
EMSBench: Benchmark and Testbed for Reactive
Real-Time Systems∗

Florian Kluge†1, Christine Rochange2, and Theo Ungerer3

1 Department of Computer Science, University of Augsburg, Augsburg, Germany
fkuau@gmx.net

2 IRIT, Université de Toulouse, CNRS, France
http://orcid.org/0000-0001-7257-7114
christine.rochange@irit.fr

3 Department of Computer Science, University of Augsburg, Augsburg, Germany
ungerer@informatik.uni-augsburg.de

Abstract
Benchmark suites for real-time embedded systems
(RTES) usually contain only pure computations
that are often used in this domain. They allow to
evaluate computing performance, but do not repro-
duce the complexity and behaviour that is typical
for such systems. Actual RTES have to interact
with the physical environment, which is often re-
flected by code that is executed concurrently. In
this article, we present the software package EMS-
Bench that mimics such complex behaviour, and
highlight some of its use cases. The benchmark
code ems of EMSBench is based on the open-source
engine management system (EMS) FreeEMS. Addi-
tionally, EMSBench contains a trace generator (tg)

that provides input signals for ems and enables to
execute ems close to reality. We provide detailed
descriptions of the ems’s execution behaviour and
of trace generation. EMSBench can be used as
test or benchmark program to compare different
hardware platforms, e.g. in terms of schedulability.
Also, we use EMSBench as a benchmark for static
worst-case execution time (WCET) analysis and
compare these results to measurements performed
on existing hardware. Our results based on the
OTAWA WCET estimation tool show WCET over-
estimations by the static analysis from 11.9% to
41.1% depending on the complexity of the analysed
functions.

2012 ACM Subject Classification Computer systems organization → Real-time systems, Software and
its engineering → Real-time systems software
Keywords and Phrases Real-time benchmark, WCET Analysis, Engine Management System
Digital Object Identifier 10.4230/LITES-v004-i002-a002
Received 2016-07-29 Accepted 2017-05-08 Published 2017-07-07

1 Motivation

Benchmark programs are widely used to assess the performance of execution platforms and
development tools. In hard real-time computing domains, they also play an important role when
comparing tools for WCET analysis. Widely used, for example, is the Mälardalen Benchmark
Suite [4]. A drawback of this and similar suites is that the contained programs do not reproduce the
complexity of actual real-time systems. Usually, each program is a closed system that implements
only a single algorithm. In contrast, actual real-time software mostly consists of multiple interacting
modules. The modules are executed concurrently and may even interfere with each other, thus
mutually affecting each other’s timing behaviour. Also, real-time software usually is an open
system that interacts with processes in the physical world. It must react to physical events and

∗ Parts of this article have been published before in [10].
† Florian Kluge is now with Elektronische Fahrwerkssysteme GmbH.

© Florian Kluge, Christine Rochange, and Theo Ungerer;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 2, Article No. 2, pp. 02:1–02:23
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fkuau@gmx.net
http://orcid.org/0000-0001-7257-7114
mailto:christine.rochange@irit.fr
mailto:ungerer@informatik.uni-augsburg.de
http://dx.doi.org/10.4230/LITES-v004-i002-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de


02:2 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

its timing behaviour is heavily depending on the physical processes. Thus, there is also a need for
system benchmarks that enable a more global assessment of real-time platforms. However, only
few works exist that tackle this need.

In our view, a system benchmark could be employed in multiple manners: (1) During platform
(e.g. processor + operating system) development, it may act as a test program to investigate
functional aspects of a platform. When development is finished, the system benchmark will be
used for (2) an experimental evaluation of important aspects of the system. This could be, e.g.,
the evaluation of operating system mechanisms, schedulability analysis, or response-time analysis
(RTA). Finally, the program can be used as a (3) benchmark for the evaluation of WCET analysis
tools. Thus, it would be integrated in the whole development process.

This work is guided by the following requirements:
Complexity. The overall behaviour of the program shall arise from the interaction of multiple

modules. These modules should be scheduled independently from each other.
Reactivity. The program shall react upon external events. Reaction times should be constrained

by deadlines.
Ease of Use. The program should be as easy to use as possible. Thus its potential for a widespread

use would be increased.
When considering actual RTESs, it becomes obvious that there must be a tradeoff between the
first two requirements and the last one. Real RTESs may employ a large variety of sensors to
monitor the physical world. The software can consist of hundreds of tasks. So while being both
complex and reactive, we guess such a software would never be easy to use. For the purpose of
this work, we set our focus differently: We aim to have a program that requires as few as possible
sensor inputs, but still exhibits as much as possible of its original dynamic behaviour.

The software package EMSBench is based on the open source EMS FreeEMS1. We have
stripped down the FreeEMS software such that it requires only positional signals of the crankshaft
as inputs. Additionally, we developed a testbed for EMSBench that generates these input signals
and thus allows to execute the benchmark program. EMSBench is available for download [2]
at GitHub under the conditions of the GNU GPL. The benchmark code derived from FreeEMS
consists mainly of multiple interrupt service routines (ISRs) that interact among each other to
control fuel injection and ignition in a spark ignition engine. Thus, EMSBench exhibits some of
the complexity and reactivity of a real use-case application, even though not on an industrial
scale. We balance these properties against an easy porting to and employment on other hardware
platforms.

In this article, we present the software package EMSBench and examine some of its use-cases.
Therefore, we provide a detailed characterisation of the code’s structure and execution behaviour.
This information is used to ease flow analysis in static WCET estimation which we demonstrate
using the OTAWA toolset [1]. Additional use-cases are execution time measurements and the
schedulability/response-time analysis for tasks. Execution time measurements are derived from
realistic execution traces on two hardware platforms.

We proceed as follows: We describe FreeEMS in Section 2, and the EMSBench software package
in Section 3. Possible uses of the benchmark (execution time measurements, static analysis of
the worst-case execution time, analysis of task interferences) are discussed and experimented
in Section 4. In Section 5, we review existing benchmarks and discuss how they compare to
EMSBench. We conclude this article in Section 6.

1 http://freeems.org/

http://freeems.org/


F. Kluge, C. Rochange, and T. Ungerer 02:3

2 FreeEMS

FreeEMS is an open source engine management system for four-stroke spark-ignition engines. It is
designed for execution on a 16-bit microcontroller from the Freescale HCS12X family. Hitherto, it
was deployed successfully to over 20 different engines. We use version 0.1.1 of FreeEMS as base
for this work. Although newer versions are available, the dependencies between the individual
modules are recognisable more clearly in version 0.1.1. Furthermore, the newer version is split in
many more modules to be applicable more universally. For the purpose of our work using the
newer version thus would only have increased the required effort, but would not have changed the
outcome. FreeEMS is designed such that it can be used with different types of rotary encoders.
For this work, the implementation for a 24/2 camshaft encoder from Denso for engines with
intake-manifold fuel injection was chosen. In the following discussions, the term FreeEMS shall
refer to this specific version of the FreeEMS software.

2.1 Spark Ignition Engine and Engine Management
Before we explain the structure of FreeEMS, let us recall the operation of a spark ignition engine.
Each combustion chamber (cylinder) of the engine is terminated downwards by a movable piston.
Connecting rods join all pistons to the crankshaft. Thus, the vertical movement of the pistons is
converted to an axial movement of the crankshaft. The cylinder housing has at least two valve
openings, one as intake for air and fuel, the other as outlet for exhaust. The valves are controlled
mechanically by two camshafts. These move synchronously with the crankshaft, but only at half
its speed. A spark plug is placed in each cylinder head. The inlet valve discharges into the intake
system.

One vertical movement of a piston resembles one stroke, during which the crankshaft moves
by 180°. A full engine cycle consists of four strokes which corresponds to a movement of the
crankshaft by 720°. During the first stroke, the piston moves downwards and the inlet valve is
open. The cylinder ingests air that is enriched with fuel through an injection valve. During the
following upward movement of the piston during the second stroke, the mixture of air and fuel is
compressed. All valves are closed now. The third stroke is initiated by spark at the spark plug.
The resulting combustion leads to a downward movement of the piston. During the fourth stroke,
exhaust is diverted from the cylinder through the outlet valve by the upward movement of the
piston.

The opening times of the injection valves and the ignition times are controlled by the EMS.
The calculations of the EMS are based on the positions of crank- and camshafts which are captured
with encoders. The duration of injection is mainly influenced by the state of the throttle position,
and additionally by air pressure and temperature. The ignition time, i.e. when the spark is
produced, depends on the position of the crankshaft and the current speed. It is calculated
such that the piston of the cylinder is near its top dead point when the air/fuel mixture ignites.
Additional sensors are used to capture, e.g., temperature and air pressure in some components of
the engine.

2.2 Interfacing with the Physical World
Like any other EMS [6, 23], FreeEMS utilises sensors and actuators to interact with the engine
and the car’s driver. The driver’s command is recognised through the throttle position. Several
temperature and pressure sensors provide information about the current state of the engine and the
environment, e.g. monitoring of exhaust gas oxygen allows to draw conclusions about the current
combustion behaviour. The data collected from these sensors mainly influences the calculation

LITES



02:4 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

of injection and ignition parameters, e.g. the amount of fuel that is injected in each cycle. Most
sensors are connected to A/D converter (ADC) channels of the microcontroller on which FreeEMS
is executed. In total, FreeEMS currently uses 11 ADC channels.

For further monitoring, and also to set outputs in time, FreeEMS uses the enhanced capture
timer (ECT) of the HCS12X microcontroller. The ECT has a global counter and 8 channels
that can either act as input capture (IC) or output compare (OC). The counter is incremented
continuously. If a channel is configured for input capture mode, it monitors an input pin. On
the configured event, e.g. if the input level on the pin toggles, the current value of the global
counter is stored in a register, and an interrupt request (IRQ) is generated. If a channel is used
in output compare mode, a timestamp calculated by software is stored in a register. When the
global counter equals the timestamp, an output action (set high/low, toggle) is performed on a
pin and also an IRQ is generated.

The dynamic behaviour of the engine is monitored with at least one rotary encoder mounted to
the crank- or camshaft. Certain angular positions trigger reactions of the EMS that control actual
fuel injection and ignition. The 24/2 camshaft sensor possesses 24 equally spaced primary teeth
and 2 equally spaced secondary teeth that generate corresponding signals during each camshaft
revolution. The movements of crank- and camshaft are coupled together. The camshaft revolves
with half the speed of the crankshaft. Insofar, the 24/2 camshaft sensor is equivalent to a 12/1
crankshaft sensor. To achieve a low latency and a high accuracy of the EMS reactions, the signal
lines of the encoder are connected to two IC channels of the microcontroller’s ECT. If a tooth
is detected, the IC channel automatically saves the current time stamp from the ECT’s global
counter and raises an IRQ that is handled by one of the FreeEMS ISRs.

The main actuators that are controlled by the EMS are the fuel injection valves, and the spark
coil and plugs. FreeEMS performs fuel injection in a semi-sequential manner, i.e. the injection
valve for any cylinder opens twice per engine cycle and injects fuel into the cylinder’s intake system.
The amount of fuel that is injected is regulated through the opening times of the valves. The
injection valves are controlled through OC channels of the ECT. Opening and closing is performed
automatically by the OC channels at times that are set by FreeEMS. To trigger fuel combustion,
FreeEMS uses wasted-spark ignition: In any cylinder, two sparks are produced during each engine
cycle, but actually only one triggers a combustion. This approach allows to simplify the software
and hardware for ignition distribution. The ignition channels are connected to regular I/O pins of
the microcontroller. The pins are controlled by ISRs that are triggered by periodic interrupt timer
(PIT) units. The PITs are set anew for each new ignition. FreeEMS can generate a tachometer
signal to display the engine’s current revolution speed. Finally, FreeEMS provides a serial (UART)
interface for monitoring and tuning of the EMS.

The minimum hardware requirements to execute FreeEMS on a microcontroller can be summed
up as follows: The controller must possess at least 8 capture/compare (C/C) channels that
can access a global counter. Two periodic interrupt timers are needed for further control of
I/O operations. Additionally, FreeEMS uses another timer to control the execution of periodic
tasks. The original implementation uses the real-time interrupt functionality of the HCS12X
microcontroller. Concerning I/O, at least 25 pins are required in total. 11 pins must be accessible
by an ADC unit. Each of the 8 C/C channels must be connected to a separate I/O pin, 2 for
input from the rotary encoder, and 6 for control of the injection valves. Another 6 output pins
are needed for driving the ignition channels.

2.3 Operation of FreeEMS
The most important relationships between FreeEMS and the underlying hardware are shown in
Figure 1. Two ECT channels (0 and 1 in the figure) are configured as IC. The remaining ECT



F. Kluge, C. Rochange, and T. Ungerer 02:5

IRQ
Set action
Optional set action

0 1 2 3 4 5 6 7ECT
channels

0 1
PIT

PrimaryRPMISR

InjectorXISRInjectorXISR

SecondaryRPMISR

IgnitionDwellISR

IgnitionFireISR

24/2
encoder

Injectors 1-6Injectors 1-6Injectors 1-6 Sparks 1-6Sparks 1-6Sparks 1-6

I/O Pins

Figure 1 Important FreeEMS IRQs and their interaction with with the µC peripherals and external
sensors/actuators.

channels are configured as output compare to trigger up to 6 injection valves. The IC channels
monitor 24/2 encoder mounted to the camshaft. The interrupts generated by these channels
are used by FreeEMS to determine the speed and position of the camshaft. Based on this and
further data (derived from the sensors connected to the ADCs), times for opening the injection
valves are calculated and set in the respective channels. Once an injection valve is opened through
its channel’s timer expiring, it triggers an ISR that reconfigures the channel for closing of the
valve. Similar actions are performed for ignition, i.e. dwelling and firing of the spark plugs. Here,
the PIT of the microcontroller is used. The ignition pins are completely controlled by software
(IgnitionDwellISR, IgnitionFireISR).

The timing requirements for the single ISRs can be derived from their chain of effects: the
PrimaryRPMISR and the InjectionXISRs are responsible for (re-)activating timers, based on
calculations they perform. Obviously, these calculations must be finished before the calculated
timer values expire. Similar requirements can be found in the IgnitionXISRs, which may prepare
their next activation. Numbers about the execution times and the timer values will be presented
in Section 3.4.2, where we discuss the execution behaviour, and in Section 4.1, where we present
execution time measurements.

2.4 Code Structure

The code of FreeEMS can roughly be divided into functions that are performed inside a loop
in the main function, and a number of ISRs. The modules communicate via global variables,
critical sections are protected by disabling interrupts. Figure 2 gives an overview of the most
important modules and their dependencies. First, it shows which modules access global data
(reading/writing). Second, trigger dependencies are indicated in the figure. These can be either
the setting of an interrupt timer, or the use of global flags, if functions in the main loop are
concerned.

LITES



02:6 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

Injection active:
set deactivation

Injection not active:
(set queued activation)

InjectorXISR()

Read sensors

Switch
sensor data

Calculate
fuel/ignition

Switch
control data

COM

main()

Fuel/Ignition
Constants

1ms

RTIISR()

Injection IgnitionDwell IgnitionFire

PrimaryRPMISR()

Injection
Data

IgnitionDwell
Data

IgnitionFire
Data

Charge
Ignition Coil

IgnitionDwellISR()

Activate Ignition

IgnitionFireISR()

RPM
Data

Calculate RPM

SecondaryRPMISR()

Data access Set IRQ trigger Set trigger flag

Figure 2 Structure and dependencies between ISRs and main function tasks in FreeEMS; red frames
indicate critical sections during which IRQs are disabled.

2.4.1 main

After having initialised the whole EMS, the main function executes an infinite loop. Inside the
loop, three tasks are performed:
1. If demanded from other modules, sensors are read. The demand is signalled by a flag in a

global variable. The snapshot of all sensors is stored in a data structure. To ensure consistency
of the structure and a low latency between the single readings, this task is a critical section
during which interrupts are disabled. Reading of new sensor data automatically triggers the
second task.

2. If new sensor data has been read, the sensor data set is switched inside a critical section with
interrupts disabled.

3. Fuel and ignition parameters are calculated based on new sensor data. Both input and output
data structures are allocated twice to ensure that always one structure with consistent data is
available. The input data structure is filled by the previous task in the main function. Switching
between the input (resp. output) structures is performed at the beginning (resp. end) of this
task. Both operations are critical sections that are protected by disabling interrupts.

4. If new parameters have been calculated, the parameter data set is switched inside a critical
section with interrupts disabled.

5. Requests that were received over the serial interface are handled. The requests are used for
debugging, monitoring and tuning of the system. This task can be interrupted any time. It is
not covered by the work at hand and will be ignored in the following considerations.

The code in the main function specifies low-priority tasks, as these can be interrupted any time
(except during critical sections) by an ISR.



F. Kluge, C. Rochange, and T. Ungerer 02:7

2.4.2 PrimaryRPMISR

The PrimaryRPMISR is bound to an IC channel of the platform’s ECT. It is triggered by each
primary pulse of the rotary encoder, i.e. it is executed 24 times each camshaft revolution. It
counts the number of primary pulses since the last secondary pulse. The counter is used together
with the SecondaryRPMISR to ensure synchronism between engine and EMS (see Section 2.4.3). If
a loss of synchronism due to losses of primary or secondary pulses is detected, the ISR terminates
immediately. Else, each second pulse, several control tasks are performed: (1) Injection times are
calculated and the OC timer of the relevant injection channel is set. If another injection is already
pending for the channel, the event is queued for evaluation by the InjectorXISR (see 2.4.4).
(2) Times for charging of the ignition coil (IgnitionDwellISR) and triggering of the ignition
(IgnitionFireISR) are calculated. If no other ignition events are pending, PITs for both events
are set directly. Else, the times are put into queues that are handled by the IgnitionDwellISR
resp. IgnitionFireISR.

2.4.3 SecondaryRPMISR

A second IC channel of the ECT activates the SecondaryRPMISR any time a secondary pulse from
the rotary encoder is captured. The ISR’s main task is to ensure synchronism between the engine
and the EMS. This is achieved by checking whether the correct number of primary pulses has
arrived since the last secondary pulse. For the 24/2 rotary encoder, this means that between any
two secondary pulses 12 primary pulses must occur. If loss of synchronism is detected, a flag is set
to signal this to the PrimaryRPMISR. Additionally, the SecondaryRPMISR calculates the current
revolution speed of the engine.

2.4.4 InjectorXISR

FreeEMS supports up to 6 injection channels. Each injection channel X is handled by a separate
InjectorXISR (with X = 1, 2, . . . , 6), which in turn is bound to a separate OC channel of the ECT.
Activation and deactivation of the injection valve is performed automatically when the associated
interrupt is triggered. If injection was activated when the ISR is released, the time for deactivation
is determined and the channel is configured appropriately. Upon deactivation, the ISR checks
whether another injection event is queued for this channel. If necessary, it sets the timer anew.

2.4.5 IgnitionDwellISR

The IgnitionDwellISR is responsible for charging of the ignition coil. This is done by activating
the power supply of the relevant ignition channel. If further IgnitionDwell events are queued, the
associated PIT channel is restarted with a new offset, else the channel is deactivated.

2.4.6 IgnitionFireISR

Actual ignition is triggered through the IgnitionFireISR. It deactivates the power supply of
the ignition coil which leads to an immediate discharge. The discharge results in a spark at the
associated spark plug. If further IgnitionFire events are queued, the associated PIT channel is
restarted with a new offset, else it is deactivated.

2.4.7 RTIISR

The RTIISR manages the execution of tasks that must be performed periodically. It implements
intervals of 1ms, 100ms, 1 s, and 60 s. The RTIISR is released each 1/8 ms to accommodate also

LITES



02:8 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

for this interval if need should arise. Depending on internal counters, it decides whether a task of
one of the implemented intervals must be executed. Task execution can either take place within
the RTIISR, or the ISR sets corresponding flags to trigger the execution inside the main loop. In
the current implementation, only each 500ms (via the 1ms part of the RTIISR) a flag is set to
trigger sampling of the ADC channels in the main loop.

2.4.8 Further ISRs
The TimerOverflow ISR extends the maximum time span that can be measured with the ECT.
The 16-bit counter of the ECT is configured to be incremented each 0.8 µs. An overflow occurs
after ≈ 52 ms. On each release, the TimerOverflow ISR increments an additional 16-bit counter,
thus extending the counter effectively to 32 bits. An overflow of the thus available time span of
≈ 57min is handled appropriately.

The LowVoltageISR is currently only used for diagnostics and counts the frequency of low
voltage events. The ModDownCtrISR generates a tachometer signal. These three ISRs yield only a
minor contribution to the overall behaviour and therefore are ignored in the following analysis.

2.5 Interaction between ISRs
The interaction between the important ISRs and hardware units is depicted in Figure 1. The
PrimaryRPMISR is the most important ISR in FreeEMS. Supported by the SecondaryRPMISR, it
has exact knowledge about the crankshaft’s position and speed, and thus can calculate the times
for fuel injection and ignition. By setting the relevant timers, it controls the execution of the
injection and ignition ISRs (continuous lines in Figure 1). If there are still pending events for the
timers, the events are queued instead. In this case, the timers are set by the corresponding ISRs
themselves as soon as the pending event occurs (dashed lines). Furthermore, the PrimaryRPMISR
can trigger a recalculation of the injection and ignition parameters that is performed in the main
loop. Reading of sensor data inside the main loop is triggered only by the RTIISR each 500
milliseconds, also leading to a recalculation of the injection and ignition parameters.

3 EMSBench

In this section, we present the software package EMSBench in detail. First, we describe the
changes we made to the FreeEMS code. To execute the code successfully, signal traces must be
generated, which we will discuss in Section 3.2. Furthermore, we explain how EMSBench can be
ported to other hardware platforms, and discuss the timing behaviour of the single modules.

3.1 Code Changes
The FreeEMS code was adjusted to provide a preferably simple program that still exhibits a
behaviour that is as close to the original one as possible. The resulting implementation will be
termed ems in the following. Most accesses to input devices (see Section 2.2) were replaced by
initialised constants. Only the input signals of the rotary encoder were kept as they influence
code execution significantly. By triggering the PrimaryRPMISR, they also trigger the ISRs for
injection and ignition indirectly. The corresponding output signals are produced and can be
tapped from the associated pins. The input signals from the rotary encoder can be provided by a
trace generator that emulates arbitrary driving cycles (see Section 3.2). Due to all other input
values being constant, we expect no variations in the injection times. Ignition times should vary
with the speed of the engine. Thus, EMSBench can only reproduce an abstract variant of an
EMS’s actual behaviour.



F. Kluge, C. Rochange, and T. Ungerer 02:9

Running

ϕ(t)mod 1
nP

= 0/OP

ϕ(t)mod 1
nS

= 0/OS

Input: ϕ(t) ∈ R+

Output: OP ∈ {absent, present}
OS ∈ {absent, present}

Figure 3 Behaviour of the crankshaft rotary encoder.

Portability of the ems to arbitrary platforms is enabled by the definition of a hardware
abstraction layer (HAL). The HAL defines interfaces that are used by ems to control the various
hardware timers and capture/compare channels. It also declares the ems functions that must be
called by platform-specific ISRs that are part of the HAL. Currently, HAL implementations for
the STM32F4-Discovery platform using an ARM Cortex-M4, and a custom FPGA-based Nios II
platform are available.

3.2 Trace Generation
To run the EMSBench benchmark program in a meaningful manner, it needs signal traces that
emulate the behaviour of the 24/2 camshaft sensor. We provide a trace generator that generates
these signals based on driving cycles. Such driving cycles are used to perform reproducible and
comparable experiments with cars. For example, the New European Driving Cycle [13] is widely
used to estimate cars’ fuel consumption. A driving cycle consists of multiple phases, which can, in
turn, consist of one or multiple operations. Acceleration, initial and terminal velocity, duration,
and used gear are given for each operation.

Signal generation in EMSBench is divided in two components: A preprocessor (tgpp) converts
the driving cycle data into a crank shaft cycle. It was introduced because car movement cannot
be directly related to crankshaft movement in all cases. For example, if the clutch is open, car
and crankshaft move independently from each other. Actual signal generation (tg) executes the
crankshaft cycle and generates the corresponding signals on which the ems must react. In the
following, we first describe the model underlying the signal generation, and then its implementation.

3.2.1 Model
The relevant control signals are generated by a rotary encoder that monitors the crankshaft. The
variant of FreeEMS used in this work uses a 24/2 rotary encoder that monitors the camshaft.
This is equivalent to a 12/1 rotary encoder monitoring the crankshaft, which runs with twice
the speed of the camshaft (see Section 2.1). Figure 3 shows a model of the rotary encoder as a
real-time automaton. The current angle of the crankshaft ϕ(t), measured in revolutions of the
crankshaft, is used as input. Depending on the number of primary and secondary teeth, nP and
nS , appropriate primary and secondary signals OP and OS are generated at certain times.

The behaviour of the crankshaft is modeled in Figure 4. This model evolves current angle
ϕ(t) and angular speed ω(t). If a new angular acceleration is set via the input αN , the values for
angular position and speed evolved so far are stored. The current time is used as new time offset
t0. To simplify the model, we assume that the crankshaft initially rotates with idle speed ωI .

When combined, both models describe the signal generation by crankshaft and rotary encoder.
To emulate the signal generation, we have to calculate the concrete signal times from the models
and a given driving cycle. Therefore, angular position ϕ(t) and speed ω(t) must be evolved based
on the current angular acceleration α.

LITES



02:10 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

Running
ϕ(t) = 1

2α(t− t0)2 + ω0(t− t0) + ϕ0
ω(t) = α(t− t0) + ω0

ω0 := ωI

ϕ0 := 0
α := 0
t0 = 0

αN/-
α := αN , ω0 := ω(t), ϕ0 := ϕ(t), t0 := t

Input:
αN ∈ R ∪ {absent}
Output:
ω(t) ∈ R
ϕ(t) ∈ R+

Variables:
α ∈ R
ω0, ϕ0, t0 ∈ R+

Figure 4 Behaviour of the crankshaft.

3.2.2 Preprocessor
The preprocessor tgpp requires two files as input. The first file contains the driving cycle that
shall be emulated. The second file describes the car parameters that are needed to translate from
car speed to angular speed of the crankshaft. These are the dimensions of the tyres, and the
transmission ratios of the gearbox, axles and drive shaft. For idle phases, the idle speed of the
engine and the acceleration with which the engine assumes this speed are given. Additionally,
the file contains data that is directly passed on to signal generation. These are the number of
primary teeth of the rotary encoder, and the angular distance between the secondary tooth and
the preceding primary tooth. We assume that only one secondary tooth exists.

tgpp creates one or multiple crankshaft phases for each operation of the driving cycle. A
crankshaft phase is described by its duration and the angular acceleration that acts on the
crankshaft. We assume that the angular acceleration is constant during a phase. The translation
of one operation into a single crankshaft phase is only possible, if the engine is idle, the car drives
with constant speed, or accelerates or decelerates with closed clutch and set gear. The following
operations are split into multiple crankshaft phases:
Driveaway from standstill is performed by slowly engaging the clutch. For simplification, we

assume that the engine runs with its idle speed until the clutch is fully closed (first phase).
The time of the full closure is calculated from the acceleration of the operation such that the
car speed resembles the idle speed of the engine. In a second phase, the engine is accelerated
as required by the end speed of the operation.

On a gear change the clutch is first opened, and engine speed converges to the idle speed. Then
the gear is changed, and the clutch is closed again. For simplification, we assume that the
opening of the clutch happens instantaneously at the beginning of the operation, and that
during the operation no car speed is lost. So, concerning the crankshaft we can identify two
intervals initially. For further simplification, we assume that each of these takes exactly one
half of the duration of the operation. At the start of the first interval, the clutch is opened,
and we assume that throttle control is free. The crankshaft speed converges to the idle speed
following the idle acceleration. If the idle speed is reached before the end of the interval, we
add another phase during which the angular acceleration α = 0. During the second interval,
the clutch is slowly being closed. We translate the interval to a phase where α is set such that
the angular speed of the crankshaft at the end of the phase resembles the car speed of the
operation, assuming that the throttle is being pressed by the driver.

Deceleration with open clutch is translated to one or two phases, depending on the initial angular
speed ω0. During the first phase, the idle acceleration acts on the crankshaft. If the crankshaft
reaches its idle speed before the end of the operation, we add another phase with α = 0 and
appropriate duration to span the remaining time.



F. Kluge, C. Rochange, and T. Ungerer 02:11

The single phases are stored as an array in a C source file. This file also contains additional
constants that are important for signal generation, e.g. information about the rotary encoder, or
idle speed. The file is then compiled, and linked with the code of the actual signal generator tg.

3.2.3 Signal Generation
The aim of the signal generator tg is to generate primary and secondary signals as they would
be generated by an actual crankshaft sensor when a driving cycle is performed. tg is executed
on an embedded platform. Its task is to evolve angular speed ω(t) and position ϕ(t) according
to the model presented previously, and to generate the primary and secondary signals at the
appropriate times. For the calculations involved, please refer to the tg documentation [20]. We
assume a perfect car driver who follows the operation cycle exactly. However, the throttle position
is currently disregarded in EMSBench and assumed to be constant. Signal generation itself uses
two OC channels of the embedded platform. The channels and associated ISRs are configured
such that at the activation of the channel the pin is activated (logic 1). Simultaneously, the
channel is reconfigured such that the pin is deactivated (logic 0) after a short time. Setting of the
activation times for all channels is exclusively performed by the ISR for the primary channel (see
Algorithm 1) when the channel is deactivated. The sole task of the ISR of the secondary channel
is to set the channel’s deactivation time. Additionally, the ISR for the primary channel has the
following tasks:

After each full revolution, ϕ(t) is re-normalised to 0. Thus, we can keep the value of the
variables in a range with high accuracy. Simultaneously, the time counter is reset and the
current angular speed ω(t) is stored in ω0.
Phase changes are only performed after full revolutions, i.e. when the primary tooth at ϕ(0)
was released. This leads to small deviations between model and implementation (less than 1
revolution per phase change), which can affect only very short phases significantly. During
a phase change, some parameters are recalculated which are used for the calculations of the
succeeding activation times.
The secondary tooth is placed between the third and the fourth primary tooth at φS ∈
[2∆P , 3∆P ). Thus, we achieve good dispersal of the computing load of the primary ISR. This
is illustrated in Figure 5, where the secondary tooth is released somewhere in the shaded
area between P2 and P3. The ISR calculates on each second call (when the channel is
deactivated, downward arrows) the next activation time. When it handles the first primary
tooth P0, it performs additionally the re-normalisation, and, if necessary, the phase change.
Furthermore, we require that for the calculation of the secondary tooth as much time is available
as possible. This time is bounded by the distance between two primary teeth. Thus, the
secondary calculation must be finished before the primary tooth preceding the secondary tooth
is activated. Actually, the secondary tooth may be placed also between later primary teeth,
but it should be avoided that the corresponding calculation coincides with renormalisation
and phase change.

Similar to ems, the implementation of tg consists of two parts: A platform-specific abstraction
layer provides a generic interface for managing the hardware units. All calculations are performed
in a platform-independent application layer.

3.3 Adopting EMSBench
To execute ems, the target platform must have a timer device with at least 8 capture/compare
channels that can access a common counter register. Additionally, three timers are required with a
freely configurable activation interval. At least two pins must be connectable to capture/compare

LITES



02:12 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

t

Primary
teeth

Secondary
tooth

P0

C

P1

C

P2

C

P3

C

P4

CR P S

Calculate and set
release time

Figure 5 Timing for teeth calculations; = activation of output pin and first call to ISR; = deactivation
of output pin and second call to ISR; C = Calculation for next primary tooth; R = Renormalisation; P =
Phase change (optional); S = Calculation for secondary tooth.

channels, such that the signals of the trace generator can be routed to the correct device. For
the execution of the trace generator, a timer with at least two compare channels and a common
counter is required.

For all hardware-related functions we have defined a HAL that provides a generic interface for
ems and tg. When porting EMSBench to a certain platform, only the relevant HAL functions
have to be implemented. Due to the widespread use of 32-bit architectures, we have chosen such
one for the implementation of our prototype. In a first step we have implemented EMSBench
on the STM32F4-Disovery platform from ST Microelectronics. This cheap board contains a
STM32F407VGT6 microcontroller, which is based on a ARM Cortex-M4 [19]. The Cortex-M4
implements the ARMv7 instruction set architecture (ISA). The microcontroller has several C/C
timers with each providing up to four C/C channels. To accommodate the requirements of
EMSBench, several C/C timers and their counters are configured to run synchronously with a
common clock. Our second implementation of the HAL is aimed at a self-designed FPGA-based
microcontroller. It uses the Nios II IP-Core from Altera and features a capture/compare timer
with 8 channels which was developed in our group [9]. The main aim of this implementation was
the validation of the HAL.

Porting EMSBench to new platforms requires the implementation of all HAL interface functions.
Detailed instructions on how to proceed with this task can be found in the EMSBench code
repository at GitHub.

3.4 Timing properties

3.4.1 Execution Scenario

ems is executed using the new european driving cycle [13] for trace generation. The whole cycle
consists of an urban and an extra-urban driving cycle. The urban cycle takes 195 s and is repeated
four times, while the extra-urban cycle takes 400 s and is performed once. In total, the cycle
takes 1,180 s (≈ 20minutes). During the cycle, the revolution speed of the crankshaft ranges from
11.67 s−1 to 63.64 s−1 (700 rpm to ≈ 3820 rpm).

The counter frequencies of the C/C timers in both implementations were set such as to
approximate the time base of the original FreeEMS implementation as closely as possible. In
FreeEMS, the counter of the ECT is incremented each 0.8 µs. The same time base is also used for
signal generation by the trace generator.



F. Kluge, C. Rochange, and T. Ungerer 02:13

Algorithm 1 ISR for primary channel.
k ← 0 . Global counter for primary teeth
procedure PrimaryISR

if pin active then
set deactivation time
return

else
if k == 0 then . re-normalise

ω0 ← ω(t)
ϕ0 ← 0
t← 0
if phase change pending then . execute phase change

α← αN

end if
end if
calculate primary release time tP
set primary release time
if k == 1 then . also prepare secondary channel

calculate secondary release time tS
set secondary release time

end if
k ← (k + 1) mod np

end if
end procedure

3.4.2 Execution Behaviour

Most ISRs are executed recurringly according to different time bases. Based on the physical time,
the RTIISR() is called each 125 µs, and performs actual calculations each 1ms. All ISRs that deal
directly with the engine are coupled to the time base that is generated by the rotary sensor of the
crank- or camshaft. Their release frequencies during one revolution of the crankshaft are specified
in Table 1. The PrimaryRPMISR() is released on each primary tooth, i.e. 12 times per crankshaft
revolution. It performs actual work only on each second call, based on an internal counter. On
odd teeth, only internal variables are advanced and debug outputs are set. On even teeth, also
calculations for fuel injection and ignition are performed. The SecondaryRPMISR() is called once
each crank revolution. Each InjectionXISR() is released twice, once for opening and once for
closing of the injection valve. The IgnitionDwellISR() and IgnitionFireISR() are released
six times per revolution, each pair activating a different ignition channel. The frequency of the
crank-angle-triggered ISRs with respect to physical time depends on the current revolution speed
of the crank shaft.

When the adjusted implementation is executed using the standardised driving cycle [13], no
queuing of injection or ignition events can be observed. Instead, all timers are set and activated
directly. Furthermore, all times are aligned such that injection and ignition is finished before the
occurrence of the next PrimaryRPMISR().

Figure 6 shows an exemplary execution sequence of ISRs for one fuel channel. Start times are
derived from ticks of the global clock in the STM32F4-Discovery implementation. Execution on a
different platform will yield similar results, if timer settings are kept similar. Due to abstraction
from many inputs, most times are fixed. Only the closing of the injection valve (Inj-L) varies in

LITES



02:14 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

PrimaryRPM

Inj-H

Ign-Dwell Ign-Fire

Inj-L

0 µs 80 µs 221 µs 318 µs

224 µs 322 µs

Figure 6 Exemplary sequence for one channel; Injection-Low start times vary inside the shaded interval
(box widths are symbolic).

Table 1 Release frequency of crank-angle-triggered ISRs; CR frequency = based on one crankshaft
revolution.

ISR IRQ Source Frequency
CR s−1

PrimaryRPMISR() ECT-IC 12 144–768
SecondaryRPMISR() ECT-IC 1 12–64
InjectionXISR() ECT-OC 2 (×6) 24–128 (×6)
IgnitionDwellISR() PIT 6 60–384
IgnitionFireISR() PIT 6 60–384

time. Here, the behaviour of EMSBench deviates from a real EMS: Assuming the adjustments
described in Section 3.1, one would rather expect the injection times to be constant and the
ignition times to vary, as the latter clearly must depend on the engine’s current speed. We could
trace the depicted behaviour back to a fault in the original implementation of FreeEMS that we
were not able to correct, and to some simplifying assumptions in our adjustment. As the goal of
this work is to provide a benchmark that behaves similar to a real EMS, but not to really control
an engine, we neglect this deviation.

Furthermore, the injection may overlap with the ignition event. Although this may seem
strange in the first place, this behaviour is valid as injection is performed not directly into the
cylinder but into the intake manifold. When an actual ignition occurs, fuel is already injected for
the next cycle of the channel. From the diagram, one can observe that overlaps of ISRs probably
may occur between the Injection-Low ISR and one of the ignition ISRs. This may pose a problem,
as the ignition pins are managed by software inside the ISR and thus dwelling and firing could be
deferred. A deeper discussion of this and similar problems can be found in Section 4.3.

4 Use of EMSBench

4.1 Execution-Time Measurements
In the following, we present the execution-time measurements that we have performed on the
STM32F4-Discovery and our custom Nios II platforms. For each series of measurements, we used
two identical hardware boards, one for trace generation and another to run ems. The counters
of the C/C timers on both boards were configured to run with identical frequencies. For the
PrimaryRPMISR(), two classes of measurements are shown: On even teeth, calculations for fuel and
ignition are performed, while on odd teeth the ISR only basic management functions are executed.
Similarly, the measurements for the InjectorXISRs distinguish the instances for opening and
closing of the injection valves. The different instances of these ISRs are merged in these two
classes.



F. Kluge, C. Rochange, and T. Ungerer 02:15

Table 2 Measured execution times of ISRs and critical sections on the STM32F4-Discovery platform
(clock cycles).

ISR min max avg med

PrimaryRPMISR (even teeth) 1403 1438 1415 1415
PrimaryRPMISR (odd teeth) 361 384 364 364
SecondaryRMPISR 275 291 275 275
InjectorXISR (open) 553 594 561 560
InjectorXISR (close) 508 537 518 516
IgnitionDwellISR 158 169 165 162
IgnitionFireISR 143 153 149 149
RTIISR 112 301 121 112

main (sample) 238 238 238 238
main (switch sensor data) 65 67 66 66
main (switch control data) 53 73 63 63

4.1.1 STM32F4-Discovery
The STM32F407 microcontroller (µC) on this platforms runs at a frequency of 168MHz. The
common clock for the timers has a period of 0.8 µs (125 kHz). Code is executed directly from
on-chip Flash memory. Instruction prefetching and caching are disabled to ease the comparison
of the measurements with static WCET analysis. Volatile data is stored in on-chip SRAM, and
data caching is also disabled. The memory footprint of the ems is about 52 kB for code and about
49 kB for data.

Table 2 shows minimum, maximum, average and median execution times that were observed
during one driving cycle on the STM32F4-Discovery platform. As code and data are loaded
directly from Flash resp. SRAM memories, there is only a low variance in the execution times of
the different ISRs. Compared to the other ISRs, the PrimaryRPMISR for even teeth has a very
high execution time, as it performs a large number of calculations. Also, each InjectorXISR
has to perform several calculations. The other ISRs execute only few calculations or, like the
ISRs related to ignition, only set output pins, and thus have lower execution times. The observed
execution time of the SecondaryRPMISR is mostly 275 cycles. The maximum value of 291 cycles
was observed only once during the driving cycle. It represents a corner case due to error conditions
like lost synchronisation between primary and secondary teeth. Concerning the main function,
only the execution times of the critical sections during which IRQs are disabled are shown. These
numbers stand for the release delay any ISR might experience.

The seemingly high variance in the execution times of the RTIISR is due to the different
branches that can be taken during the ISR. For example, during most calls (7 out of 8), only
a counter is increased. Each 8th call, i.e. each millisecond, the ISR additionally can perform
periodic tasks (see Section 2.4.7). Depending on the number of periods that must be checked and
the amount of work to be performed accordingly, the execution time increases. Table 3 shows
the measured execution times for the different periods that are handled in RTIISR. Tasks with
higher period include the work for lower-period tasks. As the numbers show, the seemingly high
variance in the RTIISR execution times in Table 2 can be attributed to the different branches that
are taken. Inside a single task class in RTIISR, the execution times are quite stable.

We must note that the execution times of the 1 s and 1min paths differ only slightly by one
cycle. This low difference is based on the structure of the assembler code that is generated by the
compiler and the fetch and execution behaviour of the STM32F407 µC, and also on the fact that

LITES



02:16 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

// 1 s code ...
80063ca: cbnz r6, 80063f2 ; branch if 1 min task should NOT be executed

// Now execute 1 min task ...
80063cc: ldrh r0, [r2, #8]
80063ce: strh r4, [r2, #14]
80063d0: adds r3, r0, #1
80063d2: strh r3, [r2, #8]
80063d4: movs r4, #102 ; Execution path indicator (1 min)
80063d6: b.n 80062e6 ; Jump to return block of function

...
80063f2: movs r4, #101 ; Execution path indicator (1 s)
80063f4: b.n 80062e6 ; Jump to return block of function
80063f6: nop

Figure 7 Assembler code of 1min part in RTIISR.

Table 3 Measured execution times of RTIISR depending on execution path (clock cycles).

Period min max avg med

125µs 112 112 112 112
1ms 183 183 183 183
500ms (via 1ms) 203 203 203 203
100 ms 243 263 243 243
1 s 300 300 300 300
1min 301 301 301 301

no actual work is performed in the 1min path. Concerning fetching of instruction, the processor
always loads a full line of 16 bytes from Flash memory. Thus, fetching from a new line incurs
a longer latency (in our case 4 cycles), while all further instructions from the same line can be
fetched immediately. Any time the 1min path is taken, the 1 s part is also executed. The relevant
part of the assembler code is depicted in Figure 7. The branch instruction at address 80063ca
decides whether the 1min part is executed (branch not taken) or not (branch taken). On the one
hand, if the branch is not taken, the first two instructions are already loaded from Flash, and can
directly be fetched. Only at 80063d0 another long-latency fetch from Flash is necessary. On the
other hand, if the branch is taken, i.e. the 1min part is not executed, the processor incurs a branch
penalty, and also must wait for the new line (containing instructions at 80063f2 and following)
being loaded from Flash. Thus, the overheads of the different paths are lying in balance.

4.1.2 Nios II
The Nios II platform is deployed to a Cyclone II FPGA on a Terasic DE2-70 development board.
The processor runs with a clock frequency of 50MHz. It comprises 32 kB of L1 data and instruction
cache each. We employ the simple capture/compare timer (SCCT) [9] which provides a global
global counter and 8 C/C channels. The global counter of the SCCT is configured to run with
125 kHz. Code and data are both stored in off-chip SDRAM. On this platform, the memory
footprint is about 36 kB for code and 52 kB for data sections. The large difference of the code
size compared to the STM32F4-Discovery stems mainly from the use of a different board support
package.

The execution times measured on the Nios II platform can be found in Table 4. Additionally,
the table also shows the measured execution times of the first execution of each ISR/function



F. Kluge, C. Rochange, and T. Ungerer 02:17

Table 4 Measured execution times of ISRs and critical sections on the Nios II platform (clock cycles).

ISR first min max avg med

PrimaryRPMISR() (even teeth) 1316 732 1422 959 886
PrimaryRPMISR() (odd teeth) 322 290 809 419 306
SecondaryRMPISR() 238 180 352 239 238
InjectorXISR() (open) 462 315 462 347 345
InjectorXISR() (close) 290 255 337 274 273
IgnitionDwellISR() 112 65 112 68 67
IgnitionFireISR() 84 64 114 66 66
RTIISR() 170 66 280 89 82

main() (sample) 174 174 242 213 210
main() (switch sensor data) 35 35 93 37 38
main() (switch control data) 37 34 73 36 37

block, when it was executed with a cold cache. The first execution of each function is not always
the one with the highest execution time, as in some cases a shorter path through the function
may be taken. All execution times exhibit a greater variation due to the caches used on this
platform. In terms of median or average execution time, the results are comparable to those from
the STM32F4-Discovery platform, even though the ratio between any two ISRs may vary. In
average, the execution times are lower due to the usage of SDRAM to store the code and caches.

4.2 Static WCET Analysis
Another suggested use of EMSBench is exercising static WCET analysis techniques and tools. In
this section, we briefly review the main principles of static WCET analysis, then show how it
might be applied to EMSBench. This is illustrated with some preliminary results.

4.2.1 Principles of Static WCET Analysis
The building of a valid scheduling of tasks in a real-time system relies on the knowledge of each
task’s worst-case execution time. In a system that runs tasks in isolation (i.e. where a task
executes without being delayed due to resource sharing with any other piece of software), the
execution time of a task only depends on (a) the initial state of the system (e.g. the contents of
cache memories), and (b) the input data set.

Measurement-based timing analysis techniques require the selection of relevant input data
sets: unfortunately, when the longest possible execution time is searched, it might be difficult to
determine the worst-case input data, or to show that a given input data set leads to an execution
time that is close to the WCET. In addition, initializing the hardware to any possible state before
performing measurements is usually infeasible, while identifying the worst-case state might be
complex. Static WCET analysis techniques instead abstract input data and derive an upper
bound of the execution time that is valid for any input data within a domain that might be
restricted by user-provided annotations (e.g. to express the range of a sensor outputs) and for
any initial hardware state. The usual method to derive this upper bound is the Implicit Path
Enumeration Technique [11] that considers short segments of code (basic blocks). It maximizes the
execution time of the program defined as the sum of the individual execution times of basic blocks
weighted by their respective execution counts, under some constraints on the possible execution
flow (e.g. loop bounds, infeasible paths). Flow constraints can be provided as user annotations [26]

LITES



02:18 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

and/or extracted automatically from the source or binary code [5, 12, 7]. The individual WCETs
of basic blocks are derived from a model of the target hardware (this phase is often referred to
as low-level analysis) [21, 17, 16]. The difficulty of getting detailed and reliable information on
commercial platforms and to design accurate and safe models, is clearly the weak point of static
WCET analysis and we were faced with this issue for the experiments we report in this paper.

Various WCET analysis tools, either commercial or academic, exist [24]. In this paper, we use
the OTAWA toolset [1].

4.2.2 Methodology
In this section, we estimate WCETs considering the STM32F4-Discovery platform that features
a single-core processor. If we assume a non preemptive scheduling scheme, only interrupts can
interfere with tasks and impact their WCETs. Although the Cortex M4 processor does not include
any standard instruction nor data cache, it features a mechanism designed to hide the latency
of accesses to the Flash memory, the ART accelerator. It is based on specific small-size memory
that behaves similarly to a cache memory. An interrupt routine might alter the contents of this
memory and thus degrade the WCET of a task. However, interrupts are disabled during the
execution of interrupt service routines, as well as during the execution of the three critical sections
in the main function. As a consequence, we can safely consider that all the tasks and ISRs under
analysis run in isolation.

The first step when performing the timing analysis of a task is to determine flow facts, primarily
loop bounds and targets of indirect branches (used in switch-like statements). Since OTAWA does
not support value analysis for the ARMv7 ISA, we had to annotate indirect branches with their
possible targets. The code contains few loops which are easy to bound. The only additional flow
facts that had to be specified are the direction of the two conditional branches that distinguish
the even/odd case for PrimaryRPMISR() and the open/close case for InjectorXISR().

The second step of static WCET analysis is to determine the local WCET of sequential pieces
of code, i.e. basic blocks. OTAWA extracts the control flow graph (CFG) of the task under analysis
from the binary code of the application using the indirect branch targets provided as flow fact
annotations. Then, based on a model of the hardware architecture, it determines the worst-case
execution cost of each basic block whatever the execution path before it. This model must reflect
the pipeline architecture and the instruction latencies of the real hardware so that a valid abstract
state of the processor after each basic block can be computed from the initial abstract state (when
the fetching of the block into the pipeline starts), using the technique described in [18].

For the purpose of this paper, we have designed a model of the Cortex M4 processor featured
by the STM32F4-Discovery board. This model was validated against measurements using a
micro-benchmark that we designed to observe specific instruction latencies (taken branches, load
and store accesses to the Flash and SDRAM memories, etc.) as well as the overhead due to the
measurement process (enabling a timer, then reading it after the function under analysis has been
executed). However, we did not model the ART Accelerator device used to hide part of the latency
to the embedded Flash memory. Instead, we have considered the full Flash latency for each access
to a new Flash line. Specific latencies for accesses to the registers of I/O devices and timers have
been considered, based on their address ranges.

4.2.3 Static WCET Estimations
The WCET estimations, as well as the overestimation against the highest observed watermark
(i.e. numbers given in Table 2), are reported in Table 5. It appears that the overestimation is
reasonable (ranging from +11.9% to +41.1%) with respect to what is usually expected from static



F. Kluge, C. Rochange, and T. Ungerer 02:19

Table 5 Estimated WCETs of ISRs and critical sections considering the STM32F4-Discovery platform
(clock cycles).

ISR WCET overestimation

PrimaryRPMISR() (even teeth) 1695 17.9%
PrimaryRPMISR() (odd teeth) 542 41.1%
SecondaryRMPISR() 343 17.9%
InjectorXISR() (open) 668 12.5%
InjectorXISR() (close) 601 11.9%
IgnitionDwellISR() 228 34.9%
IgnitionFireISR() 199 30.1%
RTIISR() 343 14.0%

main() (sample) 304 27.7%
main() (switch sensor data) 88 31,3%
main() (switch control data) 97 32.9%

Table 6 Estimated WCETs of ISRs and critical sections considering the STM32F4-Discovery platform
without ART vs. with a perfect ART (clock cycles).

ISR without ART with a perfect ART

PrimaryRPMISR() (even teeth) 1695 915
PrimaryRPMISR() (odd teeth) 542 254
SecondaryRMPISR() 343 192
InjectorXISR() (open) 668 375
InjectorXISR() (close) 601 325
IgnitionDwellISR() 228 118
IgnitionFireISR() 199 110
RTIISR() 343 216

main() (sample) 304 161
main() (switch sensor data) 88 54
main() (switch control data) 97 51

WCET analysis. However, it can still be considered as a bit high given that the target processor
is very simple and time-predictable. However, not modelling the ART accelerator and assuming
maximum latency for each access to the memory (either Flash or SRAM) is pessimistic and has a
noticeable impact on estimated WCETs. Table 6 gives an insight into this impact by showing
WCETs computed with a perfect (always hit) vs. without ART.

4.3 Interferences
An important aspect in real-time systems is a RTA, which helps to ensure that reactions happen
in time and supports schedulability analysis. The response times of tasks or ISRs must not only
take their execution times into account, but also possible interferences from other tasks/ISRs.
In the following, we discuss the timing interferences that can occur in ems, and how they can
influence reactions.

In the EMS implementation, the main() loop may interfere with the ISRs, and ISRs may
interfere among each other (in terms of delaying each others execution). These interferences can

LITES



02:20 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

delay the execution of an ISR. In the current implementation, the following interferences can occur
(all numbers refer to the STM32F4-Discovery platform):

Any ISR can be delayed through one of the three critical sections in the main() loop. In the
first critical section, input signals from the ADCs are sampled. In our implementation, these
I/O accesses are replaced by reading constants from memory. In the other two critical sections,
only buffers for input resp. injection/ignition data are switched.
The RTIISR() may delay the start of any other ISR and vice versa. The RTIISR() is triggered
according to physical time each 125 µs. All important other ISRs are bound to the crankshaft
rotation. Their trigger times and intervals change over time in accordance with the current
rotation speed of the crankshaft. Occasionally, their activation/execution times may overlap,
resulting in the ISR triggered later being delayed.
As already noted in Section 3.4.2, the activation time of each second instance of any InjectorX-
ISR() (which pulls the output pin back to low) varies inside a certain interval (see Figure 6).
If the associated timer interrupt is triggered very early in the cycle, the execution of the
InjectorXISR() can be delayed by the IgnitionDwellISR(). If it is activated very late, its
execution may overlap with the activation of the IgnitionFireISR() and thus delay actual igni-
tion. It may even happen that the InjectorXISR() is activated after the IgnitionFireISR(),
in which case the InjectorXISR() is delayed.

Not all delays mentioned above have the same criticality. ISRs that are bound to a C/C timer
channel can cope better with an execution delay: On an IC channel, the timestamp of the relevant
event was already stored by the hardware. On an OC channel, the relevant pin output was
already set by the hardware in time. Here, a delay may be critical, if the corresponding ISR
has to set the channel’s timer anew. The IgnitionDwellISR() and IgnitionFireISR() have a
higher sensitivity to execution delays, as the output pins for ignition control are set by software.
This means that e.g. delaying the execution of the IgnitionFireISR() will result in an ignition
happening later. Here, it mainly depends on the actual system (EMS+engine), whether a certain
delay is acceptable. Delays that are incurred by the RTIISR() can only have minor effects on the
behaviour of the EMS. As already specified in the original FreeEMS implementation, tasks that
must be performed periodically should be included in main() loop, while the RTIISR should only
be used to set activation flags. A delay of the RTIISR() can lead to later execution of the relevant
tasks, leading to a certain jitter. However, these tasks actually have to accept that they might be
interrupted any time if they execute outside a critical section, and thus possible delays must be
heeded during design.

To quantify the possible delay of an ISR more clearly, consider the PrimaryRPMISR which has
the highest WCET of all tasks. The STM32F407 µC core runs at 168MHz. Thus, the WCET
of 1695 cycles corresponds to a time of 1695

168MHz ≈ 10.09 µs. Assuming the maximum observed
revolution speed of the crankshaft (63.64 s−1 ≈ 3820 rpm), this time corresponds to an angle
α = 10.09 µs · 63.64 s−1 ≈ 0.16°. For the other critical sections, this angle is even smaller. In [25],
ignition timing is varied in the range of -41° to 10° relative to the top dead point of the piston.
Thus, we infer that the above deviation α is tolerable.

5 Existing Benchmarks and Related Work

Since the initial works on WCET analysis, a growing number of programs have been used
as benchmarks. Earlier works have been evaluated considering short C programs inspired by
algorithms described in [15] (Fast Fourier Transform, FIR filter, array sort, Fibonacci computation,
etc.) and developed at the Singapore National University. Later, these benchmarks have been
included in a larger collection at Mälardalen University [4]. This collection extends the former



F. Kluge, C. Rochange, and T. Ungerer 02:21

one with programs that exhibit more complex flow patterns, so that flow analysis techniques
can be exercised. More recently, the TACLeBench collection has been released [3]. It gathers 55
re-formatted and versioned benchmarks.

The first report of using an industrial application as a WCET benchmark can be found in [8].
The application is on-board software for the Debie satellite instrument that measures impacts
of small space debris or micro-meteoroids. The application consists of six tasks, including three
interrupt service routines, that record information on debris hits and handle the reception of
telecommands as well as the transmission of telemetry. This application is now available as
open-source software2 and has been considered in the last editions of the WCET Tool Challenge3
for which it has been ported to Java. However, no input data generator is publicly available,
which prevents from executing the benchmark to compare measured execution times to statically
estimated WCETs, or from using measurement-based timing analyses.

PapaBench [14] is a benchmark built from Paparazzi, an open-source drone hardware and
software project4. This application consists of two parts, fbw (fly-by-wire) that controls the drone
in flight (engines and flap control, radio link with ground, IR sensor support, stabilization) and
autopilot that controls the GPS and executes a flight plan. It is composed of about 20 tasks
(including ISRs) that are statically scheduled. In contrast, the tasks (ISRs) in EMSBench are
mostly triggered through external events or events that depend on the physical state of the system.

In [22], the authors argue that real-world applications might be too complex for existing
academic WCET tools, mainly because of their complex flow structure. They introduce GenE,
a benchmark generator, that provides flow fact annotations together with the generated code.
Benchmarks are generated from code patterns that are commonly found in real-time applications.
The idea is to focus on these patterns and to get rid of specific/unpredictable flow structures.

6 Conclusions

The work presented in this article was motivated by the fact that only few free benchmark
programs for real-time systems exist that exhibit a behaviour similar to real applications. Widely
spread benchmark suites consist usually of rather small, self-contained programs. More complex
programs have so far only been reported from the aerospace domain [8, 14]. With the software
package EMSBench we are undertaking a step beyond existing benchmarks to close this gap
between actual real-time software and benchmark programs. In this article, we have described
EMSBench and examined several of its use cases.

EMSBench is based on FreeEMS, an open source software for engine management, and was
developed as a system benchmark for embedded real-time systems [10]. It consists of several ISRs
and periodic tasks that are executed concurrently. Thus, it exhibits a behaviour that is significantly
more complex than that of simple linear programs. Especially, some ISRs may interfere with other
ones and delay their execution. The ISRs cannot be scheduled statically, as they must react upon
events occurring in the phyical world with low latency. To ease the use of FreeEMS as a system
benchmark, we have applied adjustments to the code and provide additional programs. We have
removed most of the input dependencies in the ems part of EMSBench, and kept only the use of
the crankshaft decoder. To allow for a realistic execution of ems, we provide a trace generator
(tg) that emulates the behaviour of the crankshaft encoder according to arbitrary driving cycles.
A HAL allows to adapt EMSBench to other hardware platforms.

2 http://www.tidorum.fi/debie1/
3 http://www.mrtc.mdh.se/projects/WTC/
4 https://wiki.paparazziuav.org

LITES

http://www.tidorum.fi/debie1/
http://www.mrtc.mdh.se/projects/WTC/
https://wiki.paparazziuav.org


02:22 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

We demonstrated the application of EMSBench with several use cases. Timing measurements
were performed on two hardware platforms, the ARM Cortex-M4-based STM32F4-Discovery,
and a self-designed Nios II-based FPGA microcontroller. A static WCET analysis of important
parts of the EMS code from EMSBench was performed using the OTAWA toolset [1]. Reported
WCET estimations considering the STM32F4-Discovery platform are above the longest observed
execution times. Modelling the behaviour of hardware components that have been ignored in this
first study should improve accuracy.

The results of the WCET analysis were used for an analysis of interferences that may occur
between ISRs and periodic functions. Due to the low utilisation generated by the EMS on the
STM32F4-Discovery platform, only minor interferences were identified. However, on platforms
with less performance, the EMS will generate higher utilisation, and thus possibly more serious
interferences might be found. It appears that EMSBench is a valuable benchmark for static
WCET analysis tools. First of all, its structure is very similar to industrial applications that
we could see in projects. Several modules (ISRs or tasks invoked in the main loop) can be
analysed separately. Several of them exhibit different behaviours, depending on when they are
executed (e.g. PrimaryRPMISR() is triggered either by an even or an odd tooth), which suggests
that several scenario-related WCET values can be derived. In addition, the code contains a lot of
indirect branches and a specific WCET could be computed for each possible target (e.g. for the
PrimaryRPMISR() routine related to each injection channel, which should improve the accuracy
of the overall WCET).

Due to its complexity, the use of EMSBench is not restricted to WCET benchmarking. If
used with the accompanying trace generator, it can also act as a test program to evaluate other
aspects of an execution platform. For example, schedulability aspects of an underlying operating
system could be examined based on the results of a WCET analysis. To mimic the higher
processor utilisation of industrial EMSs, some ISRs in EMSBench might be extended by code that
synthetically increases the load. Such code could be based on signal processing algorithms like the
Fast Fourier Transform, to, e.g. imitate software for knocking detection. Thus, higher interferences
could be generated, allowing for a more challenging schedulability analysis. To allow for a more
realistic execution of EMSBench, it would also be interesting to extend signal generation by a
throttle signal. Thus, a higher degree of variance in the ems’s behaviour could be generated as
the injection times would no longer be constant. Further works on EMSBench could include such
extensions, but also fixing bugs and shortcomings that exist in the current version. The source
code of EMSBench is available at https://github.com/unia-sik/emsbench. We encourage the
research community to submit their own HAL implementations for EMSBench via GitHub to
extend the useability of EMSBench.

References
1 Clément Ballabriga, Hugues Cassé, Christine

Rochange, and Pascal Sainrat. OTAWA: An
Open Toolbox for Adaptive WCET Analysis. In
Sang Lyul Min, Robert G. Pettit IV, Peter P.
Puschner, and Theo Ungerer, editors, Software
Technologies for Embedded and Ubiquitous Sys-
tems – 8th IFIP WG 10.2 Int’l Workshop, SEUS
2010, Waidhofen/Ybbs, Austria, October 13-15,
2010. Proceedings, volume 6399 of Lecture Notes
in Computer Science, pages 35–46. Springer, 2010.
doi:10.1007/978-3-642-16256-5_6.

2 Benchmark program and test bed for reactive em-
bedded systems. GitHub repository. URL: https:
//github.com/unia-sik/emsbench.

3 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx,
Björn Lisper, Wolfgang Puffitsch, Christine

Rochange, Martin Schoeberl, Rasmus Bo
Sorensen, Peter Wägemann, and Simon We-
gener. TACLeBench: A Benchmark Collection to
Support Worst-Case Execution Time Research.
In Martin Schoeberl, editor, 16th Int’l Work-
shop on Worst-Case Execution Time Analysis,
WCET 2016, July 5, 2016, Toulouse, France,
volume 55 of OASIcs, pages 2:1–2:10. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/OASIcs.WCET.2016.2.

4 Jan Gustafsson, Adam Betts, Andreas Ermedahl,
and Björn Lisper. The Mälardalen WCET Bench-
marks: Past, Present And Future. In Björn Lisper,
editor, 10th Int’l Workshop on Worst-Case Execu-
tion Time Analysis, WCET 2010, July 6, 2010,
Brussels, Belgium, volume 15 of OASIcs, pages

https://github.com/unia-sik/emsbench
http://dx.doi.org/10.1007/978-3-642-16256-5_6
https://github.com/unia-sik/emsbench
https://github.com/unia-sik/emsbench
http://dx.doi.org/10.4230/OASIcs.WCET.2016.2


F. Kluge, C. Rochange, and T. Ungerer 02:23

136–146. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, Germany, 2010. doi:10.4230/OASIcs.
WCET.2010.136.

5 Jan Gustafsson, Andreas Ermedahl, Christer Sand-
berg, and Björn Lisper. Automatic Derivation of
Loop Bounds and Infeasible Paths for WCET Ana-
lysis Using Abstract Execution. In Proceedings
of the 27th IEEE Real-Time Systems Symposium
(RTSS 2006), 5-8 December 2006, Rio de Janeiro,
Brazil, pages 57–66. IEEE Computer Society, 2006.
doi:10.1109/RTSS.2006.12.

6 Jeff Hartman. How to Tune and Modify En-
gine Management Systems. Motorbooks Workshop.
MBI Publishing Company, 2004.

7 Niklas Holsti, Jan Gustafsson, Linus Källberg, and
Björn Lisper. Analysing Switch-Case Code with
Abstract Execution. In Francisco J. Cazorla, ed-
itor, 15th Int’l Workshop on Worst-Case Execu-
tion Time Analysis, WCET 2015, July 7, 2015,
Lund, Sweden, volume 47 of OASIcs, pages 85–94.
Schloss Dagstuhl – Leibniz-Zentrum fuer Inform-
atik, 2015. doi:10.4230/OASIcs.WCET.2015.85.

8 Niklas Holsti, Thomas Langbacka, and Sami Saar-
inen. Using a worst-case execution time tool
for real-time verification of the DEBIE software.
European Space Agency Publications – ESA SP,
457:307–312, 2000.

9 Florian Kluge. A Simple Capture/Compare Timer.
Technical Report 2015-01, Department of Com-
puter Science, University of Augsburg, June 2015.
doi:10.13140/2.1.1251.2321.

10 Florian Kluge and Theo Ungerer. EMS-
Bench: Benchmark und Testumgebung für reakt-
ive Systeme. In Wolfgang A. Halang and Olaf
Spinczyk, editors, Echtzeit 2015, Informatik Ak-
tuell, pages 11–20. Springer, 2015. doi:10.1007/
978-3-662-48611-5_2.

11 Yau-Tsun Steven Li and Sharad Malik. Perform-
ance Analysis of Embedded Software Using Impli-
cit Path Enumeration. In Bryan Preas, editor, Pro-
ceedings of the 32st Conference on Design Auto-
mation, San Francisco, California, USA, Moscone
Center, June 12-16, 1995., pages 456–461. ACM
Press, 1995. doi:10.1145/217474.217570.

12 Marianne De Michiel, Armelle Bonenfant, Hugues
Cassé, and Pascal Sainrat. Static Loop Bound
Analysis of C Programs Based on Flow Analysis
and Abstract Interpretation. In The Fourteenth
IEEE Internationl Conference on Embedded and
Real-Time Computing Systems and Applications,
RTCSA 2008, Kaohisung, Taiwan, 25-27 August
2008, Proceedings, pages 161–166. IEEE Computer
Society, 2008. doi:10.1109/RTCSA.2008.53.

13 COUNCIL DIRECTIVE of 20 March 1970 on the
approximation of the laws of the Member States on
measures to be taken against air pollution by emis-
sions from motor vehicles. Version from 01.01.2007.

14 Fadia Nemer, Hugues Cassé, Pascal Sainrat,
Jean Paul Bahsoun, and Marianne De Michiel.
PapaBench: a Free Real-Time Benchmark. In
Frank Mueller, editor, 6th Int’l Workshop on
Worst-Case Execution Time (WCET) Analysis,
July 4, 2006, Dresden, Germany, volume 4 of
OASIcs. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2006. doi:10.4230/OASIcs.WCET.2006.
678.

15 William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. Numerical Re-
cipes in C: The Art of Scientific Computing. Cam-
bridge University Press, New York, NY, USA, 1992.
2nd edition.

16 Wolfgang Puffitsch. Efficient Worst-Case Execu-
tion Time Analysis of Dynamic Branch Predic-
tion. In 28th Euromicro Conference on Real-Time
Systems, ECRTS 2016, Toulouse, France, July 5-
8, 2016, pages 152–162. IEEE Computer Society,
2016. doi:10.1109/ECRTS.2016.23.

17 Jan Reineke, Daniel Grund, Christoph Berg,
and Reinhard Wilhelm. Timing predictability
of cache replacement policies. Real-Time Sys-
tems, 37(2):99–122, 2007. doi:10.1007/s11241-
007-9032-3.

18 Christine Rochange and Pascal Sainrat. A Context-
Parameterized Model for Static Analysis of Exe-
cution Times. Trans. HiPEAC, 2:222–241, 2009.
doi:10.1007/978-3-642-00904-4_12.

19 STMicroelectronics. UM1472 User Manual – Dis-
covery kit for STM32f407/417 lines. STMicroelec-
tronics, November 2013.

20 Trace Generation in EMSBench. URL:
https://github.com/unia-sik/emsbench/blob/
master/doc/tg/tg.pdf.

21 Stephan Thesing. Safe and precise WCET determ-
ination by abstract interpretation of pipeline mod-
els. PhD thesis, Saarland University, Saarbrücken,
Germany, 2004. URL: http://scidok.sulb.uni-
saarland.de/volltexte/2005/466/index.html.

22 Peter Wägemann, Tobias Distler, Timo Hönig,
Volkmar Sieh, and Wolfgang Schröder-Preikschat.
GenE: A Benchmark Generator for WCET Ana-
lysis. In Francisco J. Cazorla, editor, 15th Int’l
Workshop on Worst-Case Execution Time Ana-
lysis, WCET 2015, July 7, 2015, Lund, Sweden,
volume 47 of OASIcs, pages 33–43. Schloss Dag-
stuhl – Leibniz-Zentrum fuer Informatik, 2015.
doi:10.4230/OASIcs.WCET.2015.33.

23 Henning Wallentowitz and Konrad Reif, editors.
Handbuch Kraftfahrzeugelektronik: Grundlagen,
Komponenten, Systeme, Anwendungen. Vieweg,
Wiesbaden, 2006.

24 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David B.
Whalley, Guillem Bernat, Christian Ferdinand, Re-
inhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter P. Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem – overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3):36:1–
36:53, 2008. doi:10.1145/1347375.1347389.

25 Javad Zareei and Amir H. Kakaee. Study and the
effects of ignition timing on gasoline engine per-
formance and emissions. European Transport Re-
search Review, 5(2):109–116, 2013. doi:10.1007/
s12544-013-0099-8.

26 Jakob Zwirchmayr, Pascal Sotin, Armelle Bonen-
fant, Denis Claraz, and Philippe Cuenot. Identify-
ing Relevant Parameters to Improve WCET Ana-
lysis. In Heiko Falk, editor, 14th Int’l Workshop
on Worst-Case Execution Time Analysis, WCET
2014, July 8, 2014, Ulm, Germany, volume 39 of
OASIcs, pages 93–102. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2014. doi:10.4230/
OASIcs.WCET.2014.93.

LITES

http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.1109/RTSS.2006.12
http://dx.doi.org/10.4230/OASIcs.WCET.2015.85
http://dx.doi.org/10.13140/2.1.1251.2321
http://dx.doi.org/10.1007/978-3-662-48611-5_2
http://dx.doi.org/10.1007/978-3-662-48611-5_2
http://dx.doi.org/10.1145/217474.217570
http://dx.doi.org/10.1109/RTCSA.2008.53
http://dx.doi.org/10.4230/OASIcs.WCET.2006.678
http://dx.doi.org/10.4230/OASIcs.WCET.2006.678
http://dx.doi.org/10.1109/ECRTS.2016.23
http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.1007/978-3-642-00904-4_12
https://github.com/unia-sik/emsbench/blob/master/doc/tg/tg.pdf
https://github.com/unia-sik/emsbench/blob/master/doc/tg/tg.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2005/466/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2005/466/index.html
http://dx.doi.org/10.4230/OASIcs.WCET.2015.33
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/s12544-013-0099-8
http://dx.doi.org/10.1007/s12544-013-0099-8
http://dx.doi.org/10.4230/OASIcs.WCET.2014.93
http://dx.doi.org/10.4230/OASIcs.WCET.2014.93

	Motivation
	FreeEMS
	Spark Ignition Engine and Engine Management
	Interfacing with the Physical World
	Operation of FreeEMS
	Code Structure
	main
	PrimaryRPMISR
	SecondaryRPMISR
	InjectorXISR
	IgnitionDwellISR
	IgnitionFireISR
	RTIISR
	Further ISRs

	Interaction between ISRs

	EMSBench
	Code Changes
	Trace Generation
	Model
	Preprocessor
	Signal Generation

	Adopting EMSBench
	Timing properties
	Execution Scenario
	Execution Behaviour


	Use of EMSBench
	Execution-Time Measurements
	STM32F4-Discovery
	Nios II

	Static WCET Analysis
	Principles of Static WCET Analysis
	Methodology
	Static WCET Estimations

	Interferences

	Existing Benchmarks and Related Work
	Conclusions

