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Abstract
The concept of a firm real-time task includes the
notion of a firm deadline that should not be missed
by the jobs of this task. If a deadline miss occurs,
the concerned job yields no value to the system. For
some applications domains, this restrictive notion
can be relaxed. For example, robust control systems
can tolerate that single executions of a control loop
miss their deadlines, and still yield an acceptable
behaviour. Thus, systems can be designed under
more optimistic assumptions, e.g. by allowing over-
loads. However, care must be taken that deadline
misses do not accumulate. This restriction can
be expressed by the model of (m, k)-firm real-time

tasks that require that from any k consecutive jobs
at least m are executed successfully. In this article,
we extend our prior work on the MKU scheduling
heuristic. MKU is based on history-cognisant utility
functions as means for making decisions in overload
situations. We present new theoretical results on
MKU and other schedulers for (m, k)-firm real-time
tasks. Based on extensive simulations, we assess
the performance of these schedulers. The results
allow us to identify task set characteristics that can
be used as guidelines for choosing a scheduler for a
concrete use case.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms
Keywords and phrases Real-time Scheduling, (m, k)-Firm Real-Time Tasks
Digital Object Identifier 10.4230/LITES-v004-i001-a002
Received 2016-01-25 Accepted 2016-12-28 Published 2016-12-31

1 Introduction

Certain types of real-time systems can tolerate that some jobs miss their deadlines or are not
executed at all. This allows to dimension the system more optimistically. Sporadically arising
overload conditions are resolved either by deferring or cancelling some jobs. Consider, for example,
the decoding of a video stream. If single frames are displayed too late, the quality a viewer
experiences degrades, but he still can draw some benefit. Similarly, control systems can also
tolerate some job losses due to their robustness. To convey the notion of such systems with relaxed
real-time constraints into real-time scheduling, Jensen et al. [19] and Locke [33] replaced the binary
notion of deadlines with more expressive time-utility functions (TUFs) and proposed a scheduler
based on earliest deadline first (EDF) [32]. A TUF describes the value or utility a system can
draw from a job execution if it is finished by a certain time, thus increasing the flexibility of
real-time systems.

A problem in TUF-based real-time scheduling is that each job is viewed independently.
Therefore, no guarantees can be given about the distribution of deadline misses or job cancellations
(both termed losses in the following) for single tasks. It may even happen that jobs of a specific
task are never executed [24]. Considering the above examples, it is obviously necessary that losses
of jobs do not accumulate and thus a simple Quality-of-Service (QoS) metric is not sufficient
to describe the available tolerances. Special concepts have been developed in scheduling theory
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that allow to constrain the distribution of deadline misses, for example the skip-over model [27],
(m, k)-firm real-time tasks [18], the dynamic window-constrained scheduler [44], or weakly-hard
real-time tasks [4]. All these approaches consider not only single jobs, but also the execution
history of the related tasks.

Our aim is to exploit the flexibility of TUF-based real-time scheduling while concurrently
providing (m, k)-firm real-time guarantees. We use history-cognisant utility functions (HCUFs) [24]
derived from TUFs to convey a task’s state to a TUF-based real-time scheduler. A history-cognisant
utility function (HCUF) represents the utility a task has accumulated with respect to the execution
of past jobs. In our previous work [25] we have proposed a heuristic algorithm for utility-based
scheduling of (m, k)-firm real-time tasks (MKU). The MKU algorithm is an extension of Jensen et
al.’s [19, 33] EDF-based scheduler. Our results in [25] show the feasibility of MKU and that it can
achieve good results when compared to other schedulers for (m, k)-firm real-time tasks.

In this article, we make the following contributions: First, we report new theoretical properties
on preemptive scheduling of (m, k)-firm real-time tasks. A schedulability test for tasks using fixed
(m, k)-patterns is presented. Additionally, we examine the phenomenon of breakdown anomalies,
where increasing the utilisation of an infeasible task set can lead to feasibility. Also, new results on
the schedulability of MKU are reported. Second, we present new results of extensive simulations
that enable us to assess different schedulers for (m, k)-firm real-time tasks more clearly. We use
arbitrary task sets to examine the overall performance of different schedulers, the feasibility of
schedulability tests, and the initialisation of a task’s execution history. In further simulations, we
examine tasks sets where task periods and (m, k)-constraints are restricted to practically relevant
ranges.

The remainder of this article is structured as follows: In the following Section 2, we define the
basic concepts used throughout this paper. Related work on TUF-based scheduling and scheduling
of (m, k)-firm real-time tasks is presented in Section 3. In Section 4, we present new properties of
(m, k)-firm schedules which we use in our evaluations. In Section 5, we introduce our evaluation
methodology. Evaluation results are shown and discussed in Section 6. We conclude this article in
Section 7.

2 Fundamentals

2.1 Task Model
An (m, k)-firm real-time task is a tuple τi = (Ci, Ti,mi, ki) with worst-case execution time (WCET)
Ci, period Ti and (m, k)-constraint (mi, ki). All numbers are integers. For simulation, we assume
that a task’s execution time is constant. In reality, the actual execution time of a task may be
lower than its WCET. We account for this fact in our simulation through the use of abstract task
sets and the generation of concrete task sets for different utilisations (see Section 2.2). Tasks
are initially released at time t = 0, i.e. the task set is synchronous, and have implicit deadlines
Di = Ti. Thus, jobs τi,j are generated at times ri,j = jTi, j = 0, 1, . . . and must be finished until
di,j = (j + 1)Ti to avoid deadline misses. Each job is subject to a firm real-time requirement: If
the job is not finished by its deadline, its result is useless and the job is cancelled. In this work,
we consider the preemptive scheduling of jobs on a single processor. Thereby, we assume that jobs
can be scheduled independently and that no resource constraints exist. If more than one job is
eligible for dispatching at a certain time, e.g. due to identical priorities, then the scheduler chooses
the job with the earliest activation time. If there are still multiple eligible jobs, an arbitrary one
is chosen.

A task τi’s (m, k)-constraint is defined by (mi, ki), meaning that in any ki jobs released
consecutively at least mi must be finished before their deadline. An (m, k)-firm real-time task
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incurs a dynamic failure if less than m out of k consecutive jobs meet their deadline. More
formally, this can be expressed using the concept of a k-sequence of a task. Let σj

i ∈ {0, 1} denote
the status of the j-th job of τi with σj

i = 0 representing a deadline miss or job cancellation, and
σj

i = 1 standing for successful execution. Then, τi’s state or k-sequence after execution of the j-th
job is a string σi = (σj−k+1

i , . . . , σj−1
i , σj

i ) with σl
i ∈ {0, 1}k. New job states σj

i are shifted into σi

from the right. The (m, k)-constraint requires that a task τi’s k-sequence always contains at least
mi 1s. A task’s distance from dynamic failure is the number of jobs that consecutively would have
to miss their deadlines such that the task’s (m, k)-constraint is no longer kept.

2.2 Abstract and Concrete Task Sets
Abstract task sets (ATSs) form the basis of the simulations presented in this article. An ATS
α = {α1, α2, . . . , αn} is a set of abstract tasks αi = (ei, Ti,mi, ki) with periods Ti, (m, k)-
constraints (mi, ki) and execution time weights ei. A concrete task set τ(α,UT) is derived from
an ATS α by calculating the tasks’ execution times Ci such that the CTS approximates a target
utilisation of UT. The execution time weight ei specifies, how much task τi contributes to the task
set utilisation:

ei∑n
j=1 ej

= Ui

UT
(1)

Thereby, Ui = Ci

Ti
is the utilisation of the task under consideration. Solving with eq. (1) for Ci

yields:

Ci = UT∑n
j=1 ej

Tiei (2)

We consider only integral execution times in our simulations. How we obtain these will be clarified
in Section 5.1.

3 Related Work

3.1 TUF-based Scheduling
The concept of time-utility functions was originally introduced by Jensen et al. [19] and Locke [33].
Instead of basing task scheduling solely on the binary notion of a deadline, the use of TUFs allows
for a greater flexibility. A TUF describes the utility a system gains when a job is finished until
a certain time. Some TUFs for well-known real-time constraints are shown in Figure 1. Hard
real-time jobs (Figure 1a) must be finished by their deadline. Exceeding hard deadlines can result
in catastrophic consequences which is expressed by the value −∞ after the deadline. In contrast,
firm real-time jobs (Figure 1b) do not yield any utility when exceeding their deadline. The entries
in the k-sequence of a (m, k)-firm real-time task can be seen as the results of a firm real-time
TUF. Soft real-time jobs may exceed their deadlines and still yield a decreasing utility to the
system, which is shown in Figure 1c. TUFs are not restricted to these shapes. Thus, TUFs define
a generic interface for the specification of task timing requirements. They allow to integrate tasks
with different timing requirements in a system using only a single scheduler.

Jensen et al. [19] demonstrate the benefit of TUFs by extending EDF scheduling for overloaded
task sets. If a high probability for a deadline miss is detected that would render the EDF schedule
infeasible, jobs that contribute only with a low value-density (ratio of utility/value to execution
time) to the system are selectively cancelled. Thus, schedulability of the system is ensured and

LITES
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(c) Soft real-time TUF.

Figure 1 Exemplary TUFs.

accumulated utility is maximised. In literature, this approach is often referred to as Locke’s best-
effort scheduling algorithm (LBESA). Based on LBESA, Clark [11] has developed the dependent
activities scheduling algorithm (DASA) for tasks with dependencies. Davis et al. [12] proposed
an adaptive threshold policy for the admission of jobs, which has a lower overhead than LBESA.
The notion of dynamic value density [1] reduces cancellations of jobs that have already started
execution. Li and Ravindran [30] presented the MLBESA and MDASA algorithms that mimic
the behaviour of LBESA and DASA, but come with lower complexities. TUF-based approaches
have often been proposed to handle transient overloads in real-time systems [3, 26, 6, 35, 34, 13].

Many works on scheduling based on TUFs can also be found under the term utility accrual
scheduling. The aim in utility accrual scheduling is to maximise the utility that is accrued through
the execution of tasks. Insofar, the values and shapes of TUFs are a central criterion for scheduling.
Chen and Muhlethaler [7] have shown that the problem of maximising value through arrangement
of jobs/tasks is NP-hard. They also proposed an heuristic scheduling algorithm with a complexity
of O(n3). The utility accrual packet scheduling algorithm by Wang and Ravindran [43] for packet
scheduling in switched Ethernet comes with a lower complexity of O(n2), but is restricted to
unimodal non-increasing TUFs. In contrast, the resource-constrained utility accrual algorithm by
Wu et al. [45] can handle arbitrary TUFs and resource constraints at a complexity of O(n2 logn).
The generic utility scheduling algorithm by Li et al. [31] can also deal with mutual exclusion
constraints, although with higher complexities of O(n3) for dispatching and O(n4r) for scheduling.
Tidwell et al. [42] model the scheduling problem as a Markov decision process that is solved
offline and yields an optimal solution. The solution is used to generate a lookup table that is
evaluated by an online scheduler in linear complexity. Also, works exist that investigate the use
of TUF-based scheduling on multiprocessor systems [41, 10, 9, 39]. Here, especially the work of
Rhu et al. [39] on the global multiprocessor utility accrual scheduling algorithm for (m, k)-firm
deadline-constrained multimedia streams (gMUA-MK) algorithm is interesting, as they aim to
schedule tasks with (m, k)-firm deadlines and TUFs on multiprocessors.

3.2 (m, k)-firm Real-Time Tasks

The concept of real-time tasks with (m, k)-firm deadlines was originally proposed by Hamdaoui
and Ramanathan [18]. They present a scheme for distance-based priority (DBP) assignment of
newly generated jobs for fixed-priority scheduling. Using this scheme, the priority of a job is
set depending on the task’s distance from dynamic failure. Jobs that belong to a task with
a short distance are assigned higher priorities. The corresponding calculations are based on
the task’s k-sequence (see Section 2.1). Goossens [16] points out two properties of the DBP
approach and devises an exact schedulability test. The first property concerns the initialisation
of the k-sequences: Goossens shows that the string σi = 1k is not optimal under DBP and may
yield to an infeasible schedule. In contrast, using an error state to initialise σi can result in a
feasible schedule. The second property is the periodicity of feasible DBP schedules. Scheduling
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decisions under DBP only depend on the (m, k)-constraints and k-sequences σi of the tasks,
whose space is bounded. Let P = lcm{Ti | i = 1, . . . , n} be the hyperperiod of the task set
τ = {τi = (Ci, Ti,mi, ki) | i = 1, . . . , n}. As τ is a synchronous task set with implicit deadlines, at
times B = kP, k ∈ N all jobs that were activated before t are finished, and each task releases a
new job. Thus, the system is in the same state each B = kP , and only the k-sequences of the
tasks may differ. For any task τi,

∑ki

j=mi

(
ki

j

)
distinct k-sequences exist. The period of a feasible

DBP schedule is bounded by

F =
n∏

i=1

ki∑
j=mi

(
ki

j

)
× P (3)

as any combination of tasks and their k-sequences must be considered. Thus, if a task set τ
is feasible in the interval [0, F ), i.e. no (m, k)-constraint is violated, then τ is always feasible.
The exact schedulability test for τ consist of executing or simulating τ for this time interval and
checking whether the (m, k)-constraints of all tasks are always kept. Once an (m, k)-constraint is
violated, the test stops and returns that τ is not feasible. The test can be sped up by evaluating
the system state σ = (σ1, . . . , σn) consisting of all tasks’ k-sequences at each hyperperiod boundary
B = kP, k ∈ N. If a certain system state σ recurs, simulation can immediately be stopped, as the
schedule will repeat itself and thus is feasible. We will term this optimised test in the following as
Goossens’ schedulability test (GST).

The seminal work of Hamdaoui and Ramanathan [18] has sparked a number of further works
on the scheduling of (m, k)-firm real-time tasks. Ramanathan uses the concept of (m, k)-firm
real-time tasks for the specific use case of control systems [38]. A deterministic classification
into mandatory and optional jobs is proposed based on static (m, k)-patterns. Mandatory jobs
are scheduled with their original, e.g. rate-monotonic [32] priority while optional jobs get the
lowest possible priority. In the following, we will refer to this approach as evenly distributed
(m, k)-patterns (MKP). A set of (m, k)-firm real-time tasks τ = {τ1, τ2, . . . , τn} is considered
feasible, if at least all mandatory jobs can be executed successfully. A schedulability test is
based on the fact that the first instance τi,0 of any task τi is always classified as mandatory.
Ramanathan [38] provides a sufficient schedulability condition. However, this condition contains
a timing non-deterministic term which makes it hard to evaluate [20]. Jia et al. [20] propose a
schedulability test, which basically implements the response time analysis [2] for the first job of
any task heeding the (m, k)-patterns. For task sets with harmonic periods, the test provides exact
results, for all other task sets it is only sufficient.

Quan an Hu [37] note that the classification according to [38] introduces a high pessimism into
the schedulability analysis, as at time t = 0 a mandatory job from any task in a task set gets
ready. They relieve this critical instant by introducing spin or rotation values si that rotate the
(m, k)-patterns of each task τi by si places. Quan and Hu propose a heuristic algorithm for finding
good spin parameters, and also examine the use of a genetic algorithm for the determination of
spin parameters. In this work, we will use the heuristic algorithm under the term evenly distributed
(m, k)-patterns with spin values (MKP-S). As the original presentation of the algorithm in [37] is
missing important information, we apply the corrections that we describe in [22]. Spin parameters
are also considered by Semprebom et al. [40] for global time slot allocation in wireless real-time
networks. Additionally, the authors propose an online schedulability/admission test.

Flavia et al. [14] extend the work of Ramanathan [38] on the use of (m, k)-firm real-time tasks
for control of plants. They present a method to determine offline an optimal ki parameter for
a given controller and calculate controller parameters for all mi ∈ [1 . . . ki]. Depending on the
actual plant state during runtime, optimal mi are chosen and the controller parameters are set
appropriately.

LITES
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Cho et al. devise the guaranteed dynamic priority assignment (GDPA) scheme [8]. It is based
on EDF scheduling, but additionally takes the tasks’ distance from a failing state into account.
Its aim is (1) to provide a bounded probability of violations of the (m, k)-firm constraints, and (2)
to maximise the probability of kept deadlines. Under GDPA, ready jobs are not directly inserted
into the EDF schedule, instead they are kept in ready list. Any time the schedule needs to be
adjusted, each job’s distance from dynamic failure is calculated. The EDF schedule is created
by considering the jobs in increasing order of their distance from dynamic failure, i.e. critical
jobs are preferred, and inserting them into the EDF schedule. If an insertion makes the schedule
infeasible, the job is removed again from the schedule. Jobs in the ready list that are infeasible are
cancelled. In the same paper, the simplified guaranteed dynamic priority assignment (GDPA-S) is
proposed. It works similar to GDPA, but has a lower runtime complexity. GDPA-S keeps ready
jobs in two lists, one in EDF order and another ordered in increasing distance from dynamic
failure. Dispatching is performed either from the head of the EDF list, if the EDF schedule is
feasible. Else, the most critical job (at the head of the second list) is dispatched. Again, infeasible
jobs are cancelled immediately. Concerning non-preemptive scheduling of (m, k)-firm real-time
tasks, the work on Matrix-DBP [36] provides necessary schedulability conditions. One that can
also be applied to preemptive scheduling is based on the minimum load that is generated by a set
of (m, k)-firm real-time tasks τ = {τ1, . . . τn}:

Umk =
i=n∑
i=1

mi

ki

Ci

Ti
(4)

The calculation of Umk assumes that only mi out of ki jobs of any task τi are executed. If

Umk > 1 (5)

then τ is not feasible.
An approach similar to the concept of (m, k)-firm real-time tasks is proposed by Gettings et

al. [15] for mixed-criticality systems with weakly-hard constraints. Their adaptive mixed criticality
– weakly hard algorithm can skip up to s out of m consecutive jobs to reduce the load from
low-critical tasks in a high-criticality mode, while still ensuring a guaranteed QoS for low-criticality
tasks.

3.3 The MKU Algorithm
In a previous publication [25], we have presented the utility-based scheduling of (m, k)-firm real-
time tasks (MKU) algorithm that is based on HCUFs [24, 23]. In the following, we give a brief
outline of its functionality, please refer to [25] for more details. MKU is based on LBESA, the
main difference is the utility function that is used in the decisions about job cancellations. We
use a HCUF [24, 23], that maps the execution history of a task into a single scalar value and
additionally provides a prediction about the tasks future utility. A task τi’s current utility Hm
after the completion or cancellation of its j-th job is the arithmetic mean of its current k-sequence
(see Section 2.1). The value is additionally scaled by ki

mi
to enable an easy comparison between

tasks with different (m, k)-constraints:

Ĥm(τi, j) = ki

mi

1
ki

k+1∑
l=0

σj−l
i = 1

mi

ki−1∑
l=0

σj−l
i (6)

Through the scaling, any task τi has the requirement that Ĥm(τi, j) ≥ 1. For scheduling decisions,
we use a task τi’s potential utility ĤP under the assumption that the currently active job τi,j is
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cancelled and ignore the least recent job τi,j−ki+1:

Ĥp(τi, j) = 1
mi

ki−2∑
l=0

σj−l
i (7)

If an overload situation occurs, the scheduler cancels jobs that have maximum Ĥp values. To
ensure the adherence of (m, k)-constraints, only jobs with Ĥp > 1 can be cancelled. If no job for
cancellation can be found, the task set is infeasible.

As MKU is based on LBESA, it inherits the algorithm’s complexity of O(n2) in overload
situations. This is similar to the GDPA, GDPA-S and gMUA-MK approaches, but higher than for
DBP and the pattern-based MKP/MKP-S schemes. However, unlike these schemes, MKU and the
underlying LBESA are not restricted to (m, k)-firm real-time tasks. They allow the integration of
tasks with other requirements in the same system, as long as these requirements can be expressed
in terms of TUFs/HCUFs.

4 New Properties of (m, k)-firm Real-Time Tasks

In the following, we present some properties of (m, k)-firm real-time task sets that have not yet
been reported in literature. First, we present exact schedulability conditions for approaches based
on fixed (m, k)-patterns (Section 4.1) and for the MKU scheme (Section 4.2). Finally, we report
our observations on scheduling anomalies in Section 4.3.

4.1 Feasibility of Approaches Based on Fixed (m, k)-Patterns
For (m, k)-firm real-time task sets that use fixed (m, k)-patterns defined in [38] (MKP), Jia et
al. give a sufficient schedulability test [20]. As the test is only sufficient, it may reject some task
sets that are actually feasible. Also, it cannot be applied to the MKP-S [37] approach, as the
rotation of the patterns might move the critical instant of the task set. Nevertheless, an exact
schedulability test can be derived for task sets that used fixed (m, k)-patterns. The derivation of
this test is similar to the one for DBP scheduling [16] and uses the same preconditions: (1) The
scheduling algorithm must be deterministic, and (2) it must be memory-less. In the context of
fixed (m, k)-patterns, the second precondition means that the algorithm’s decisions at any time
depend only on static properties of the active tasks. In contrast to [16], the current k-sequence of
a task has no influence on the schedule.

The exact schedulability test follows from the periodicity of schedules when using fixed
(m, k)-patterns.

I Theorem 1. Let a set of synchronous (m, k)-firm real-time tasks be scheduled by a fixed-priority
scheduler. Priorities are derived from fixed (m, k)-patterns that classify jobs into mandatory and
optional. Then the schedule is periodic with period

P = lcm{kiTi | i = 1 . . . n}. (8)

Proof. The priorities of jobs of a single task τi are derived from a fixed (m, k)-pattern of length ki.
Thus, each ki jobs, i.e. after kiTi cycles, the priority pattern recurs. For any two tasks τi, τj , the
job and priority pattern generated by both recurs after lcm{kiTi, kjTj} cycles, as after this times
both tasks’ are in the same state as at the beginning (concerning their patterns). Via induction,
this argument can be extended to n tasks τ1, . . . , τn. J

For a task set where the sufficient test by Jia et al. [20] does not indicate feasibility or where
the test is not applicable (MKP-S), it suffices the simulate the schedule for at most P cycles
(eq. (8)).

LITES
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4.2 Schedulability under MKU
The schedulability test devised by Goossens [16] for task sets under DBP scheduling also applies
to the MKU scheduler in terms of the upper bound for simulation. The test is solely based on the
tasks’ periods and (m, k)-constraints, and the fact that the DBP scheduler itself is memoryless.
The MKU scheduler itself does not possess an internal state. Like DBP, it acts solely on the states
of the tasks, namely their k-sequences to calculate a task’s HCUF.

When applying GST for MKU scheduling, a further slight optimisation is possible. GST
examines the system state σ = (σ1, . . . , σn) after each hyperperiod. A repetition of σ without any
task violating its (m, k)-constraint means that the schedule is cyclic and valid, as the schedule
itself solely depends on σ. In its calculation of the possible HCUF Ĥp (eq. (7)), the MKU scheduler
only regards the most recent ki − 1 entries of each σi. Insofar, it operates on a reduced system
state:

I Definition 2. Let σR = (σR
1 , . . . , σ

R
n ) be the reduced system state of a set of (m, k)-firm real-time

tasks. σR
i is obtained from a system state σi = (σj−k+1

i , . . . , σj−1
i , σj

i ) by ignoring the least recent
entry, i.e. σR

i = (σj−k+2
i , . . . , σj−1

i , σj
i ).

The following theorem provides the basis for an optimisation of GST for the HCUF-based scheduler:

I Theorem 3. If during the execution of GST with MKU a reduced system state σR recurs at a
hyperperiod boundary, a cycle in the MKU schedule has been found.

Proof. Let σ1, σ2 be two system states incurred in this order during execution of GST with MKU,
such that for the derived system states σR,1 = σR,2 (in the following simply σR. Further, let
L(σ) = (σj−k+1

1 , σj−k+1
2 , . . . , σj−k+1

n ) be the vector of a system state σ’s least recent entries that
are ignored by σR. We can distinguish two cases:
1. If L(σ1) = L(σ2), then also σ1 = σ2. The whole system state recurred, a cycle in the schedule

has been found.
2. If L(σ1) 6= L(σ2), then there exists at least one i such that σ1,j−ki+1

i 6= σ2,j−ki+1
i . However,

the schedule S1 produced by MKU between σ1 and σ2 solely depends on σR,1, as MKU regards
only the σR

i for its cancellation decisions. Thus, MKU will produce the same schedule S2 = S1
after σ2, as σR,1 = σR,2. J

In case 1, a real cycle has been found, as is also detected by GST. Case 2 needs some closer
inspection, as it can help to speed up the schedulability test:

I Corollary 4. Let σ1, σ2 be two system states with σR,1 = σR,2, L(σ1) 6= L(σ2) (case 2 in the
proof of Theorem 3), σR := σR,1(= σR,2), and σ2 occurs after σ1. Further, let σ3 be the next
system state with σR,3 = σR. Then, L(σ3) = L(σ2) and σ3 = σ2.

Proof. Recall that the schedule S1 produced by MKU after σ1 only depends on σR,1 = σR. Thus,
MKU will produce the same schedule S2 = S1 after σ2. As the decisions for S1 and the result σR,2

are solely based on σR,1, S2 (taking the same decisions) will produce the same result σ3 = σ2,
and thus L(σ3) = L(σ2). J

This means that the schedulability test for MKU may terminate at least one hyperperiod earlier
compared to GST, depending on the length of the cycle.

4.3 Breakdown Anomalies
Consider an ATS (see Section 2.2), from which multiple CTSs are derived with increasing utilisations
U . In hard real-time scheduling, it is possible to identify a breakdown utilisation [29] for an ATS,
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Table 1 This ATS exhibits a breakdown anomaly at the target utilisations UT = 1.45 and UT = 1.55
when scheduled with DBP.

Task Ti ei (m, k) C1.45
i C1.55

i

τ0 6 55 (4, 8) 3 3
τ1 21 95 (1, 2) 19 21

t
0 10 20 30 40 50

τ0

5 4 3 2 2 1 1 1

τ1

2 2 1

(a) UT = 1.45, Task 1 violates its (1,2)-constraint at time 45.

t
0 10 20 30 40 50

τ0

5 4 3 2 2 2 2 5

τ1

2 2 1

(b) UT = 1.55, task set is feasible.

Figure 2 Example schedules with breakdown anomaly; for task parameters refer to Table 1; circled
numbers ( x ) denote DBP of job; red arrows () indicate job cancellations.

beyond which the derived CTSs are no longer feasible. Unfortunately, this method does not yield
exact results for (m, k)-firm real-time tasks. Increasing the utilisation of a (m, k)-firm real-time
task set farther beyond the breakdown utilisation can actually lead to the task set being feasible
again. To make the point more clearly, consider an ATS α with a breakdown target utilisation
UB, and two constants sI > 0, sF > 0, sI < sF. This means that the derived CTS with target
utilisation UB is feasible, but the CTS with target utilisation UB + sI is not. However, it may
happen that the CTS with target utilisation UB + sF is feasible again.

An exemplary ATS α that exhibits such a behaviour is shown in Table 1. We assume that both
tasks’ k-sequences are initialised with 1ki . The anomaly arises for target utilisations UT = 1.45
and UT = 1.55 (actual execution times are rounded to integer values). Figure 2a shows the DBP
schedule for τ(α, 1.45). Numbers in circles indicate the distance-based priority of each released job.
Please refer to [38] for the calculations involved. Lower numbers indicate higher priorities. In time
step 45, τ1,2 is cancelled, thus violating τ1’s (1, 2)-constraint. Even if the scheduler cancelled the
current instance of τ0 instead, the schedule would still be infeasible, as then τ0’s (4, 8)-constraint
would be violated later. Increasing UT for α leads to a feasible DBP schedule, as is shown in
Figure 2b. In this case, the segment between t = 0 and t = 42 is repeated periodically.

The breakdown anomalies are the result of the special structure of the DBP scheme. Scheduling
decisions made at a certain time do not only depend on static properties of the tasks. Instead,
they are also influenced by the internal states of the tasks, which in turn depend on the past
scheduling decisions. Thus, they can also occur in the MKU, GDPA and GDPA-S algorithms. The
consequence of such a behaviour is that these schedulers are not sustainable [5] with regard to the
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tasks’ execution times. If a schedulability test shows that a certain task set is feasible, we cannot
be sure that it stays feasible if execution constraints are relaxed by decreasing execution times.

Such anomalies cannot happen in task sets that are scheduled using fixed (m, k)-patterns,
which we express in the following theorem:

I Theorem 5. Let a set of (m, k)-firm real-time tasks τ1 be derived from an ATS α for a given
utilisation U1. Further, assume that τ1 is not feasible using fixed (m, k)-patterns. Then, any task
set τ2 derived from α for a utilisation U2 > U1 is also not feasible.

Proof. Fixed (m, k)-patterns classify jobs into mandatory and optional jobs. A schedule S is
considered feasible, if all mandatory jobs are executed successfully. Infeasibility of S means that at
least one mandatory job τi,j misses its deadline at time di,j . Assume that τi,j is released at time
ai,j . Then, only mandatory jobs with priority higher than or equal to τi,j ’s priority are executed
in the interval [ai,j , di,j ]. Increasing the utilisation of the task set means that the tasks’ execution
times are increased, but periods and thus activation times and deadlines remain unchanged. Thus,
the processing time demanded by higher-priority jobs in [ai,j , di,j ] can only further increase, and
thus the deadline miss would occur also in the new task set. J

From this theorem follows that scheduling of tasks using fixed (m, k)-patterns is sustainable with
regard to execution times.

5 Evaluation Methodology

We perform extensive simulations of randomly generated task sets to compare the scheduling
approaches. The simulations are conducted using the tms-sim framework developed in our
group [21], which is available as open source software. In this section, we present the methodology
we apply in our evaluations.

5.1 Task Parameters
The parameters of the ATSs are generated using the libc pseudo-random number generator
(rand_r()). For the task periods Ti, two approaches are implemented: During most simulations,
the periods are chosen randomly from a given interval {Tmin, . . . , Tmax}. Additionally, we have
also implemented the period generator from Goossens and Macq [17]. This generator yields task
periods that have many common divisors, and a limited hyperperiod compared to randomly chosen
periods. Period generation is based on a matrix of multipliers, where each row contains powers of
a prime number. Period generation randomly selects one entry from each row. The actual period
then is the product of the chosen entries. For our simulations, we add a restriction that periods
must be > 2 for any task.

Execution time weights are chosen from an interval [1, emax] where emax represents the granu-
larity of the weights. Execution times Ci are calculated according to eq. (2). As we only consider
integral execution times in this work, the actual execution time C ′i of a task τi is obtained from
Ci through rounding. Additionally, we demand that no task has zero execution time:

C ′i =
{

[Ci], if [Ci] > 0
1, else (9)

Thereby, the operation [x] stands for regular rounding, i.e. returns the integer value that is nearest
to x. Through the rounding, the task set’s actual utilisation U =

∑n
i=0

Ci

Ti
can deviate from the

target utilisation. Task set generation is configured such that generated ATSs that deviate more
than a constant dU from an initial target utilisation are automatically discarded.



F. Kluge 02:11

Table 2 Task models, schedulers, and schedulability tests used in the experimental evaluation.

Model Abbr. Reference Test

FPP Scheduler
Distance-based priority DBP [18] GST
Fixed (m, k)-patterns MKP [38] [20], Sect. 4.1
MKP with pattern rotation MKP-S [37] Sect. 4.1

EDF-based Schedulers
Guaranteed Dynamic Priority Assignment GDPA [8] GST
Simplified GDPA GDPA-S [8] GST
Global Multiprocessor Utility Accrual scheduling
for (m, k)-firm deadline-constraints

gMUA-MK [39] GST

Utility-based (m, k)-tasks MKU [25] GST

The ki parameters are chosen from an interval {kmin, . . . , kmax}. For the mi parameters, we
have again implemented two approaches: Either, they can be chosen from {1, . . . , ki}. This
approach can yield mi values (compared to ki) that can seem quite unrealistic. Therefore, we
allow to limit the mi to meaningful ranges. An additional parameter rm ∈ [0, 1] can be specified
to lower-bound mi. The actual mi parameter then is chosen from {[rmki], . . . , ki}.

To the best of our knowledge, there is not yet an efficient way to find good intialisations for
the k-sequences. Checking all possible initialisation values is not feasible, as 2

∑n

i=1
ki schedules

would have to be examined. Therefore, we use 1ki as initial k-sequence, which might be as good
or bad as any other (possibly random) choice.

5.2 Simulation

Simulations are performed using the exact schedulability tests. For MKP and MKP-S, we use the
methods described by Jia et al. [20] (sufficient condition) and the one introduced in Section 4.1. For
all other schedulers, GST [16] is applied. Simulation of a CTS is performed as deemed necessary
by the schedulability tests. In the simulations, we search for the breakdown utilisations [29] of
ATSs under different schedulers. This search works as follows: A single ATS is repeatedly used
to generate CTSs. The first ATS is generated using a target utilisation UT = UB. If the CTS is
found to be schedulable for a certain scheduler, UT is increased by a utilisation step sU. Using
this updated UT, a new CTS is derived from the ATS and another simulation is performed. This
process is repeated until the CTS is no longer schedulable. The last UT that yields a feasible CTS
is called the breakdown utilisation. To account for breakdown anomalies (see Section 4.3), UT is
increased further and the derived CTSs are simulated, too. This process stops when the derived
CTSs no longer fulfil the necessary schedulability condition Umk ≤ 1 (see eq. (5)).

An overview of the task models and schedulers used for evaluation can be found in Table 2.
For our simulations, we have adjusted the gMUA-MK approach to immediately cancel jobs that
are removed from a schedule due an overload. Due to the assumption of constant execution times,
they would be cancelled anyway. Like in the MKU approach, we use the TUF for firm real-time
tasks (see Figure 1b).
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Table 3 Parameters for task set generation and simulation.

Symbol Description Value

{Tmin, . . . , Tmax} Range for task periods (ignored when Goossens’ and
Macq’s period generator [17] is used, sect. 6.2.2, 6.2.3)

{5, . . . , 60}

emax Granularity of execution time weights 100
{kmin, . . . , kmax} Range for the ki parameter {2, . . . , 10}
{mmin, . . . ,mmax} Range for mi paramters {2, . . . , ki}
rm If specified, restricts mi to {[rmki], . . . , ki}

(only sect. 6.2.1, 6.2.3)
{0.1, 0.2, . . . , 0.9}

UT = UB Target/base utilisation of generated task sets 1.05
dU Maximum allowed deviation from UT 0.05
sU Utilisation step for breakdown utilisation search 0.01 / 0.1

5.3 Parameters & Aims of the Evaluation

5.3.1 Parameters

An overview of the parameters used for task set generation and simulation can be found in Table 3.
They are passed to tms-sim via the command line or a parameter file. The period and k parameter
ranges are chosen such as to be comparable with other works, e.g. [37]. The dU parameter is
only used during generation of an ATS. If the CTS generated for the base utilisation UB = UT is
not inside the interval UT ± dU, the ATS is discarded. The rm parameters are only used when
mentioned explicitly. All other experiments are based on the predefined {mmin, . . . ,mmax} interval.
For a fine-grained analysis of the schedulers’ behaviour, we set sU = 0.01, as this enables a good
identification of breakdown anomalies. In a second round of simulations where we examine the mi

parameter and task periods in more detail, we use sU = 0.1.

5.3.2 Aims

In our experimental evaluations, we aim to answer the following questions:
1. Our prior results [25] (subject to consolidation) indicate remarkably performance differences

between the different schedulers, when using the ratio of task sets that are feasible as a
performance metric. How do the different schedulers compare against each other, when an
exact schedulability test is applied (Section 6.1.1)?

2. How pessimistic is Goossens’ feasibility interval (eq. (3), [16])? Even for small task periods, mi

and ki values, the interval can get quite large. How high are the savings in terms of simulated
time introduced through GST? Also, we examine the practical relevance of the optimised
schedulability test for MKU that can be derived from Theorem 3 and Corollary 4. The results
are presented in Section 6.1.2.

3. How relevant are breakdown anomalies (Section 6.1.3)?
4. As Goossens [16] shows, the initialisation of the k-sequences of tasks can impact the feasibility

of a task set. However, it is open how to find good initialisation values. We explore the
possibility of cross-initialisation of k-sequences between different schedulers: If a task set with
given initial k-sequence is feasible only under one of two schedulers, simulation of the successful
scheduler necessarily runs into a cycle of k-sequences when applying GST. Is it possible to
use one of the recurring k-sequences as initial value for execution with the hitherto failing
scheduler (Section 6.1.4)?
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5. Due to cancellations, processing time already spent by the cancelled jobs is lost. How much
performance is lost by the different schedulers (Section 6.1.5)?

6. In general, our evaluations are based on arbitrary task sets with random parameters which
may not always have practical counterparts. If we restrict task periods and/or m parameters
to realistic ranges/values, does this have any influence on the above questions? Both aspects
are examined in Section 6.2.

6 Results

In [25], we have presented initial results on the performance of the some of the schedulers listed
in Table 2. These results are based on the simulation of random task sets for a fixed number of
time steps. If during this simulation time no violation of an (m, k)-constraint is detected, the task
set is classified as feasible. This approach can yield false positive results, as an infeasibility may
also happen just after the given number of time steps. Nevertheless, these results gave a first
impression of the performance of the schedulers: Best results were achieved with the DBP and
MKU approaches, followed by MKP and MKP-S. Least performance was exhibited by GDPA.
Due to a bug in the implementation of the simulator, approaches based on FPP scheduling
(DBP, MKP, MKP-S) exhibited a lower performance in [25] than they actually have. Also, MKU
showed better performance than DBP for moderate overloads. We will consolidate these results in
the following by using the exact schedulability tests as appropriate for the different schedulers.
The results presented in this section are based on two groups of simulations. In the first group
(Section 6.1), arbitrary task sets are examined in order to answer the first five questions laid down
in Section 5.3.2. The second group (Section 6.2) deals with the use of realistic task parameters
(last question in Section 5.3.2). These are only examined from the performance point of view. A
discussion of all results follows in Section 6.3.

6.1 Arbitrary Task Sets and Exact Schedulability Test

As already stated above, the simulation of a task set for a fixed number of time steps can yield
false positive results. For a closer examination of the different approaches, we therefore apply
the exact schedulability tests (see Table 2). We combine this with a search for the breakdown
utilisation of an ATS (see Section 5.2). ATSs are executed beyond the breakdown point to account
for breakdown anomalies (Section 4.3). CTSs derived from these ATSs are simulated as deemed
necessary by the schedulability tests. The results presented in the following are base on the
simulation of 500 ATSs that are executed with all schedulers in Table 2. Beyond performance
ratings of the scheduling approaches, we also investigate the performance of GST, breakdown
anomalies, and cross-initialisation of k-sequences between schedulers.

6.1.1 Scheduler Performance

The overall performance of all schedulers is shown in Figure 3. Due to breakdown anomalies, it
may be possible that some ATSs are actually feasible again for higher utilisation, which is discussed
later in Section 6.1.3. If we compare these numbers with the results of the rough estimation
presented in [25], we note that the actual success ratio of all schedulers is lower, which is just to be
expected due to false positives in the original results. Nevertheless, the ratios between the different
schedulers remain nearly unchanged. The DBP and MKU approaches still exhibit outstanding
performance. So, the rough estimation at least allows for qualitative comparison of the schedulers.
Concerning the bug in the implementation of the FPP scheduler, the results now show that for
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Figure 3 Ratio of ATSs that are schedulable up to a certain target utilisation UT.
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Figure 4 Breakdown (m, k)-utilisations Umk (classified by rounding to nearest tenth).

most target utilisations DBP yields a better performance than MKU. Also, the MKP and MKP-S
approaches exhibit a higher performance than estimated in [25].

Beyond providing a necessary schedulability condition, the (m, k)-utilisation Umk does not
help further to estimate the feasibility of a task set. Figure 4 shows the occurrence rate of the
(m, k)-utilisations at the breakdown point of a task set, classified by rounding to the nearest tenth.
The class Umk = 0 stands for ATSs that are not feasible at all. Obviously, a high (m, k)-utilisation
does not per se prohibit feasibility, although this is achieved by only few ATSs. Most ATSs have a
breakdown (m, k)-utilisation in the interval [0.55, 0.85).

6.1.2 Performance of Schedulability Tests
The exact schedulability test for the approaches based on fixed (m, k)-patterns proposed in
Section 4.1 yields a large feasibility interval. However, simulations must only be performed if the
sufficient test [20] fails. In contrast, the feasibility interval for DBP [16] tends to exceed the MKP
feasibility interval by far. In the following, we concentrate on the gains that are obtained through
GST.

The DBP feasibility interval defines a very high bound for the number of hyperperiods that
must be simulated successfully until feasibility of a task set can safely be assumed. Our experiments
show that this bound is quite pessimistic and the optimisation incorporated in GST yields great
value for the schedulability test. In all schedulers using GST, infeasibility is detected for most task
sets (> 99 %) during the first hyperperiod, only few take longer. In the experiment at hand, the
longest simulation to detect infeasibility takes three hyperperiods; in other simulations we observed
durations of up to six hyperperiods. Feasibility is mostly found after the second hyperperiod,
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Table 4 Number of ATSs that exhibit at least one breakdown anomaly.

DBP GDPA GDPA-S gMUA-MK MKU

Absolute 20 11 9 11 40
Relative (%) 4.0 2.2 1.8 2.2 8.0

again with only few CTSs needing more time (up to 18 hyperperiods can be observed). For feasible
CTSs, the first hyperperiod can be seen as a warm-up phase: At the start, the k-sequences have
an arbitrary initialisation, in our case 1k. These k-sequences are very unlikely to recur, as at least
some jobs necessarily must be cancelled due to the overload. So, during the warm-up phase a
good initialisation for the k-sequences is found, which leads into a recurring system state.

The gain from the optimised schedulability test for MKU that follows from Theorem 3 and
Corollary 4 is only marginal. From 10270 CTSs in the experiment that are feasible under MKU,
only 25 (0.2%) would finish earlier.

6.1.3 Breakdown Anomalies
Extending the simulations described previously beyond the ATSs’ breakdown points yields the
following results. As already proven in Theorem 5, the schedulers based on fixed (m, k)-patterns
(MKP, MKP-S) do not exhibit any anomalies. For the other schedulers, Table 4 gives the numbers
of ATSs that exhibit at least one breakdown anomaly. With 8% of the ATSs, MKU exhibits the
largest number of anomalies. Thus, like all unsustainable algorithms, it should be treated with
care.

6.1.4 Cross-Initialisation of k-Sequences
As noted by Goossens [16], the choice of the initial k-sequence can have significant impact on the
feasibility of a task set. So far, no efficient algorithm is available that can derive a meaningful
initialisation. We note that disjoint sets of CTS exist in our simulation results that are feasible
only under one of any two approaches, but not under both. Feasibility in this case means that,
after an initial warm-up phase which started with each task’s k-sequence σi being initialised to
1ki , a system state σ = (σ1, σ2, . . . , σn) (see Section 3.2) periodically recurs. For a CTS that is
feasible under two scheduling approaches, the corresponding system states may be different.

Our idea is to use a periodically recurring system state of a CTS that is only feasible under
one of two schedulers for initialisation of the same CTS under the other scheduler. This approach
might especially be interesting to improve the performance of approaches like GDPA. More
formally, we assume a task set τ with σi = 1ki , i = 1, 2, . . . , n that is feasible under a scheduler
SCF ∈ Schedulers = {DBP,MKU,GDPA,GDPA-S, gMUA-MK}, but not under another scheduler
SC I ∈ Schedulers. Thus, the execution of τ using SCF finally runs into a cycle where a system
state σF with σFi 6= 1ki recurs periodically. This follows from the fact that the task set is overloaded
and thus some jobs must be cancelled. Now we derive a task set τ ′ from τ by initialising each
task τ ′i ’s k-sequence with the corresponding data from σF . τ ′ then is simulated under SC I using
GST to check whether the new initial k-sequence leads to a valid schedule. This approach is not
applicable to the MKP and MKP-S approaches, as these disregard tasks’ k-sequences.

In our simulations, we can identify significant numbers of candidate task sets only in the DBP
and MKU approaches. Concerning the transfer of their final system state σF to other schedulers,
only negligible successes can be achieved. For example, 263 distinct task sets are feasible in our
simulations under DBP, but not under GDPA. Using their final system state for execution under
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Figure 5 Mean lost processing time through EC (only feasible task sets; scaled by number of hyper-
periods and hyperperiod length; only task sets where all schedulers successful).

GDPA leads to feasibility for only one task set. For a cross-initialisation from DBP to gMUA-MK,
only 2 out of 274 candidates gain feasibility. Other transfers yield similar results. Thus, the
cross-initialisation approach does not promise to lead to significant improvements concerning
feasibility.

6.1.5 Cancellation of Running Jobs
Cancelling a job that has already started execution leads to the already consumed processing
time being lost. Figure 5 shows the mean ratio of processing time that is lost due to cancellation
of executing jobs. The schedulers based on fixed (m, k)-patterns (MKP, MKP-S) are omitted
for two reasons: (1) If the sufficient schedulability test is successful, no simulation is performed,
so no numbers are available for some task sets. (2) Only optional jobs (having lowest possible
priority) are allowed to be cancelled; processing time that would be lost could be reclaimed by
(possibly non-real-time) tasks that are running above the lowest possible priority, but still below
the priorities of the (m, k)-firm real-time tasks.

Only CTSs that are feasible under all schedulers are included in the figures. The numbers are
calculated in the following manner: For each CTS, the number of lost time steps is scaled by the
task set’s hyperperiod and the number of hyperperiods it is executed. From these numbers, the
average is calculated for each target utilisation.

Figure 5 shows that approaches that have a rather low performance (in terms of their ability to
find feasible schedules), tend to loose only a minor portion of processing time due to cancellation
of already executing jobs. Most interestingly, in the GDPA no processing time is lost at all. This
can be explained through the special technique in which GDPA calculates its schedule: Jobs with
a high distance from dynamic failure are considered later for insertion into the EDF schedule than
those that are near to a dynamic failure. If the insertion makes the EDF schedule infeasible, the
job is removed again and deferred (but not yet cancelled!). Jobs with high distance to dynamic
failure tend to be considered rather late for the schedule, and thus have a higher probability to
lead to infeasibility, as the schedule might already be rather “full” through more critical jobs. Thus
they are deferred without being executed, until they are cancelled due to missing their deadline.

The losses in the gMUA-MK approach stays well below 3%. The costs incurred by GDPA-S
are similar to those of MKU. Compared to the other approaches, DBP loses the highest amount
of processing time.

The results allow us also to deduct that the higher flexibility of the DBP and MKU approaches
(in terms of finding feasible schedules) is bought at the cost of a higher amount of lost processing
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Figure 6 Performance with restricted mi,
rm = 0.8.
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Figure 7 Performance with restricted mi,
rm = 0.9.

time (here up to 13%). Thereby, lower costs are incurred by MKU. This is due to the fact that
MKU cancels jobs in a more anticipatory manner as soon as an overload pends somewhere in the
schedule. Jobs in DBP are only cancelled when they can no longer meet their deadline.

6.2 Realistic Periods and m Parameters
The results presented so far are based on task sets with quite arbitrary parameters, concerning
especially the task periods and m parameters. In reality, one would not find such a great variability:
In real applications, task periods within a task set can be tuned to be harmonic or at least have
many common divisors, and they span several orders of magnitude (see e.g. [28]). Also, it seems
unrealistic to have tasks with a low ratio m

k which would mean that most jobs could be skipped.
In the following, we examine the behaviour of DBP and MKU under more realistic conditions
by restricting m parameters, task periods, and both. For all results, the utilisation step is set to
sU = 0.1. Breakdown anomalies are ignored, i.e. an ATS is simulated only until the first infeasible
CTS (these may differ for different schedulers!).

6.2.1 Restricted m Parameters
If generation of the m parameter of a task is restricted to an interval [rmki, ki], we get some
interesting results. In the following evaluations, we examine values rm ∈ {0.1, 0.2, . . . , 0.9}.
Although, in our view, reasonable rm values would rather be in the upper part of this set, we also
need to look at low values, as we will see soon.

For each value of rm, 500 ATSs are generated and simulated again with all schedulers. Like
before, we use the breakdown utilisation of the ATSs and the number of feasible CTSs for each
target utilisation to assess the performance of the schedulers. Breakdown anomalies occur in these
simulations only rarely (≤ 2 % of the ATSs per rm value), and are therefore ignored.

We show the success rates of the schedulers for rm = 0.8 and rm = 0.9 in Figures 6 and 7.
Further diagrams for the other rm values can be found in appendix B. For most schedulers, the
performance ratio between any two stays similar to that found in the above simulations. As
expected, the overall performance decreases with increasing rm. This can most clearly be observed
by a decrease of the maximum target utilisation for which feasible CTSs exist. Also, the number
of feasible CTSs at UT = 1.05 decreases rapidly with increasing rm.

However, the DBP and MKU schedulers exhibit a more interesting behaviour, when examined
in this detail compared to the simulations in 6.1. For very moderate overloads (UT = 1.05),
MKU achieves in most simulations, where rm ≥ 0.3, a better average performance than DBP. It
seems that in these situations the advantages of EDF, which MKU is based on, over fixed-priority
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Figure 8 Matrix used for generation of realistic task periods.
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Figure 9 Ratio of task sets with realistic periods that are feasible up to a certain target utilisation UT.

scheduling can still surface despite the overload. Applying the cross-initialisation technique (see
Section 6.1.4) to transfer successful k-sequences from MKU to the more runtime-efficient DBP
does not yield any successes for rm ≥ 0.6, which in our view defines the most relevant range of m
parameters.

6.2.2 Realistic Periods
In real applications, periods are often harmonic or have at least many common divisors. Also,
they usually span several orders of magnitude. To imitate such circumstances, we use the period
generator proposed by Goossens and Macq [17], which is aimed to generate task sets with limited
hyperperiods (see Section 5.1). For our experiments, we use the matrix shown in Figure 8. With
this matrix, we get periods in a range from 3 to 3,880,800. The maximum hyperperiod is also
3,880,800. All other task parameters are chosen as shown in Table 3.

Simulations are again performed for 500 ATSs. Figure 9 shows the ratio of ATSs that are
feasible for a given target utilisation under the DBP and MKU approaches. Values for UT > 2.05
are omitted, as they are very small.

The larger range of periods seem to have a rather detrimental effect on most schedulers.
Compared to the periods used in Section 6.1, their performance is more than halved. However,
some exceptions exist: For a moderate overload at UT = 1.05, gMUA-MK actually improves, but
deteriorates fast for larger UT. The MKP and MKP-S schedulers actually achieve much better
results. These can be attributed to the larger range of periods in the single task sets. As both
approaches also use rate monotonic (RM) priorities [32] for their mandatory jobs, the critical
instance at time t = 0 is greatly relieved: In the previous evaluations (Section 6.1), all jobs
released at this time have similar deadlines and thus compete for processing time in the same
interval. In contrast, with the extended period ranges, low-priority tasks (having long deadlines)
can profit from multiple activations of tasks with shorter period within their period, as they can
easily supersede the optional instances of the short-period tasks. Parts of the improvement may
also stem from the fact that some task sets in this simulation have harmonic periods. For such
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Figure 11 Performance with restricted mi (rm =
0.9.) and realistic periods

task sets, it is known that the utilisation bound for schedulability under fixed priorities increases
to U ≤ 1.0, compared to the Liu/Layland bound of U ≈ 0.69. Concerning the deterioration of
DBP, we note that DBP in many cases makes decisions that are sub-optimal for such task sets.
Depending on (m, k)-constraints, it happens that DBP prefers a task with higher period over one
with lower period due to the priority assignment being solely based on distance from dynamic
failure. In such task sets, this often leads to multiple consecutive low-period jobs (with actually
high RM priority) being not executed at all and thus a violation of (m, k)-constraints.

6.2.3 Combination
Finally, we examine the combination of restricting tasks’ m parameters and periods. Task
parameters are generated as in Section 6.2.1 except for the periods, for which we employ Goossens’
and Macq’s approach [17] already used in Section 6.2.2. Again, 500 ATSs are generated and
simulated. Performance numbers are again based on the breakdown utilisations, ignoring the
rarely occurring breakdown anomalies.

Exemplarily, we show the success rates of the schedulers for rm = 0.8 and rm = 0.9 in Figures 10
and 11. Further diagrams for the other rm values can be found in appendix B. They can be
interpreted as a combination of the results of the previous two experiments. The performance of all
approaches is clearly dominated by the larger variance of periods. The MKP/MKP-S approaches
still achieve outstanding performance due to the higher variation of task periods within the task
sets. The other approaches suffer from both the regular periods and the high rm parameter.

6.3 Discussion
Our results make several points in regard to which scheduler should be used for which kind of
set of (m, k)-firm real-time tasks. First, if task periods span several orders of magnitude, as
is often the case for industrial applications, the schedulers based on fixed (m, k)-patterns can
achieve better performance (see Section 6.2.2). They have the additional advantage that a simple
schedulability test [20] is available. If task periods can be tuned to be harmonic, the test yields
exact results. Second, for task periods that are in the same order of magnitude, better results are
achieved using one of the DBP or MKU schedulers (see Section 6.1). Depending on how strongly
the task set is constrained by (m, k)-parameters, either one of the two tends to yield better results.
If constraints are very harsh, i.e. if the mi are very near to the ki, then the performance tends to
be higher under MKU, and vice versa for DBP. However, it may still happen that, e.g. a strongly
constrained task set is feasible under DBP, but not under MKU. So the final choice of a scheduler
must be based on a accurate examination of the task set considering all schedulers available.

LITES
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7 Conclusions

In this article, we have extended our prior work on HCUF-based scheduling of (m, k)-firm real-time
tasks and examined several schedulers for (m, k)-firm real-time tasks. For existing schedulers for
(m, k)-firm real-time tasks, we pointed out some new properties, namely an exact schedulability
test for scheduling based on fixed (m, k)-patterns and the existence of breakdown anomalies in
approaches like DBP. Concerning our HCUF-based heuristic MKU, we presented new formal
results on the schedulability.

In an experimental evaluation, we examined the schedulers under several points of view.
Therefore, extensive simulations of randomly generated task sets were performed using the
different schedulers and different generation approaches. The simulations are based on the search
for breakdown utilisation [29] of abstract task sets. Our results show that the HCUF-based
heuristic MKU can achieve a similar performance as DBP [18], which has the best performance
among all schedulers regarded if task periods within a task set are roughly in the same order
of magnitude and (m, k)-constraints are very heterogeneous. Both approaches were able to find
feasible schedules for up to 80% of the generated task sets. They also show the advantage of the
optimisation that GST [16] introduces for testing the exact schedulability condition for (m, k)-firm
real-time task sets under DBP, as GST can reduce the simulation time significantly. The results
show further that no clear relation exists between a task sets’ (m, k)-utilisation and its feasibility.
The occurrence of breakdown anomalies in our results indicate that care must be taken when
using one of the DBP, MKU, GDPA, GDPA-S or gMUA-MK schedulers for an actual system: if
the actual execution time of tasks is smaller than assumed during schedulability analysis, the task
set may become infeasible under these schedulers. Depending on the used scheduler, about 2-8%
of the task sets were affected by this problem in our simulations. We also tackled the problem of
finding good initialisations of tasks’ k-sequences, as these can impact feasibility [16]. Using results
produced by a feasible schedule as initialisation for a task set under another scheduler, where it is
infeasible so far, could yield only minor improvements. The examination of processing time lost
due to job cancellations gives some surprising results: Under this metric, the GDPA/GDPA-S [8]
and gMUA-MK [39] schedulers achieved best performance (less than 2% loss), while DBP lost up
to 13% of the processing time. The MKU approach lies somewhere between these numbers.

In further simulations, we restricted task set generation to realistic parameters. A lower bound
for the m parameter prohibited the generation of tasks whose jobs are scarcely executed. As
could be expected, having the mi parameters of tasks near their ki parameters resulted in a
decrease of all schedulers’ performances. However, we also observed that in such a scenario with
very strong (m, k)-constraints, MKU can actually achieve better results than DBP. By using
the period generator proposed by Goossens and Macq [17], periods spanning multiple orders of
magnitude inside a task set were generated. In such task sets, the performance of MKU and DBP
degraded significantly due to sub-optimal decisions. Concurrently, the schedulers based on fixed
(m, k)-patterns (MKP [38] and MKP-S [37]) could achieve much higher performance (feasibility
for up to ≈ 93 % of the generated CTSs).

We draw the following conclusions from our results: When the periods in a task set span
several orders of magnitude, as is e.g. the case for automotive systems [28], then an approach
using fixed (m, k)-patterns should be preferred. When task periods are roughly the same order
of magnitude, then DBP or MKU can yield a better performance, but care must be taken for
schedulability anomalies, as both algorithms are not sustainable.

In this article, we restrict ourselves to mapping (m, k)-firm constraints with HCUF, but the
scheduling approach is not limited to these (m, k)-HCUFs. We expect that also other HCUFs can
be used in the future, e.g. to communicate applications’ current state and requirements such that
the scheduler can adjust its decisions.
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A Acronyms

ATS abstract task set
CTS concrete task set
DASA dependent activities scheduling algorithm
DBP distance-based priority
EDF earliest deadline first
GDPA guaranteed dynamic priority assignment
GDPA-S simplified guaranteed dynamic priority assignment
gMUA-MK global multiprocessor utility accrual scheduling algorithm for (m, k)-firm deadline-

constrained multimedia streams
GST Goossens’ schedulability test
HCUF history-cognisant utility function
LBESA Locke’s best-effort scheduling algorithm
MKP evenly distributed (m, k)-patterns
MKP-S evenly distributed (m, k)-patterns with spin values
MKU utility-based scheduling of (m, k)-firm real-time tasks
QoS Quality-of-Service
RM rate monotonic
TUF time-utility function
WCET worst-case execution time

B Additional Results

This appendix contains all performance results that are found during the simulation of task sets
with restricted m parameter (see Section 6.2.1), and restricted m parameter and realistic periods
(see Section 6.2.3).

B.1 Restricted m Parameter
The diagrams for rm = 0.8 and rm = 0.9 are omitted, as they are already shown in Figures 6
and 7. All other results from Section 6.2.1 are displayed in Figures 12 to 18.

B.2 Restricted m Parameter and Realistic Periods
Figures 19 to 21 show the results from the evaluations discussed in Section 6.2.3.
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Figure 12 Performance with restricted mi, rm = 0.1.
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Figure 13 Performance with restricted mi, rm = 0.2.
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Figure 14 Performance with restricted mi, rm = 0.3.
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Figure 15 Performance with restricted mi, rm = 0.4.
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Figure 16 Success rates for rm = 0.5.
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Figure 17 Performance with restricted mi,
rm = 0.6.
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Figure 18 Performance with restricted mi,
rm = 0.7.
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Figure 19 Performance with restricted mi (rm = 0.5.) and realistic periods.
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Figure 20 Performance with restricted mi (rm =
0.6) and realistic periods.
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Figure 21 Performance with restricted mi (rm =
0.7.) and realistic periods.
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