, at design time we determine the worst-case
execution time (Ci is the WCET) for each task. At run-time the actual duration of any job of
τi can be smaller than Ci. Again DP-Fair techniques can be obviously extended for that case, a
task might not use all the capacity reserved for it, but because of scheduling anomalies reported
Section 3.3 we have to respect the stretched pattern, in other words it is forbidden to schedule
another task earlier.

Sporadic tasks. Sporadic tasks are quite similar to periodic tasks, the only difference being that
the period of a sporadic task denotes the minimum inter-arrival time instead of the exact one.
While Funk et al. show that handle arrivals within a time slice is fairly straightforward (see [20],
Section 6.) for sequential tasks we consider that extension to parallel gang tasks is no direct and
that extension is left as future work.

J. Goossens and P. Richard 04:13

6 Numerical experiments

Intensive numerical experiments have been performed using Matlab. The used LP solver is an
interior point method (i.e., solver linprog included in Matlab). Source codes of all algorithms and
experimental results are available at the project page4 including a wiki page for detailing the file
organization. We next detail the task set synthesis and the numerical results.

6.1 Task set synthesis
Input parameters for the task set synthesis are m, i.e., the number of processors in the platform,
its total utilization U , and the number of tasks n. Stafford’s algorithm is used for generating
utilization factors ui of gang tasks τ1, . . . τn to meet a total utilization of m×U . As shown in [17],
the method is suitable for task set synthesis for multiprocessor systems. The utilization factors
of tasks are picked up by Stafford’s algorithm in the interval [0.02,m]. The number of used
processors for every gang task is generated using uniformly distributed pseudo random integers
in the interval [1,m). We do not allow a task to simultaneously use m processors since such a
situation is not interesting from scheduling perspectives. Precisely, such tasks can be removed
from the optimization problem in order to compute an optimal pattern, and added afterwards in
the previously computed optimal pattern.

In DP-Fair scheduling, task individual periods and execution requirements are not useful since
between two subsequent deadlines, dj and dj+1, the execution requirement to be scheduled is
exactly (dj+1 − dj)× ui for every task τi, 1 ≤ i ≤ n. Furthermore, the presented algorithms build
up the pattern that will be stretched in every block in the DP-Fair schedule. The length of the
interval is basically set to one hundred to avoid small decimal numbers that can lead to numerical
problems while using a LP solver.

6.2 LP-based method evaluation
As previously mentioned, the optimal LP-based algorithm must handle two different combina-
torial problems: the feasible subsets construction stage and the optimization stage. From the
computational time point of view, the optimization stage is quite fast in comparison with the
construction of all feasible subsets (i.e., setting up the matrix of constraints).

Figure 4 presents the computation times of Brute Force v.s. Depth First Search with Lex-
icographic order (DFSLex) for this problem construction for m = 16. In the following plots,
every point corresponds to 1000 runs (i.e., simulation with replication factor equal to 1000). As
commonly observed, Brute Force is still manageable until n = 20, but cannot be used beyond
whereas the DFSLex algorithm runs quite efficiently. The drawback of the DFSLex algorithm
is that it is limited to 64 gang tasks due to the binary encoding of feasible subsets as 64-bit
integers. The DFSLex results for larger task sets are depicted in Figure 5. We also implement a
similar version of that algorithm relaxing the 64-bit constraint by using variable integer arithmetic
routines but it runs quite slowly in our Matlab implementation (e.g., it is as slow as the Brute
Force algorithm for small task sets). All these implementations are available in the project page.

Figure 6 depicts the resolution times of the optimal algorithm (with both stages) for several
numbers of processors and for global utilization equal to 50% and 90%. As depicted, the utilization
factor has a moderate influence on average resolution times. Problems become harder to solve when
first, the number of gang tasks increases, and second, when the number of processors increases;

4 http://www.lias-lab.fr/forge/projects/multiprocessorgangscheduling

LITES

04:14 Optimal Scheduling of Periodic Gang Tasks

Figure 4 Brute Force v.s Depth First Search enumeration of feasible allocations in the linear program
OPT.

25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

Problem construction: DFSLex for m=16

Number of tasks

Ti
m

e
(s

)

DFSLex

Figure 5 Depth First Search enumeration of feasible allocations for larger task sets.

but require few seconds in the average. In both cases, the feasible subsets construction requires
an important amount of computations when the problem size increases.

6.3 Acceptance ratio

We compare the optimal algorithm (OPT) and the heuristic (gang-h) for computing a schedule
pattern according to the average acceptance ratio for a platform with 16 processors and varying
utilization factors. The used schedulability tests are Theorem 7 for the optimal algorithm and
its sufficient version for the heuristic (i.e., if (gang-h) generates a schedule pattern of length not
larger that 1, then the task set is schedulable). Figure 7 depicts the results for 20 and 40 tasks,
respectively. The replication factor during the simulation is set to 10000 (i.e., every point in
graphs is the average of 10000 results).

For the optimal algorithm, when the number of tasks increases in the experiment for m = 16
processors, then every task has relatively smaller individual utilization due to the task set synthesis
method. As a consequence, there are more feasible subsets and consequently more feasible
schedules. As depicted in Figure 7, the acceptance ratio for the optimal algorithm doubles for
U = 0.95 when the number of tasks doubles. Such a benefit is not observed for the gang heuristic
that achieves quite poor results when the total utilization becomes high.

J. Goossens and P. Richard 04:15

20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Optimal algorithm: Resolution Time for U=0.5

Number of tasks

Ti
m

e
(s

)

m=4
m=8
m=16

(a) Resolution time for U = 0.5

20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Optimal algorithm: Resolution Time for U=0.9

Number of tasks

Ti
m

e
(s

)

m=4
m=8
m=16

(b) Resolution time for U = 0.9

Figure 6 Resolution times of the LP-based optimal algorithm.

6.4 Average error
We also compare the optimal and heuristic algorithms according to the average error in comparison
with the length of the schedule pattern. Let OPT be the length of the pattern computed
by the optimal algorithm and UB be the corresponding upper bound computed by the gang
heuristic, the error is defined by: err = (UB− OPT)/OPT. Due to Theorem 11, we verify that:
OPT ≤ UB ≤ (2− 1

m)OPT. Hence, the error is bounded by err ≤ (1− 1/m).
We perform comparison of algorithms for several numbers of tasks and processors that are

depicted in Figure 8. As for the acceptance ratio, simulations for computing the average error
have been replicated 10000 times. In these graphs, the y-axis is delimited by the worst-case
error of (1− 1/m). First, the average error is not sensitive to the utilization factor but only to
the number of tasks. Precisely, the average ratio compare the schedule lengths of the patterns
computed by OPT and Gang-h. Varying utilization factors of synthetic task sets will define quite
similar pattern shapes that lead to quite similar average error. Second, when the number of tasks
increases, the average error also increases and but is still under half of the worst-case error.

7 Conclusion

In this paper we considered the preemptive scheduling of implicit-deadline periodic gang task
systems upon identical multiprocessors. We proposed two algorithms which define static patterns
that are stretched at run-time in a DP-Fair way. The first one is optimal and runs in polynomial
time for a fixed number of processors; the second one is a sub-optimal fixed-priority rule but it is
competitive under resource augmentation analysis. Precisely, the speedup factor of the heuristic is
bounded by (2− 1

m). Our numerical experiments show that the optimal pattern can be computed
efficiently up to 60 tasks and ensures a high acceptance ratio when the number of tasks is not too
small. For larger systems (m >> 16 or n > 64), computing an optimal pattern becomes a hard
combinatorial problems. In these cases as for most hard combinatorial problems, we think that
heuristics (e.g., gang-h) must be used rather than an optimal algorithm. Concerning the proposed
gang heuristic, the experiments show that the acceptance ratio decreases quasi-linearly according
to the platform utilization factor, but the average error with respect to the optimal pattern length
is less than 40%.

LITES

04:16 Optimal Scheduling of Periodic Gang Tasks

(a) Acceptance ratio for n = 20 (b) Acceptance ratio for n = 40

Figure 7 Acceptance ratio of the LP-based optimal algorithm and Gang Heuristic.

Future Work. Future work will concern the definition of a pattern schedule that aims to reduce
the number of preemptions. This latter problem seems to be hard to cope with but still significant
for allowing practical applications of real-time scheduling methods. As we said in the discussion
Section 5.3 the case of sporadic task is left as future work.

References
1 Björn Andersson and Dionisio de Niz. Analyzing

global-edf for multiprocessor scheduling of parallel
tasks. In Roberto Baldoni, Paola Flocchini, and Bi-
noy Ravindran, editors, Principles of Distributed
Systems, 16th International Conference, OPODIS
2012, Rome, Italy, December 18-20, 2012. Pro-
ceedings, volume 7702 of Lecture Notes in Com-
puter Science, pages 16–30. Springer, 2012. doi:
10.1007/978-3-642-35476-2_2.

2 Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto
Marchetti-Spaccamela, Leen Stougie, and Andreas
Wiese. A generalized parallel task model for re-
current real-time processes. In Proceedings of the
33rd IEEE Real-Time Systems Symposium, RTSS
2012, San Juan, PR, USA, December 4-7, 2012,
pages 63–72. IEEE Computer Society, 2012. doi:
10.1109/RTSS.2012.59.

3 Sanjoy K. Baruah, N. K. Cohen, C. Greg Plax-
ton, and Donald A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. Al-
gorithmica, 15(6):600–625, 1996. doi:10.1007/
BF01940883.

4 V. Berten, P. Courbin, and J. Goossens. Gang
fixed priority scheduling of periodic moldable real-
time tasks. In 5th Junior Researcher Workshop
on Real-Time Computing, pages 9–12, 2011. URL:
http://arxiv.org/abs/0805.3237.

5 Jacek Blazewicz, Mieczyslaw Drabowski, and Jan
Weglarz. Scheduling multiprocessor tasks to min-
imize schedule length. IEEE Trans. Comput-
ers, 35(5):389–393, 1986. doi:10.1109/TC.1986.
1676781.

6 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
Sebastian Stiller, and Andreas Wiese. Feasibil-
ity analysis in the sporadic DAG task model. In
25th Euromicro Conference on Real-Time Sys-
tems, ECRTS 2013, Paris, France, July 9-12,
2013, pages 225–233. IEEE Computer Society,
2013. doi:10.1109/ECRTS.2013.32.

7 Rajkumar Buyya. High Performance Cluster
Computing: Architectures and Systems, chapter
Scheduling Parallel Jobs on Clusters, pages 519–
533. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1999.

8 Robit Chandra, Leonardo Dagum, Dave Kohr,
Dror Maydan, Jeff McDonald, and Ramesh Menon.
Parallel programming in OpenMP. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA,
2001. URL: http://dl.acm.org/citation.cfm?
id=355074.

9 Rohit Chandra, D Leonaldo, Kohr Dave, May-
dan Dror, M Jeff, and Menon Ramesh. Paral-
lel programming in OpenMP. Morgan Kaufmann,
2001. URL: http://lib.mdp.ac.id/ebook/Karya%
20Umum/Parallel_Programming_in_OpenMP.pdf.

10 Hyeonjoong Cho, Binoy Ravindran, and E. Dou-
glas Jensen. An optimal real-time scheduling al-
gorithm for multiprocessors. In Proceedings of the
27th IEEE Real-Time Systems Symposium (RTSS
2006), 5-8 December 2006, Rio de Janeiro, Brazil,
pages 101–110. IEEE Computer Society, 2006. doi:
10.1109/RTSS.2006.10.

11 Sébastien Collette, Liliana Cucu, and Joël
Goossens. Integrating job parallelism in real-time

http://dx.doi.org/10.1007/978-3-642-35476-2_2
http://dx.doi.org/10.1007/978-3-642-35476-2_2
http://dx.doi.org/10.1109/RTSS.2012.59
http://dx.doi.org/10.1109/RTSS.2012.59
http://dx.doi.org/10.1007/BF01940883
http://dx.doi.org/10.1007/BF01940883
http://arxiv.org/abs/0805.3237
http://dx.doi.org/10.1109/TC.1986.1676781
http://dx.doi.org/10.1109/TC.1986.1676781
http://dx.doi.org/10.1109/ECRTS.2013.32
http://dl.acm.org/citation.cfm?id=355074
http://dl.acm.org/citation.cfm?id=355074
http://lib.mdp.ac.id/ebook/Karya%20Umum/Parallel_Programming_in_OpenMP.pdf
http://lib.mdp.ac.id/ebook/Karya%20Umum/Parallel_Programming_in_OpenMP.pdf
http://dx.doi.org/10.1109/RTSS.2006.10
http://dx.doi.org/10.1109/RTSS.2006.10

J. Goossens and P. Richard 04:17

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Error for m=8

Utilization

Av
er

ag
e

er
ro

r

n=10
n=30
n=50

(a) Average error for m = 8

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Error for m=16

Utilization

Av
er

ag
e

er
ro

r

n=10
n=30
n=50

(b) Average error for m = 16

Figure 8 Average error on the schedule pattern length for the LP-based optimal algorithm and gang
heuristic.

scheduling theory. Inf. Process. Lett., 106(5):180–
187, 2008. doi:10.1016/j.ipl.2007.11.014.

12 Pierre Courbin, Irina Iulia Lupu, and Joël
Goossens. Scheduling of hard real-time multi-
phase multi-thread (MPMT) periodic tasks. Real-
Time Systems, 49(2):239–266, 2013. doi:10.1007/
s11241-012-9173-x.

13 Robert I. Davis and Alan Burns. A survey of
hard real-time scheduling for multiprocessor sys-
tems. ACM Comput. Surv., 43(4):35, 2011. doi:
10.1145/1978802.1978814.

14 M. Drozdowski. Handbook of Scheduling Algo-
rithms, Models and Performance Analysis, chap-
ter Scheduling Parallel Tasks — Algorithms and
Complexity. Chapman & Hall/CRC, 2004.

15 Maciej Drozdowsli. On the complexity of
multiprocessor task scheduling. Bulletin of
the polish academy of sciences, 43(3):381–392,
1995. URL: http://www.cs.put.poznan.pl/
mdrozdowski/txt/BullPAS95.pdf.

16 P.-F. Dutot, G. Mounie, and Denis Trystram.
Handbook of Scheduling Algorithms, Models and
Performance Analysis, chapter Scheduling Paral-
lel Tasks — Approximation Algorithms. Chapman
& Hall/CRC, 2004.

17 P. Emberson, R. Stafford, and R.I. Davis. Tech-
niques for the synthesis of multiprocessor task
sets. In In proceedings 1st International Work-
shop on Analysis Tools and Methodologies for Em-
bedded and Real-time Systems (WATERS 2010),
pages 6–11, 2010. URL: http://retis.sssup.it/
waters2010/waters2010.pdf.

18 Kenji Funaoka, Shinpei Kato, and Nobuyuki
Yamasaki. Work-conserving optimal real-time
scheduling on multiprocessors. In 20th Euromicro
Conference on Real-Time Systems, ECRTS 2008,
2-4 July 2008, Prague, Czech Republic, Proceed-
ings, pages 13–22. IEEE Computer Society, 2008.
doi:10.1109/ECRTS.2008.15.

19 Shelby Funk. LRE-TL: an optimal multiproces-
sor algorithm for sporadic task sets with uncon-
strained deadlines. Real-Time Systems, 46(3):332–
359, 2010. doi:10.1007/s11241-010-9109-2.

20 Shelby Funk, Greg Levin, Caitlin Sadowski, Ian
Pye, and Scott A. Brandt. Dp-fair: a unifying
theory for optimal hard real-time multiprocessor
scheduling. Real-Time Systems, 47(5):389–429,
2011. doi:10.1007/s11241-011-9130-0.

21 Shelby Funk and Vijaykant Nanadur. LRE-TL:
An optimal multiprocessor scheduling algorithm
for sporadic task sets. In 17th International
Conference on Real-Time and Network Systems,
pages 159–168, 2009. URL: https://hal.inria.
fr/inria-00442002/document.

22 M. R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

23 A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Paral-
lel Virtual Machine A Users’ Guide and Tutorial
for Networked Parallel Computing. MIT Press,
1994. URL: http://www.netlib.org/pvm3/book/
pvm-book.html.

24 Joël Goossens and Pascal Richard. Real-time
Systems Scheduling, volume Fundamentals,
chapter Multiprocessor Architecture Solu-
tions. Wiley-ISTE, September 2014. URL:
http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-1848216653.html.

25 Joël Goossens and Vandy Berten. Gang FTP
scheduling of periodic and parallel rigid real-time
tasks. CoRR, abs/1006.2617, 2010. URL: http:
//arxiv.org/abs/1006.2617.

26 Sergei Gorlatch and Holger Bischof. A generic
MPI implementation for a data-parallel skeleton:
Formal derivation and application to FFT. Par-
allel Processing Letters, 8(4):447–458, 1998. doi:
10.1142/S0129626498000456.

LITES

http://dx.doi.org/10.1016/j.ipl.2007.11.014
http://dx.doi.org/10.1007/s11241-012-9173-x
http://dx.doi.org/10.1007/s11241-012-9173-x
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1145/1978802.1978814
http://www.cs.put.poznan.pl/mdrozdowski/txt/BullPAS95.pdf
http://www.cs.put.poznan.pl/mdrozdowski/txt/BullPAS95.pdf
http://retis.sssup.it/waters2010/waters2010.pdf
http://retis.sssup.it/waters2010/waters2010.pdf
http://dx.doi.org/10.1109/ECRTS.2008.15
http://dx.doi.org/10.1007/s11241-010-9109-2
http://dx.doi.org/10.1007/s11241-011-9130-0
https://hal.inria.fr/inria-00442002/document
https://hal.inria.fr/inria-00442002/document
http://www.netlib.org/pvm3/book/pvm-book.html
http://www.netlib.org/pvm3/book/pvm-book.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848216653.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848216653.html
http://arxiv.org/abs/1006.2617
http://arxiv.org/abs/1006.2617
http://dx.doi.org/10.1142/S0129626498000456
http://dx.doi.org/10.1142/S0129626498000456

04:18 Optimal Scheduling of Periodic Gang Tasks

27 R L Graham. Bounds for certain multiprocessing
anomalies. Bell System Technical Journal, 45:416–
426, 1966. URL: http://www.jstor.org/stable/
2099572.

28 William Gropp, Ewing Lusk, and Anthony Skjel-
lum. Using MPI: portable parallel programming
with the message-passing interface. Cambridge,
MIT Press, 2nd edition, 1999. URL: http://
mitpress.mit.edu/books/using-mpi.

29 Berit Johannes. Scheduling parallel jobs to mini-
mize the makespan. J. Scheduling, 9(5):433–452,
2006. doi:10.1007/s10951-006-8497-6.

30 Shinpei Kato and Yutaka Ishikawa. Gang EDF
scheduling of parallel task systems. In Theodore P.
Baker, editor, Proceedings of the 30th IEEE Real-
Time Systems Symposium, RTSS 2009, Washing-
ton, DC, USA, 1-4 December 2009, pages 459–468.
IEEE Computer Society, 2009. doi:10.1109/RTSS.
2009.42.

31 Leonid G Khachiyan. Polynomial algorithms
in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–
72, 1980. URL: http://www.sciencedirect.com/
science/article/pii/0041555380900610.

32 Karthik Lakshmanan, Shinpei Kato, and Ragu-
nathan Rajkumar. Scheduling parallel real-time
tasks on multi-core processors. In Proceedings
of the 31st IEEE Real-Time Systems Symposium,
RTSS 2010, San Diego, California, USA, Novem-
ber 30 - December 3, 2010, pages 259–268. IEEE
Computer Society, 2010. doi:10.1109/RTSS.2010.
42.

33 Greg Levin, Shelby Funk, Caitlin Sadowski, Ian
Pye, and Scott A. Brandt. DP-FAIR: A simple
model for understanding optimal multiprocessor
scheduling. In 22nd Euromicro Conference on
Real-Time Systems, ECRTS 2010, Brussels, Bel-
gium, July 6-9, 2010, pages 3–13. IEEE Computer
Society, 2010. doi:10.1109/ECRTS.2010.34.

34 Jing Li, Kunal Agrawal, Chenyang Lu, and
Christopher D. Gill. Outstanding paper award:
Analysis of global EDF for parallel tasks. In
25th Euromicro Conference on Real-Time Sys-
tems, ECRTS 2013, Paris, France, July 9-12,
2013, pages 3–13. IEEE Computer Society, 2013.
doi:10.1109/ECRTS.2013.12.

35 C. L. Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, 1973.
doi:10.1145/321738.321743.

36 Cláudio Maia, Marko Bertogna, Luís Nogueira,
and Luís Miguel Pinho. Response-time analysis
of synchronous parallel tasks in multiprocessor sys-
tems. In Mathieu Jan, Belgacem Ben Hedia, Joël
Goossens, and Claire Maiza, editors, 22nd Interna-
tional Conference on Real-Time Networks and Sys-
tems, RTNS ’14, Versaille, France, October 8-10,
2014, page 3. ACM, 2014. doi:10.1145/2659787.
2659815.

37 RMcNaughton. Scheduling with deadlines and loss
functions. Management Science, 6(1), 1959. URL:
http://www.jstor.org/stable/2627472.

38 Geoffrey Nelissen, Vandy Berten, Joël Goossens,
and Dragomir Milojevic. Techniques optimiz-
ing the number of processors to schedule multi-
threaded tasks. In Robert Davis, editor, 24th
Euromicro Conference on Real-Time Systems,
ECRTS 2012, Pisa, Italy, July 11-13, 2012, pages
321–330. IEEE Computer Society, 2012. doi:10.
1109/ECRTS.2012.37.

39 Abusayeed Saifullah, Kunal Agrawal, Chenyang
Lu, and Christopher D. Gill. Multi-core real-time
scheduling for generalized parallel task models. In
Proceedings of the 32nd IEEE Real-Time Systems
Symposium, RTSS 2011, Vienna, Austria, Novem-
ber 29 - December 2, 2011, pages 217–226. IEEE
Computer Society, 2011. doi:10.1109/RTSS.2011.
27.

40 Vaidy S. Sunderam. PVM: A framework for paral-
lel distributed computing. Concurrency - Practice
and Experience, 2(4):315–339, 1990. doi:10.1002/
cpe.4330020404.

41 David W Walker and Jack J Dongarra. MPI:
a standard message passing interface. Supercom-
puter, 12:56–68, 1996.

42 Dakai Zhu, Daniel Mossé, and Rami G. Mel-
hem. Multiple-resource periodic scheduling prob-
lem: how much fairness is necessary? In Proceed-
ings of the 24th IEEE Real-Time Systems Sympo-
sium (RTSS 2003), 3-5 December 2003, Cancun,
Mexico, pages 142–151. IEEE Computer Society,
2003. doi:10.1109/REAL.2003.1253262.

http://www.jstor.org/stable/2099572
http://www.jstor.org/stable/2099572
http://mitpress.mit.edu/books/using-mpi
http://mitpress.mit.edu/books/using-mpi
http://dx.doi.org/10.1007/s10951-006-8497-6
http://dx.doi.org/10.1109/RTSS.2009.42
http://dx.doi.org/10.1109/RTSS.2009.42
http://www.sciencedirect.com/science/article/pii/0041555380900610
http://www.sciencedirect.com/science/article/pii/0041555380900610
http://dx.doi.org/10.1109/RTSS.2010.42
http://dx.doi.org/10.1109/RTSS.2010.42
http://dx.doi.org/10.1109/ECRTS.2010.34
http://dx.doi.org/10.1109/ECRTS.2013.12
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/2659787.2659815
http://dx.doi.org/10.1145/2659787.2659815
http://www.jstor.org/stable/2627472
http://dx.doi.org/10.1109/ECRTS.2012.37
http://dx.doi.org/10.1109/ECRTS.2012.37
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1002/cpe.4330020404
http://dx.doi.org/10.1002/cpe.4330020404
http://dx.doi.org/10.1109/REAL.2003.1253262

	Introduction
	Model, Problem and Related Work
	Parallel Task & Job Models
	Our Task/Job Model and Scheduling Problem
	Related Work

	Basic Results
	Hardness for arbitrary number of processors
	Maximum Rectangle Utilization Bound
	Scheduling Anomalies
	DP-Fair Scheduling for Sequential Tasks
	DP-Fair and Gang Scheduling

	Optimal Pattern Definition
	Research Method
	The work of Błazewicz et al. revisited
	Minimizing the Makespan vs. Meeting Hard Real-time Deadline of Recurrent Tasks
	LP implementation issues

	Gang heuristic
	Fixed-Task Priority Scheduling gang-h
	Optimality under resource augmentation
	Extending the scope of the results

	Numerical experiments
	Task set synthesis
	LP-based method evaluation
	Acceptance ratio
	Average error

	Conclusion

