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Abstract
The promise of high scalability and availability has
prompted many companies to replace traditional
relational database management systems (RDBMS)
with NoSQL key-value stores. This comes at the
cost of relaxed consistency guarantees: key-value
stores only guarantee eventual consistency in prin-
ciple. In practice, however, many key-value stores
seem to offer stronger consistency. Quantifying how
well consistency properties are met is a non-trivial
problem. We address this problem by formally mod-
eling key-value stores as probabilistic systems and
quantitatively analyzing their consistency proper-

ties by both statistical model checking and imple-
mentation evaluation. We present for the first time
a formal probabilistic model of Apache Cassandra,
a popular NoSQL key-value store, and quantify how
much Cassandra achieves various consistency guar-
antees under various conditions. To validate our
model, we evaluate multiple consistency properties
using two methods and compare them against each
other. The two methods are: (1) an implementation-
based evaluation of the source code; and (2) a stat-
istical model checking analysis of our probabilistic
model.
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1 Introduction

The promise of high scalability and availability has prompted many companies and organizations
to replace traditional relational database management systems (RDBMS) with NoSQL key-value
stores in order to store large data sets and support an increasing number of users. According to
DB-Engines Ranking [16] by September 2016, three NoSQL datastores, namely MongoDB [30],
Cassandra [12] and Redis [33], have advanced into the top 10 most popular database engines
among 315 systems, highlighting the increasing popularity of NoSQL key-value stores. For example,
Cassandra is currently being used at Facebook, Netflix, eBay, GitHub, Instagram, Comcast, and
over 1500 more companies.

NoSQL key-value stores invariably replicate application data on multiple servers for greater
availability in the presence of failures. Brewer’s CAP theorem [11] implies that, under network
partitions, a key-value store must choose between consistency (keeping all replicas in sync) and
availability (latency). Many key-value stores prefer availability, and thus they provide a relaxed
form of consistency guarantees (e.g., eventual consistency [39]). This means key-value store
applications can be exposed to stale values. This can negatively impact key-value store user
experience. Not surprisingly, in practice many key-value stores seem to offer stronger consistency
than they promise. Therefore there is considerable interest in accurately predicting and quantifying
what consistency properties a key-value store actually delivers, and in comparing in an objective,
and quantifiable way how well properties of interest are met by different designs.

However, the task of accurately predicting such consistency properties is non-trivial. To
begin with, building a large scale distributed key-value store is a challenging task. A key-value
store usually embodies a large number of components (e.g., membership management, consistent
hashing, and so on), and each component can be thought of as source code which embodies
many complex design decisions. Today, if a developer wishes to improve the performance of a
system (e.g., to improve consistency guarantees, or reduce operation latency) by implementing an
alternative design choice for a component, then the only option currently available is to make
changes to huge source code bases (e.g., Apache Cassandra [12] has about 345,000 lines of code).
Not only does this require many man months, it also comes with a high risk of introducing new
bugs, needs understanding in a huge code base before making changes, and is unfortunately not
repeatable. Developers can only afford to explore very few design alternatives, which may in the
end fail to lead to a better design.

In this paper we address these challenges by proposing a formally model-based methodology
for designing and quantitatively analyzing key-value stores. We formally model key-value stores
as probabilistic systems specified by probabilistic rewrite rules [1], and quantitatively analyze
their properties by statistical model checking [34, 43]. We demonstrate the practical usefulness
of our methodology by developing, to the best of our knowledge for the first time, a formal
probabilistic model of Cassandra, as well as of an alternative Cassandra-like design, in Maude
[13]. Our formal probabilistic model extends and improves a nondeterministic one we used in
[26] to answer qualitative binary consistency queries1 about Cassandra. It models the main
components of Cassandra and its environment such as strategies for ordering multiple versions of
data and message delay. We have also specified five consistency guarantees that are largely used in
industry, strong consistency (the strongest consistency guarantee), causal consistency (the strongest
consistency guarantee that is available in the presence of partitions), read your writes, monotonic
reads and consistency prefix (popular intermediate consistency guarantees) [37, 38, 28, 4], in the

1 A binary consistency query may ask, for example, whether a key-value store read operation is strongly (resp.
weakly) consistent or not and other such Boolean-valued questions.
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QuaTEx probabilistic temporal logic [1]. Using the PVeStA [3] statistical model checking tool,
we have then quantified the satisfaction of such consistency properties in Cassandra under various
conditions such as consistency level combination and operation issuing time latency. To illustrate
the versatility and ease with which different design alternatives can be modeled and analyzed in
our methodology, we have also modeled and analyzed the exact same properties for an alternative
Cassandra-like design.

An important question is how much trust can be placed on such models and analysis. That
is, how reliable is the predictive power of our proposed methodology? We have been able to
answer this question for our case study as follows: (i) we have experimentally evaluated the same
consistency properties for both Cassandra and the alternative Cassandra-like design2; and (ii) we
have compared the results obtained from the formal probabilistic models and the statistical model
checking with the experimentally-obtained results. Our analysis indicates that the model-based
consistency predictions conform well to consistency evaluations derived experimentally from the
real Cassandra deployment, with both showing that Cassandra in fact achieves much higher
consistency (sometimes up to strong consistency) than the promised eventual consistency. They
also show that the alternative design in most cases is not competitive in terms of the consistency
guarantees considered. The purpose of the alternative design was two-fold. First, we wanted to
see if the alternative approach would give better accuracy or not. Second, we also wanted to show
that it was easier to try the alternative design with our formal model. This is one of the key
benefits of building formal models, so that we can quickly try alternative approaches and check
their accuracy and performance. Our entire Maude specification, including the alternative design,
has less than 1000 lines of code, which further underlines the versatility and ease of use of our
methodology at the software engineering level.

Our main contributions include:
We present a formal methodology for the quantitative analysis of key-value store designs and
develop, to the best of our knowledge for the first time, a formal executable probabilistic model
for the Cassandra key-value store and for an alternative Cassandra-like design.
We present, to the best of our knowledge for the first time, a statistical model checking analysis
for quantifying five consistency guarantees in Cassandra and the alternative design.
We demonstrate the good predictive power of our methodology by comparing the model-based
consistency predictions with experimental evaluations from a real Cassandra deployment on a
real cluster. Our results indicate similar consistency trends for the model and the deployment.

This paper extends the results presented in [24, 26] on two substantial ways. First, we explain
various consistency models in greater detail including their formal definitions (Section 3) and
specifications (Section 5.1). Second, we provide quantitative analysis of consistency using both
statistical model checking and implementation-based estimation for three new consistency models
(Section 5.2): monotonic reads, consistent pefix and causal consistency [37, 38, 28, 4].

The paper is organized as follows: Section 2 gives a brief overview of Cassandra, Maude,
and statistical model checking. Section 3 explains replicated data consistency guarantess in
NoSQL datastores. Section 4 presents our probabilistic model of Cassandra and an alternative
Cassandra-like design. Section 5 shows the quantitative analysis of consistency by statistical model
checking and the implementation-based estimation. Finally, Sections 6 and 7 discuss related work
and concluding remarks, respectively.

2 We implemented the alternative Cassandra-like design by modifying the source code of Apache Cassandra
version 1.2.10.

LITES
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Figure 1 Cassandra deployed in a single cluster of 8 servers with replication factor 3.

2 Preliminaries

2.1 Cassandra Overview
Apache Cassandra [12] is a distributed, scalable, and highly available NoSQL database design. It
is distributed over collaborative servers that appear as a single instance to the end client. Data
items are dynamically assigned to several servers in the cluster (called the ring), and each server
(called a replica) is responsible for different ranges of the data stored as key-value pairs. Each
key-value pair is stored at multiple replicas for fault-tolerance. To place those replicas different
strategies can be employed, e.g., the Simple Strategy places replicas clockwise in a single data
center. For a private cloud Cassandra is typically deployed in a single data center with a single
ring structure shared by all its servers.

In Cassandra a client can perform read or write operations to query or update data. When
a client requests a read/write operation to a cluster, the server it is connected to will act as a
coordinator to forward the request to all replicas that hold copies of the requested key-value pair.
According to the specified consistency level in the operation, the coordinator will reply to the
client with a value/ack after collecting sufficient responses from replicas. Cassandra supports
tunable consistency levels, with ONE, QUORUM and ALL being the three major ones, meaning that
the coordinator will respectively reply with the most recent value (namely, the value with the
highest timestamp) to the client after hearing from one replica, a majority of replicas, or all
replicas. Thus we call the above strategy of processing reads Timestamp-based Strategy (TB).
Note that replicas may return different timestamped values to the coordinator. To ensure that
all replicas agree on the most recent value, Cassandra uses in the background the read repair
mechanism to update those replicas holding outdated values.

Figure 1 shows an example Cassandra system deployed in a single data center cluster of eight
servers with three replicas and consistency level QUORUM. The read/write from client 1 is forwarded
to all three replicas 1, 3 and 5. The coordinator 7 then replies to client 1 after receiving the first
two responses, e.g., from 1 and 3, to fulfill the request without waiting for the reply from 5. For a
read, upon retrieving all three possibly different versions of values, the coordinator 7 then issues a
read repair write with the highest timestamped value to the outdated replica, 1, in this example.
Note that various clients may connect to various coordinators in the cluster, but requests from
any client on the same key will be forwarded to the same replicas by those coordinators.
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2.2 Rewriting Logic and Maude
Maude [13] is an expressive rewriting-logic-based formal specification language and high-per-
formance simulation and model checking tool for concurrent, object-oriented systems. Maude
specifications are executable, and the tool provides a variety of formal analysis methods, including
simulation, reachability analysis, and linear temporal logic (LTL) model checking.

A Maude module specifies a rewrite theory (Σ, E ∪A,R), where:
Σ is an algebraic signature; that is, a set of sorts, subsorts, and function symbols.
(Σ, E ∪A) is a membership equational logic theory [13], with E a set of possibly conditional
equations and membership axioms, and A a set of equational axioms such as associativity,
commutativity, and identity, so that equational deduction is performed modulo the axioms A.
The theory (Σ, E ∪A) specifies the system’s states as members of an algebraic data type.
R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond, specifying the system’s
local transitions.

We briefly summarize the syntax of Maude and refer to [13] for more details. Operators are
introduced with the op keyword: op f : s1 . . . sn -> s. They can have user-definable syntax, with
underbars ‘_’ marking the argument positions. Equations and rewrite rules are introduced with,
respectively, keywords eq, or ceq for conditional equations, and rl and crl. The mathematical
variables in such statements are declared with the keywords var and vars, or can be introduced
on the fly, in which case they have the form var:sort. An equation f(t1, . . . , tn) = t with the
owise (“otherwise”) attribute can be applied to a subterm f(. . .) only if no other equation with
left-hand side f(u1, . . . , un) can be applied.

A class declaration class C | att1 : s1, ..., attn : sn declares a class C of objects
with attributes att1 to attn of sorts s1 to sn. An object instance of class C is represented as a
term < O : C | att1 : val1, ..., attn : valn >, where O, of sort Oid, is the object’s identifier, and
where val1 to valn are the current values of the attributes att1 to attn. A message is a term of
sort Msg. A system state is modeled as a term of the sort Configuration, and has the structure
of a multiset made up of objects and messages. The dynamic behavior of a system is axiomatized
by specifying each of its transition patterns by a rewrite rule. For example, the rule (with label l)

rl [l] : m(O,w)
< O : C | a1 : x, a2 : O’, a3 : z >

=>
< O : C | a1 : x + w, a2 : O’, a3 : z >
m’(O’,x) .

defines a family of transitions in which a message m, with parameters O and w, is read and consumed
by an object O of class C, the attribute a1 of the object O is changed to x + w, and a new message
m’(O’,x) is generated. Attributes whose values do not change and do not affect the next state,
such as a3 and a2, need not be mentioned in a rule. Note that in the above rule O, declared as
either constant or variable of sort Oid, is the object’s identifier that can also be a parameter of
some function (e.g., the message function m).

2.3 Statistical Model Checking and PVeStA
Distributed systems are probabilistic in nature, e.g., network latency such as message delay may
follow a certain probability distribution, plus some algorithms may be probabilistic. Systems of
this kind can be modeled by probabilistic rewrite theories [1] with rules of the form:

[l] : t(−→x )→ t′(−→x ,−→y ) if cond(−→x ) with probability −→y := π(−→x )

LITES
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where the term t′ has additional new variables −→y disjoint from the variables −→x in the term t.
Since for a given matching instance of the variables −→x there can be many (often infinite) ways to
instantiate the extra variables −→y , such a rule is non-deterministic. The probabilistic nature of the
rule stems from the probability distribution π(−→x ), which depends on the matching instance of
−→x , and governs the probabilistic choice of the instance of −→y in the result t′(−→x ,−→y ) according to
π(−→x ). In this paper we use the above PMaude [1] notation for probabilistic rewrite rules.

Statistical model checking [34, 43] is an attractive formal approach to analyzing probabilistic
systems against temporal logic properties. Instead of offering a binary yes/no answer, it provides a
quantitative real-valued answer and can verify a property up to a user-specified level of confidence
by running Monte-Carlo simulations of the system model. For example, if we consider strong
consistency in Cassandra, a statistical model-checking result may be “The Cassandra model
satisfies strong consistency 86.87% of the times with 99% confidence”. The quantitative answer,
however, need not be a percentage or a probability: it may instead be a latency estimation, or a
quantitative estimation of some other QoS property. Existing statistical verification techniques
assume that the system model is purely probabilistic. Using the methodology in [1, 19] we can
eliminate non-determinism in the choice of firing rules. We then use PVeStA [3], an extension and
parallelization of the tool VeStA [35], to statistically model check purely probabilistic systems
against properties expressed by QuaTEx probabilistic temporal logic [1]. The expected value of
a QuaTEx expression is iteratively evaluated w.r.t. two parameters α and δ provided as input by
sampling until the size of (1-α)100% confidence interval is bounded by δ. In this paper we will
compute the expected probability of satisfying a property based on definitions of the form p()
= BExp ; eval E[# p()] ;, where #, called “next”, is a primitive temporal operator, BExp is a
consistency-specific predicate (e.g., the predicate sc? in Section 5.1.1), and p() is a state predicate
returning the probabilistic number between 1.0 and 0.0. Informally, the QuaTEx expression
consists in a list of definitions of recursive temporal operators such as p(), followed by a query of
the expected value of a path expression such as eval E[# p()] obtained combining the temporal
operators.

3 Replicated Data Consistency

Distributed key-value stores usually sacrifice consistency for availability (Brewer’s CAP theorem
[11]), advocating the notion of weak consistency (e.g., Cassandra promises eventual consistency
[12]). However, studies on benchmarking eventually consistent systems have shown that those
platforms seem in practice to offer more consistency than they promise [40, 10]. Thus a natural
question derived from those observations is “what consistency does your key-value store provide
in practice?”. We summarize below the prevailing consistency guarantees that have received
considerable attention in recent research on distributed data stores [37, 38, 28, 4]. We will focus
on five of them (strong consistency, read your writes, monotonic reads, consistent prefix and causal
consistency) in the rest of this paper.

Strong Consistency (SC) ensures that each read returns the value of the last write that occurred
before that read.
Read Your Writes (RYW) guarantees that the effects of all writes performed by a client are
visible to her subsequent reads.
Monotonic Reads (MR) ensures a client to observe a key-value store increasingly up to date
over time.
Consistent Prefix (CP) guarantees a client to observe an ordered sequence of writes starting
with the first write to the system.
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(Time-) Bounded Staleness (BS) restricts the staleness of values returned by reads within a
time period.
Causal Consistency (CC) guarantees that the effects are observed only after their causes: reads
will not see a write unless its dependencies are also seen.
Eventual Consistency (EC) claims that if no new updates are made, eventually all reads will
return the last updated value.

Note that SC and EC lie at the two ends of the consistency spectrum, while the other intermediate
guarantees are not comparable in general [37].

In [26, 27] we investigated SC, RYW and EC from a qualitative perspective using standard
model checking, where they were specified using linear temporal logic (LTL). The questions we
asked and answered there were simply yes/no questions such as “Does Cassandra satisfy strong
consistency?” and “In what scenarios does Cassandra violate read your writes?”. We indeed
showed by counterexamples that Cassandra violates SC and RYW under certain circumstances,
e.g., successive write and read with the combinations of lower consistency levels. Regarding
EC, the model checking results of our experiments with bounded number of clients, servers and
messages conforms to the promise. We refer the reader to [26, 27] for details.

In this paper we look into the consistency issue for Cassandra in terms of SC, RYW, MR, CP
and CC from a quantitative, statistical model checking perspective. To aid the specification of the
five properties (Section 5.1), we now restate them more formally. As all operations from different
clients can be totally ordered by their issuing times, we can first view, from a client’s perspective,
the behavior of a key-value store S as a history H = o1, o2, . . . , on of n read/write operations,
where any operation oi can be expressed as oi = (ki, vi, ci, ti), where ti denotes the global time
when oi was issued by client ci, and vi is the value read from or written to on key ki and where
the sequence is time-increasing, i.e., ti ≤ tj if i < j. We can then define the consistency properties
based on H:

We say S satisfies SC if for any read oi = (k, vi, ci, ti), provided there exists a write oj =
(k, vj , cj , tj) with tj < ti, and without any other write oh = (k, vh, ch, th) such that tj < th < ti,
we have vi = vj . Note that ch, ci and cj are not necessarily different;
We say S satisfies RYW if either (1) S satisfies SC, or (2) for any read oi = (k, vi, ci, ti),
provided there exists a write oj = (k, vj , cj , tj) with ci = cj and tj < ti, and with any other
write oh = (k, vh, ch, th) such that ci 6= ch and tj < th < ti, we have vi = vj ;
We say S satisfies MR if for any two reads ori = (kri, vri, cri, tri) and orj = (krj , vrj , crj , trj) in
the sequence of reads or1, or2, . . . , orn, provided there exists a sequence of writes ow1, ow2, . . . , owm,
if vri = vwg and vrj = vwh, we have twg ≤ twh, provided kri = kwg and krj = kwh. Note that
cri, crj , cwg and cwh are not necessarily different;
We say S satisfies CP if for a sequence of reads or1, or2, . . . , orm, provided there exists a sequence
of writes ow1, ow2, . . . , own, we have, if n > m, vr1 = vw1, vr2 = vw2, . . . , vrm = vwm, provided
that kr1 = kw1, kr2 = kw2, . . . , krm = kwm; otherwise, vr1 = vw1, vr2 = vw2, . . . , vrn =
vwn, vrn+1 = vwn, . . . , vrm = vwn, provided kr1 = kw1, kr2 = kw2, . . . , krn = kwn, krn+1 =
kwn, . . . , krm = kwn. Note that cri and cwj are not necessarily different, and the key pairs
(e.g., kri and krj) are not necessarily the same;
We introduce two notions, causality order and serialization [2, 38], before defining S satisfying
CC. We say oi = (ki, vi, ci, ti) is causally ordered before oj = (kj , vj , cj , tj) if one of the
following three cases holds: (i) ci = cj and ti < tj ; (ii) vj = vi, provided oi is a write while
oj a read; (iii) there exists some other ok such that oi is causally ordered before ok that is
causally ordered before oj (i.e., transitivity). We say L is a serialization of a history H if L is
a linear sequence containing exactly the operations of H such that L satisfies SC. We say a
serialization L respects a causality order if, for any two operations oi and oj in L, oi is causally

LITES
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Figure 2 Visualization of rewrite rules for forwarding requests from a coordinator to the replicas.

ordered before oj implies oi precedes oj in L. We then say S satisfies CC if H has a causality
order such that for each client ci there is a serialization of all operations from ci and all writes
(probably from different clients) in H that respects that causality order.

4 Probabilistic Modeling of Cassandra Designs

This section describes a formal probabilistic model of Cassandra as well as an alternative Cassandra-
like design. Section 4.1 shows the underlying communication model of Cassandra components, and
how the associated non-deterministic rewrite rules are transformed into purely probabilistic ones
in Maude. Section 4.2 presents an alternative Cassandra-like design in terms of read processing
strategy. The entire executable Maude specifications are available at https://sites.google.
com/site/siliunobi/lites-cassandra.

4.1 Formalizing Probabilistic Communication in Cassandra
In [26] we built a formal executable model of Cassandra summarized in Section 2.1. Specifically, we
modeled the ring structure, clients and servers, messages, and Cassandra’s dynamics. Moreover, we
also introduced a scheduler object to schedule messages by maintaining a global clock GlobalTime3

and a queue of inactive/scheduled messages MsgQueue. By activating those messages, it provides
a deterministic total ordering of messages4 and allows synchronization of all clients and servers,
aiding formal analysis of consistency properties (Section 5.1).

To illustrate the underlying communication model, Figure 2 visualizes a segment of the system
transitions showing how messages flow between a coordinator and the replicas through the scheduler
in terms of rewrite rules. The delayed messages (of the form [...]) [D1, repl1 <- Msg1] and
[D2, repl2 <- Msg2], targeting replicas repl1 and repl2, are produced by the coordinator at
global time T with the respective message delays D1 and D2. The scheduler then enqueues both
messages for scheduling. As the global time advances, messages eventually become active (of the

3 Although in reality synchronization can never be exactly reached due to clock skew [23], cloud system providers
use NTP or even expensive GPS devices to keep all clocks synchronized (e.g., Google Spanner [15]). Thus our
abstraction of a global clock is reasonable.

4 It is possible to have two active messages with the same delivery time. In that case messages will be ordered
alphabetically.

https://sites.google.com/site/siliunobi/lites-cassandra
https://sites.google.com/site/siliunobi/lites-cassandra
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form {...}), and are appropriately delivered to the replicas. For example, the scheduler first
dequeues Msg1 and then Msg2 at global time T + D1 and T + D2 respectively, assuming D1 < D2.
Note that messages can be consumed by the targets only when they are active.

As mentioned in Section 2.3, we need to eliminate nondeterminism in our previous Cassandra
model prior to statistical model checking. This can be done by transforming nondeterministic
rewrite rules to purely probabilistic ones. Below we show an example transformation, where both
rules illustrate how the coordinator reacts upon receiving a read reply ReadReplySS from a replica,
with KV the returned key-value pair of the form (key,value,timestamp), ID and A the read and
client’s identifiers, and CL the read’s consistency level, respectively. The coordinator S adds KV to
its local buffer, and returns to A the highest timestamped value determined by tb via the message
ReadReplyCS, provided it has collected the consistency-level number of responses determined by
cl?.

In the nondeterministic version [...-nondet], the outgoing message is equipped with a delay
D nondeterministically selected from the delay set delays where DS defines the rest delays of the
set. We keep the set unchanged so that standard model checking will explore all possible choices
of delays each time the rule is fired. For example, if delays are : (2.0,4.0), two read replies
will be generated nondeterministically with the delays 2.0 and 4.0 time units respectively, each
of which will lead to an execution path during the state space exploration. Note that AS refers to
the rest of the attributes of server S.

crl [on-rec-rrep-coord-nondet] :
{T, S <- ReadReplySS(ID,KV,CL,A)}
< S : Server | buffer: BF, delays: (D,DS), AS >

=>
< S : Server | buffer: BF’, delays: (D,DS), AS >
(if cl?(CL,BF’) then
[D, A <- ReadReplyCS(ID,tb(BF’))]
else none fi)

if BF’ := add(ID,KV,BF) .

We transform the above rule to the probabilistic version [...-prob], where the delay D is
distributed according to the parameterized probability distribution function distr(...). Once
the rule fires, only one read reply will be generated with a probabilistic real-valued message delay.

crl [on-rec-rrep-coord-prob] :
{T, S <- ReadReplySS(ID,KV,CL,A)}
< S : Server | buffer: BF, AS >

=>
< S : Server | buffer: BF’, AS >
(if cl?(CL,BF’) then
[D, A <- ReadReplyCS(ID,tb(BF’))]
else none fi)

if BF’ := add(ID,KV,BF) with probability D := distr(...) .

Likewise, all nondeterministic rules in our previous model can be transformed to purely probabilistic
rewrite rules. Furthermore, as explained in [1, 19], the use of continuous time and the actor-like
nature of the specification ensure that at most one probabilistic rule will be enabled at each time
instant, thus eliminating any remaining nondeterminism from the firing of rules.

LITES
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4.2 Alternative Strategy Design

Two major advantages of our model-based approach are: (1) the ease of exploring different design
alternatives (e.g., designing an alternative strategy to TB described in Section 2.1) in early design
stages, and (2) the ability to predict their effects before implementation. Here we illustrates the
first part by presenting as an alternative design the Timestamp-agnostic Strategy (TA). The key
idea is that, instead of using timestamps to decide which value will be returned to the client as
TB does (Section 2.1), TA uses the values themselves to decide which replica has the latest value.
For example, if the replication factor is 3, then for a QUORUM read, the coordinator checks whether
the values returned by the first two replicas are identical: if they are, the coordinator returns that
value; otherwise it waits for the third replica to return a value. If the third value matches one of
the first two values, the coordinator returns the third value. So for a QUORUM read TA guarantees
that the coordinator will reply with the value that has been stored at a majority of replicas. For
an ALL read, the coordinator compares all three values; if they are all the same, it returns that
value. Notice that TA and TB agree on processing ONE reads.

To formalize TA (or other alternative strategies) we only need to specify the corresponding
functions of the returned values from the replicas buffered at the coordinator, as we defined
tb for TB, and for deciding if enough responses have been fetched by the coordinator, as we
defined cl? for TB, without redefining the underlying model. Note that our component-based
model also makes it possible to dynamically choose the optimal strategy in favor of consistency
guarantees. More precisely, once the system has been specified endowed with a family of strategies
having respective strengths in consistency guarantees (which can be measured by statistical model
checking), the coordinator can invoke the corresponding strategy-specific function based on the
client’s specified preference. For example, given strategies S1/S2 offering consistency properties
C1/C2, if a client issues two consecutive reads with desired consistency C1, C2, respectively, the
coordinator will generate, e.g., the C1-consistent value for the preceding read, by calling the
strategy function for S1.

On the other hand, the key change for implementing TA is to implement our own Resolve()
function for class RowDataResolver. We rewrote Cassandra’s resolveSupersetNew() function
for the TA approach. This took some code modification, and it required a complete understanding
of the Cassandra internal code details. In terms of Cassandra code changes, 150 lines of code were
added and 50 were removed. We observe that formalizing TA in Maude was much easier and
faster than implementing it in Cassandra.

5 Quantitative Analysis of Consistency in Cassandra

How well do our Cassandra model and its TA alternative design satisfy different consistency
guarantees? Does TA provide better consistency than TB based on our model? Are those results
in agreement with actual implementations? We propose to investigate these questions by statistical
model checking and by implementation-based evaluation of those consistency properties in terms
of the two strategies.

5.1 Formalization of Consistency Properties

5.1.1 Strong Consistency

Scenario. SC ensures that each read returns the value of the last write that occurred before that
read. Thus we design a scenario with one read and two writes to see if the read will return the
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Figure 3 Experimental Scenario of Statistical Model Checking of SC.

last write5. Figure 3 shows the experimental scenario for SC, with each parallel line denoting one
session of one client. The scenario consists of three consecutive operations, W1, W2 and R3, issued
by three different clients, respectively, where L1 and L2 are the issuing latencies between them.
We choose to experiment with consistency level ONE for both W1 and W2 to evaluate different
consistency levels for R3. Thus we name each subscenario (TB/TA-O/Q/A) depending on the
target strategy and R3’s consistency level, e.g., (TB-Q) refers to the case checking SC for TB
with R3 of QUORUM.

Formal Specification of SC. Based on the consistency definition (Section 3) and the above
scenario, SC is satisfied if R3 reads the value of W2. Thus we define a parameterized predicate
sc?(A,A’,C) that holds if we can match the value returned by the subsequent read O (R3 in this
case) from client A with that in the preceding write O’ (W2 in this case) from client A’. Note that
the attribute store lists the associated information of each operation issued by the client, e.g.,
operation O was issued at global time T on key K with returned/written value V for a read/write.
Note that in the rest of this paper REST refers to the rest objects of the entire configuration
(Section 2.2).

op sc? : Address Address Config -> Bool .

eq sc?(A,A’,< A : Client | store : ((O, K,V,T ), ...), ... >
< A’ : Client | store : ((O’,K,V,T’), ...), ... > REST) = true .

eq sc?(A,A’,C) = false [owise] .

5.1.2 Read Your Writes
Scenario. RYW guarantees that the effects of all writes performed by a client are visible to
her subsequent reads. Thus we design a scenario with two writes and one read from the same
client to see if the read will return the last write; we also add another write from a different client
since returning the latest write from a different client will also satisfy RYW. Figure 4 shows the
experimental scenario for RYW. The scenario consists of four operations, where W1, W2 and R3
are issued by one client and strictly ordered (a subsequent operation will be blocked until the
preceding one finishes) while W4 is from the other client6. The issuing latency L is tunable, which

5 Note that we need to minimize all the experimental scenarios for the statistical model checking in this paper
for two reasons: (1) statistical model checking can only support a limited number of operations to avoid state
space explosion; and (2) we observed that in our experiments adding a few more operations would not affect
the results much but would aggravate the statistical model checking.

6 Section 3 describes two disjoint cases for RYW, which we mimic with tuneable L: if t4 < t2, only W2 is
RYW-consistent; otherwise both W2 and W4 are RYW-consistent.
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Figure 4 Experimental Scenario of Statistical Model Checking of RYW.

can vary the issuing time of W4. Thus we can derive the corresponding cases in RYW’s definition
(Section 3), and specify and analyze the property accordingly. We choose to experiment with
consistency level ONE for both W1 and W4 to evaluate different combinations of consistency levels
for W2 and R3. The only possible cases violating RYW are, if we forget W4 for the moment,
(R3,W2) = (O,O)/(O,Q)/(Q,O) due to the fact that a read is guaranteed to see its preceding write
from the same client, if R + W > RF with R and W the respective consistency levels and RF the
replication factor. For example, if the replication factor RF is 3 (thus ONE/QUORUM/ALL is 1/2/3),
a ONE read R and a QUORUM write W cannot ensure RYW.

Formal Specification of RYW. We define a parameterized predicate ryw?(A,A’,C) that holds
if the subsequent read O2 (R3 in this case) returns the appropriate value required for RYW to
hold. This can happen in two different ways: (1) O2 returns the value V by the preceding write O1
(W2 in this case), or (2) O2 returns the value V’ by a more recent write O3 (W4 in this case if
issued after W2, which is determined by T3 >= T1).

op ryw? : Address Address Config -> Bool .

eq ryw?(A,A’,< A : Client | store : (..., (O1,K,V,T1), (O2,K,V,T2), ...),
... > REST) = true . --- case (1)

ceq ryw?(A,A’,< A : Client | store : (..., (O1,K,V,T1), (O2,K,V’,T2), ...), ... >
< A’ : Client | store : ((O3,K,V’,T3), ...), ... > REST) = true

if T3 >= T1 . --- case (2)

eq ryw?(A,A’,C) = false [owise] .

5.1.3 Monotonic Reads
Scenario. MR ensures that a client will observe a key-value store increasingly up to date over
time. Thus we design a scenario with two writes followed by two consecutive reads to see if the
two reads will return the two writes in order. Figure 5 shows the experimental scenario for MR.
We consider a scenario with four operations, where two writes, W1 and W2, are issued by two
different clients, and a third client issues two strictly ordered reads, R3 and R4. L1 and L2 are the
issuing latencies between W1 and W2, and W2 and R3, respectively. We choose to experiment
with the same consistency level for R3 and R4, and with consistency level ONE for W1 to evaluate
different combinations of consistency levels for W2 and R3/R4.

Formal Specification of MR. We define a parameterized predicate mr?(A1,A2,A3,C) that holds
if the subsequent read O4 (R4 in this case) from client A3 returns the appropriate value required
for MR to hold. This can happen in three different ways: (1) if the preceding read O3 (R3 in this
case) gets the default value dft, any value returned by O4 is MR-consistent; (2) if O3 reads the
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Figure 5 Experimental Scenario of Statistical Model Checking of MR.

value V1 from client A1’s write O1 (W1 in this case), O4 has to return the value V1 or V2 (from
client A2’s write O2) to satisfy MR; and (3) if O3 returns V2, O4 needs to match it to guarantee
MR.

op mr? : Address Address Address Config -> Bool .

eq mr?(A1,A2,A3,< A3 : Client | store: ((O3,K,dft ,T3), (O4,K,V4,T4), ...),
... > REST) = true . --- case (1)

eq mr?(A1,A2,A3,< A1 : Client | store: ((O1,K,V1,T1), ...), ... >
< A3 : Client | store: ((O3,K,V1,T3), (O4,K,V1,T4), ...),

... > REST) = true .
eq mr?(A1,A2,A3,< A1 : Client | store: ((O1,K,V1,T1), ...), ... >

< A2 : Client | store: ((O2,K,V2,T2), ...), ... >
< A3 : Client | store: ((O3,K,V1,T3), (O4,K,V2,T4), ...),

... > REST) = true . --- case (2)

eq mr?(A1,A2,A3,< A2 : Client | store: ((O2,K,V2,T2), ...), ... >
< A3 : Client | store: ((O3,K,V2,T3), (O4,K,V2,T4), ...),

... > REST) = true . --- case (3)

eq mr?(A1,A2,A3,C) = false [owise] .

5.1.4 Consistent Prefix
Scenario. CP guarantees that a client will observe an ordered sequence of writes starting with
the first write to the system. Thus we design a scenario with six operations on two different keys7,
where four strictly ordered writes, W1, W2, W3 and W4, are interleaved on two keys, K1 and K2,
and issued by a single client, and two strictly ordered reads, R1 (on K1) and R2 (on K2), by the
other client. Figure 6 shows the experimental scenario for CP. The issuing latency L between W1
and R1 is tunable, which can vary the issuing time of R1. We choose to experiment with the same
consistency level for the writes/reads to evaluate different combinations of consistency levels.

Formal Specification of CP. We define a parameterized predicate cp?(A1,A2,C) that holds if
the successive reads O5 (R5 in this case) and O6 (R6 in this case) from client A2 return an ordered
sequence of writes. This can happen in three different ways: (1) if O5 gets the default value dft1
for K1, O6 can only read the default value dft2 for K2 to satisfy CP; (2) if O5 returns the value
V1 from client A1’s write O1 (W1 in this case), O6 has to return the value V2 or dft2 (either case

7 For reads on a single key in a system like Cassandra where writes completely overwrite previous values of a
key, eventual consistency reads can guarantee consistent prefix. So we consider reads on multiple keys [37].
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Figure 6 Experimental Scenario of Statistical Model Checking of CP.

guarantees an ordered sequence of writes); and (3) if O5 reads the value V3 from the write O3 (W3
in this case), both V2 and V4 are CP-consistent.

op cp? : Address Address Config -> Bool .

eq cp?(A1,A2,< A2 : Client | store: ((O5,K1,dft1,T5),
(O6,K2,dft2,T6), ...), ... > REST) = true . --- case (1)

eq cp?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), ...), ... >
< A2 : Client | store: ((O5,K1,V1,T5), (O6,K2,dft2,T6),

...), ... > REST) = true .
eq cp?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), (O2,K2,V2,T2), ...), ... >

< A2 : Client | store: ((O5,K1,V1,T5), (O6,K2,V2,T6),
...), ... > REST) = true . --- case (2)

eq cp?(A1,A2,< A1 : Client | store: (..., (O2,K2,V2,T2), (O3,K1,V3,T3), ...), ... >
< A2 : Client | store: ((O5,K1,V3,T5), (O6,K2,V2,T6),

...), ... > REST) = true .
eq cp?(A1,A2,< A1 : Client | store: (..., (O3,K1,V3,T3), (O4,K2,V4,T4), ...), ... >

< A2 : Client | store: ((O5,K1,V3,T5), (O6,K2,V4,T6),
...), ... > REST) = true . --- case (3)

eq cp?(A1,A2,C) = false [owise] .

5.1.5 Causal Consistency

Scenario. CC guarantees that the effects are observed only after their causes: reads will not see
a write unless its dependencies are also seen. Thus we design a scenario with a write and a read
from two different clients to bridge them by causality. Figure 7 shows the experimental scenario
for CC. We consider a scenario with five operations on two different keys, where client C1 issues
two strictly ordered writes, W1 and W2, on the keys, K1 and K2, respectively, and the other
client C2 first issues a read on K2, and then issues two consecutive operations W4 and R5 on K1.
Note that, although operations from the same session of a client are causally ordered (e.g., W1
and W2), we check in this scenario causality that arises when the first read R3 returns the value
of W2, establishing the causality between W2 and R3, and thus W1 and W4 (i.e., corresponding
to the definition of CC (Section 3), we check from client C2’s perspective if there is a serialization
of all five operations that respects the causality order). The issuing latency L between W1 and
R3 is tunable, which can vary the issuing time of R3. We choose to experiment with the same
consistency level ONE for W1, W2 and R3 to evaluate different combinations of consistency levels
for W4 and R5.
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Figure 7 Experimental Scenario of Statistical Model Checking of CC.

Formal Specification of CC. We define for CC a parameterized predicate cc?(A1,A2,C) that
holds if O5 (R5 in this case) returns the value V4 from client A2’s write O4 (W4 in this case),
provided O3 (R3 in this case) reads the value V2 from client A1’s write O2 (W2 in this case);
otherwise, any value returned by O5 is CC-consistent, since no causality arises.

op cc? : Address Address Config -> Bool .

eq cc?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), (O2,K2,V2,T2), ...), ... >
< A2 : Client | store: ((O3,K2,V2,T3), (O4,K1,V4,T4), (O5,K1,V4,T5),

...), ... > REST) = true . --- causality arises

eq cc?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), (O2,K2,V2,T2), ...), ... >
< A2 : Client | store: ((O3,K2,dft2,T3), (O4,K1,V4,T4), (O5,K1,V5,T5),

...), ... > REST) = true . --- no causality

eq cc?(A1,A2,C) = false [owise] .

5.2 Analysis Results for Consistency Guarantees
We are now ready to present the analysis results for all those consistency models on both statistical
model checking and implementation-based evaluation. We compare the two strategies, TA and
TB, from two aspects: (1) if both show the similar trends as the latency increases; and (2) if one
provides better consistency than the other.

First, we define the following setting for our experimental scenarios of statistical model checking:
We consider a single cluster of 4 servers, and the replication factor of 3.
All replicas are initialized with default key-value pairs.
Each read/write can have consistency level ONE, QUORUM or ALL.
We consider the lognormal distribution for message delay with the mean µ = 0.0 and standard
deviation σ = 1.0 [9].
All consistency probabilities are computed with a 99% confidence level of size at most 0.01
(Section 2.3).

Note that for the rest of this paper we name each subscenario (TB/TA-OO/OQ/QO/. . . )
depending on the target strategy and the combination of consistency levels for the experimental
scenarios regarding the consistency models excluding SC. For simplicity, we let an operation occur
immediately upon its preceding operation from the same session (or client) finishes.

Regarding the experimental setup on the other hand, we deploy Cassandra on a single cluster
of 4 Emulab [41] servers within the same rack.8 The servers used were Dell r710 2U servers with

8 For a private cloud, Cassandra is typically deployed in a single data center with a single ring structure shared
by all its servers. The network latency effects will not impact our experiment results as all servers are in
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Figure 8 Probabilities of Satisfying SC by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

the following configuration: one 2.4 GHz 64-bit Quad Core Xeon E5530 Nehalem processor, 5.86
GT/s bus speed, 8 MB L3 cache, VT (VT-x, EPT and VT-d) support and 12 GB 1066 MHz
DDR2 RAM; the OS used was 64-bit Ubuntu 14.04 LTS, 3.13.0 kernel and Cassandra version was
1.2.10. We use YCSB [14] to inject read/write workloads. For RYW, MR, CP and CC tests, we
use two separate YCSB clients.9 Our test workloads are read-heavy (which are representative of
many real-world workloads such as Facebook’s photo storage [8]) with 90% reads, and we vary
consistency levels between ONE, QUORUM, and ALL. We run Cassandra and YCSB clients for fixed
time intervals (each client performs 20,000 operations) and log the results. Based on the logs
generated, we calculate the percentage of reads that satisfy various consistency models considered
in this paper. We perform binning on all the results to generate the issuing latency intervals.
The reason is that in our statistical model checking experiments we can specify the exact latency
interval between operations, but the same is impossible for a real deployment. From our real
deployment experiments, we get the probabilities for a continuous range of latency values, instead
of a discrete set as in the statistical model checking experiments. Thus we divide all the results
and perform binning to generate the issuing latency intervals. Note that other experimental
configurations such as the replication factor, consistency levels and message delay distribution
follow our setup for statistical model checking.

5.2.1 Analysis Results for SC
The left plot in Figure 8 shows the resulting probability of satisfying SC by statistical model
checking, where the probability (of R3 reading the value of W2) is plotted against the issuing
latency (L2) between them. Regarding TB, from the results (and intuitively), given the same
issuing latency, increasing the consistency level provides higher consistency; given the same
consistency level, higher issuing latency results in higher consistency (as the replicas converge,
a sufficiently later read (R3) will return the consistent value up to 100%). Surprisingly, QUORUM
and ALL reads start to achieve SC within a very short latency around 0.5 and 1.5 time units
respectively (with 5 time units for even ONE reads).

On the other hand, all observations for TB apply to TA in general. In fact, for QUORUM and ALL
reads, the two strategies perform almost the same, except that: (1) for ALL reads, TB provides

the same rack and the time difference between each pair of requests would be in the same range. While
showing scalability is not the goal of this paper, we wish to do larger scale experiments in the future. There
are resource challenges related to scaling the model-checking to larger scales (e.g., parallelizing it the right
way), and we hope to solve this in our future work.

9 Even if the tests allow a large number of YCSB clients, we set it to 2 to match our statistical model checking
experimental setting.
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Figure 9 Probabilities of Satisfying RYW by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

noticeably more consistency than TA within an extremely short latency of 0.5 time units; and (2)
for QUORUM reads, TB offers slightly more consistency than TA within 2.5 time units.

Based on these results it seems fair to say that both TB and TA provide high SC, especially
with QUORUM and ALL reads. The consistency difference between the two strategies results from
the overlap of R3 and W2. More precisely, since the subsequent read has higher chance to read
multiple versions of the key-value pair with lower issuing latency, TA, only relying on the version
itself, will return the matched value that is probably stale.

Regarding the implementation-based evaluation (the right plot in Figure 8), we show the
resulting, experimentally computed probability of strongly consistent reads against L2 (Figure 3)
for deployment runs regarding the two strategies (only for QUORUM and ALL reads). Overall, the
results indicate similar trends for the model predictions and real deployment runs (both plots
in Figure 8): for example, for both model predictions and deployment runs, the probability is
higher for ALL reads than for QUORUM reads regarding both strategies, especially when L2 is low;
consistency does not vary much with different strategies. Note that we observe the dips that break
the monotonic behavior of TB-ALL and TB-QUORUM at a lower value of L because it is possible
that the updated value from W2 has not reached all the replicas. With a higher value of L, we do
not observe any break from the monotonic behavior.

5.2.2 Analysis Results for RYW
Figure 9(a) shows the resulting probability of satisfying RYW, where the probability (of R3
reading the value of W2 or a more recent value) is plotted against the issuing latency (L) between
W1 and W4. From these results it is straightforward to see that scenarios (TB-OA/QQ/AO/AA)
guarantee RYW due to the fact “R3 + W2 > RF”. Since we have already seen that the Cassandra
model satisfied SC quite well, it is also reasonable that all combinations of consistency levels
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provide high RYW consistency, even with the lowest combination (O,O) that already achieves a
probability around 90%. Surprisingly, it appears that a QUORUM read offers RYW consistency nearly
100%, even after a preceding write with its consistency level down to ONE (scenario (TB-OQ)).
Another observation is that, in spite of the concurrent write from the other client, the probability
of satisfying RYW stays fairly stable.

Figure 9(c) shows the comparison of TA and TB regarding RYW, where for simplicity we
only list three combinations of consistency levels from R3’s perspective with W2’s consistency
level fixed to ONE (in fact, with W2’s consistency level increases, the corresponding scenarios
will provide even higher consistency). In general, all observations for TB apply to TA, and it
seems fair to say that both TA and TB offer high RYW consistency. The two strategies agree
on the combination (O,O). However, TA cannot offer higher consistency than TB in any other
scenario, with TA providing slightly lower consistency for some points, even though TA’s overall
performance is close to TB’s over issuing latency. One reason is that TA does not respect the
fact “R + W > RF” in general (e.g., two strictly ordered Quorum write and read cannot guarantee
RYW).

Regarding the implementation-based evaluation (Figure 9(b) and (d)), we show the resulting
probability of RYW-consistent reads against L (Figure 4) for deployment runs regarding two
strategies. Both the model predictions and deployment runs show very high probability of satisfying
RYW. This is expected since for each client the operations are mostly ordered, and for any read
operation from a client, we expect any previous write from the same client to be committed to
all replicas. For the deployment runs, we observe that we get 100% RYW consistency, except
for scenario (TB-OO), which matches expectations, since ONE is the lowest consistency level and
does not guarantee anything more than EC. This also matches our model predictions in Figure 9,
where we see that the probability of satisfying RYW for scenario (TB-OO) is lower compared
to other cases. In general the results indicate similar trends for the model predictions and real
deployment runs, however, we observe some dips for TA/TB-OO as ONE is the lowest consistency
level and does not provide a strict guarantee. Even though there are dips for certain values of L,
the dips still have at least the high probability value of 90%.

5.2.3 Analysis Results for MR
Figure 10(a) shows the resulting probability of satisfying MR, where the probability is plotted
against the issuing latency (L2) between W2 and R3. Again, it seems reasonable that all
combinations of consistency levels offer high MR consistency, even with the lowest combination
(O,O) that almost achieves a probability of 100%, and QUORUM reads gain more MR consistency
than ONE reads. Surprisingly, it appears that the probability only relies on the consistency level of
the reads, regardless of that of the concurrent write (W2): (O,O)/(O,Q) and (Q,O)/(Q,Q) with
ONE/QUORUM reads have nearly the same probability trend. Note that we do not plot ALL reads
because QUORUM reads already provide fairly stable probability of 100%.

Figure 10(c) shows the comparison of TB and TA regarding MR, where for simplicity we only
list three lower combinations of consistency levels (with W2’s consistency level increases, scenarios
(TB/TA-QQ) will actually offer even higher consistency). Generally, all observations for TB apply
to TA, and it seems fair to say that both strategies provide high MR consistency. TA’s overall
performance resembles TB’s over issuing latency, but TA provides slightly higher consistency for
some points.

Regarding the implementation-based evaluation (Figure 10(b) and (d)), we show the resulting
probability of MR-consistent reads against L2 (Figure 5) for deployment runs regarding two
strategies. Both the model predictions and deployment runs show high probability of satisfying
MR. For the deployment runs, we observe that we get 100% MR consistency as the issuing latency
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Figure 10 Probabilities of Satisfying MR by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

increases. For TA, the MR consistency fluctuates between 86% and 100%, but converges to 100%
as the issuing latency increases. Note that the scenarios where the MR consistency is less than
100% are (OO) and (QO) for both strategies, and their MR consistency percentages are less
compared to scenarios (QQ) and (OQ), which is expected.

5.2.4 Analysis Results for CP
Figure 11(a),(c),(e) show the resulting probability of satisfying CP by statistical model checking,
where the probability (of R5 and R6 observing an ordered sequence of writes) is plotted against
the issuing latency (L) between W1 and R5. By fixing the consistency level of writes, we can
see how the consistency level of reads affect CP consistency over issuing latency: surprisingly, it
appears that lower reads can achieve higher CP consistency. Specifically, ONE reads curve above
QUORUM reads that curve above ALL reads in terms of each strategy. The reason is that reads with
lower consistency level have lower latency (the interval between issuing time and finishing time for
a read request), giving rise to higher chance to observe consecutive writes. Instead, higher latency
reads allows more writes to reach the replicas during that interval, resulting in an inconsecutive
observation (e.g., one anomaly occurs when R5 returns the value of W1 while R6 reads the value
of W4).

We can compare the behaviors of TA and TB w.r.t. the choice of the three consistency levels:
compared to TA, TB (1) conforms for ONE reads, (2) provides strictly higher CP consistency for
QUORUM reads before some issuing latency, and, surprisingly, (3) gains more CP consistency only
before some issuing latency for ALL reads. The reason is that CP aims at guaranteeing an ordered
view of writes to the system instead of data freshness (e.g., R5 and R6 fetching W1 and W4
would be a CP-anomaly, though W4 is more recent than W2). Thus, after more and more writes
have taken effect at the replicas (as L increases), TA with ALL reads is more likely to return the
convergent value that respects the order.
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Figure 11 Probabilities of Satisfying CP by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

Note that all scenarios start with lower probability of satisfying CP (e.g., with ONE writes TB
can only provide a probability down to 60%) because, when reads and writes are highly concurrent,
reads would probably return the values of unordered writes.

Regarding the implementation-based evaluation (Figure 11(b),(d),(f)), we show the resulting
probability of CP-consistent reads against L (Figure 6) for deployment runs regarding two strategies.
The results indicate similar trends for the model predictions and real deployment runs. Both
the model predictions and deployment runs show high probability of satisfying CP as the issuing
latency L increases. For lower values of L, we observe CP consistency values between 60% and 80%,
and, as L increases, the CP consistency value also increases to 70%–90%, gradually converging to
100%.
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Figure 12 Probabilities of Satisfying CC by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

5.2.5 Analysis Results for CC

Figure 12(a) shows the resulting probability of satisfying CC, where the probability (of R5
returning the value of W4 provided R3 reads the value of W2) is plotted against the issuing latency
(L) between W1 and R3. It is reasonable that all combinations of consistency levels achieve high
CC consistency, even with the lowest combination (O,O) that provides a probability around 90%,
and reads with higher consistency level gain more CC consistency (e.g., scenario (TB-OA) curves
above scenario (TB-OQ) that curves above scenario (TB-QO/OO)). It is also straightforward to
see that, with the consistency level of the preceding write (W4) from the same client increases,
more consistency will be achieved (e.g., scenario (TB-QO) curves above scenario (TB-OO)). Note
that all scenarios except (TB-OA) start with a probability of 100%, and gradually drop down and
stabilize at a lower probability. The reason is that with a lower issuing latency there are fewer
chances for R3 to read the value of W2 (if R3 does not return the value of W2, no causality will
arise between these two operations) and therefore any value returned by R5 is considered to be
CC-consistent; with an increasing issuing latency, R3 will be more likely to fetch the value of W2,
which leaves the combination of consistency levels of W4 and R5 to be the only factor to affect
the consistency (that also explains why the probability of satisfying CC stays fairly stable after
some point).

Figure 12(c) shows the comparison of TB and TA in terms of CC, where for simplicity we only
list three lower combinations of consistency levels due to the fact “R5 + W4 > RF". Both strategies
achieve high CC consistency, and overlap for the combinations (O,O) and (O,Q). Regarding (O,Q),
TA’s performance resembles TB’s over issuing latency, and both surpass each other slightly for
some points.

Regarding the implementation-based evaluation (Figure 12(b) and (d)), we show the resulting
probability of CC-consistent reads against L (Figure 7) for deployment runs regarding two strategies.
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Both the model predictions and deployment runs show high probability of satisfying CC. For the
model predictions, we observe that (TA-OO) and (TB-OO) have the lowest CC-consistency values
around 90%, which is expected and also matches with our observations from the real deployment
runs. In general, we observe that we get 90% - 100% CC-consistent reads, independent of the
issuing latency.

5.2.6 Summary and Comparison
Our Cassandra model actually achieves much higher consistency (up to SC) than the promised EC,
with QUORUM reads sufficient to provide up to 100% consistency in almost all scenarios. Comparing
TA and TB, it seems fair to say that TA is not a competitive design alternative to TB in terms of
the consistency models considered in this paper except CP, even though TA behaves close to TB
in most cases; regarding CP, TA surpasses TB with ALL reads during a certain interval of issuing
latency.

Our model, including the alternative design, is less than 1000 lines of code and the time to
compute the probabilities for the consistency guarantees is 15 minutes (worst-case) on a 2.9 GHz
Intel 4-Core i7-3520M CPU with 3.7 GB memory. The upper bound for model runtime depends on
the confidence level of our statistical model checker (99% confidence level for all our experiments).

Both the model predictions and implementation-based evaluations reach the same conclusion:
Cassandra provides much higher consistency than the promised EC, and TA does not improve
consistency compared to TB in terms of the consistency models considered in this paper except
for CP where TA provides higher consistency than TB with ALL reads during a certain interval
of issuing latency. Note that the actual probability values from both sides might differ due to
factors like hard-to-match experimental configurations, the inherent difference between statistical
model checking and implementation-based evaluation10, and processing delay at client/server side
that our model does not include. However, the important observation is that the resulting trends
from both sides are similar, leading to the same conclusions w.r.t. consistency measurements and
strategy comparison.

Note that our experiments did not focus on the performance aspects of the TA and TB
approaches in Cassandra. Our goal in this paper is to show that results derived from model-
checking (using our model) agree reasonably well with experimental reality, e.g., see the comparisons
and matches between our implementation results and the model results. The paper shows that
this agreement holds true as far as various consistency models are concerned, and even if one
changes how timestamps are used in responding to queries (comparing TA and TB).

6 Related Work

6.1 Model-based Performance Analysis of NoSQL stores
The work in [31] presents a queueing Petri net model of Cassandra parameterized by benchmarking
only one server. The model is scaled to represent the characteristics of read workloads for
different replication strategies and cluster sizes. Regarding performance, only response times
and throughput are considered. The work in [20] benchmarks three NoSQL databases, namely
Cassandra, MongoDB and HBase, by throughput and operation latency. Two simple high-level

10 In general, implementation-based evaluation is based on a single trace of tens of thousands of operations (e.g.,
each YCSB client in our experiments performs 20,000 operations), while statistical model checking is based
on sampling tens of thousands of Monte-Carlo simulations of several operations (that can be considered as a
segment of the trace) up to a certain statistical confidence (e.g., our statistical model checking runs 40,000
Monte-Carlo simulations for the experimental scenario of CP which has only six operations).
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queuing network models are presented that are able to capture those performance characteristics.
Compared to both, our probabilistic model embodies the major components and features of
Cassandra, and serves as the basis of statistical analysis of consistency with multiple clients and
servers. Our model is also shown to be able to measure and predict new strategy designs by both
statistical model checking and by checking the conformance of the model checking results with
the code-based evaluation. Other recent work on model-based performance analysis includes [7],
which applies multi-formalism modeling approach to the Apache Hive query language for NoSQL
databases.

6.2 Experimental Consistency Benchmarking in NoSQL stores
The work in [32, 40, 10] proposes active and passive consistency benchmarking approaches
for distributed NoSQL key-value stores, where operation logs are analyzed to find consistency
violations. While these papers focus on consistency benchmarking using synthetic traces (e.g.,
generated using YCSB), the authors in [29] perform the first consistency benchmarking study of
a large-scale production system (Facebook TAO system). YCSB+T [17] benchmarks isolation
guarantees for NoSQL transactional databases, while the authors in [6] developed a benchmarking
suite for interactive social networking applications running on top of NoSQL databases. The
work in [5] proposes probabilistic notions of consistency to predict the data staleness, and uses
Monte-Carlo simulations to explore the trade-off between latency and consistency in Dynamo-style
partial quorum systems. Their focus is more on developing the theory of consistency models.
However, we focus on building a probabilistic model for a key-value store like Cassandra itself, and
our objective is to compare the consistency benchmarking results with the model-based predictions
from our statistical model checking.

6.3 Rewriting Logic-based Analysis of Cloud Computing Systems
The work in [26] presents a formal model of the popular distributed key-value store Cassandra,
and formally analyzes different consistency properties using Maude from a qualitative perspective.
The work in [24] looks into the consistency issue for Cassandra only in terms of SC and RYW from
a quantitative, statistical model checking perspective. This paper extends the previous results
by providing quantitative analysis of three new consistency models: monotonic reads, consistent
prefix and causal consistency. There is other recent work on rewriting logic-based analysis of
cloud computing systems, including, e.g., [25], which formalizes RAMP transactions and their
extensions and optimizations in rewriting logic and performs model checking verification of key
properties using the Maude tool; [21, 22], which uses Maude and Real-Time Maude to define a
formal model of Google’s widely-replicated data store Megastore (a hybrid between a NoSQL
store and a relational database) and to develop an extension of Megastore. These models were
simulated for QoS estimation and model checked for functional correctness; [36], which formally
models and analyzes availability properties of a ZooKeeper-based group key management service;
[18], which proposes and analyzes DoS resilience mechanisms for cloud-based systems; [42], which
gives formal semantics to the KLAIM language and uses it to specify and analyze cloud-based
architectures;

7 Conclusion

Our main focus in this paper has been twofold: (i) to predict what consistency properties Cassandra
can provide in actual practice by using statistical model checking; and (ii) to demonstrate the
predictive power of our model-based approach in key-value store design by comparing statistical
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model checking predictions with implementation-based evaluations. Our analysis is based on a
formal probabilistic model of Cassandra. To the best of our knowledge, we are the first to develop
such a formal model. The purpose of the alternative design was two-fold. First, we wanted to see if
the alternative approach i.e., the Timestamp Agnostic (TA) approach would give better accuracy
or not. Second, we also wanted to show that it was easier to try the alternative design with our
formal model. This is one of the key benefits of building formal models so that we can quickly try
alternative approaches and check their accuracy/performance. Our goal is not to do a systematic
performance analysis of TA and TB approaches in Cassandra that would require larger setups
not currently feasible for the statistical model checking analysis. Our goal instead is to show that
results derived from model-checking (using our model) agree reasonably well with experimental
reality, e.g., see the comparisons and matches between our implementation results and the model
results. The paper shows that this agreement holds true as far as various consistency models are
concerned, and even if one changes how timestamps are used in responding to queries (comparing
TA and TB).

In this paper we have only investigated consistency guarantees in a quantitative manner. A
natural next step would be to specify and quantify other performance metrics. Depending on
the perspective (key-value store providers, users, or application developers), different metrics
(e.g., throughput and operation latency) can be used to measure key-value store performance.
We also plan to refine our model in order to quantify those metrics. While showing scalability
is not the goal of this paper, we wish to do larger scale experiments in the future. There are
various resource challenges related to scaling the model checking to larger system sizes (e.g.,
parallelizing it in the proper way) that we plan to address and solve this in our future work. More
broadly, our long-term goal is to develop a library of formally specified executable components
embodying the key functionalities of NoSQL key-value stores (not just Cassandra), as well as of
distributed transaction systems [25]. We plan to use such components and the formal analysis of
their performance to facilitate efficient exploration of the design space for such systems and their
compositions with modest levels of effort and increased flexibility.
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