
The Semantic Foundations and a Landscape of
Cache-Persistence Analyses∗

Jan Reineke
Saarland University
Saarland Informatics Campus
Saarbrücken, Germany
reineke@cs.uni-saarland.de

http://orcid.org/0000-0002-3459-2214

Abstract
We clarify the notion of cache persistence and con-
tribute to the understanding of persistence analysis
for caches with least-recently-used replacement.

To this end, we provide the first formal defini-
tion of persistence as a property of a trace seman-
tics. Based on this trace semantics we introduce a
semantics-based, i.e., abstract-interpretation-based
persistence analysis framework.

We identify four basic persistence analyses and
prove their correctness as instances of this analysis

framework.
Combining these basic persistence analyses via

two generic cooperation mechanisms yields a lattice
of ten persistence analyses.

Notably, this lattice contains all persistence
analyses previously described in the literature. As
a consequence, we obtain uniform correctness proofs
for all prior analyses and a precise understanding
of how and why these analyses work, as well as how
they relate to each other in terms of precision.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture,
Theory of computation → Caching and paging algorithms, Hardware → Safety critical systems
Keywords and Phrases caches, persistence analysis, WCET analysis
Digital Object Identifier 10.4230/LITES-v005-i001-a003
Received 2017-10-23 Accepted 2018-05-15 Published 2018-08-02

1 Introduction

Due to the large processor-memory gap, essentially all modern processors employ some form of
memory hierarchy, consisting of smaller but faster memories, such as caches, on the one hand,
and larger but slower memories, such as DRAM-based main memory, on the other hand. Memory
hierarchies of general-purpose processors usually contain one or multiple levels of caches. Caches
are small but fast hardware-managed memories that store a subset of the contents of main memory.
Memory accesses that “hit” the cache may be served at a much lower latency than those accesses
that “miss” the cache and as a consequence have to be served from slow main memory. The
execution time of a program thus heavily depends on how effective the processor’s caches are.

For safety-critical systems, it is imperative to demonstrate before deployment that the system
will always behave as intended. Many safety-critical systems are real-time systems, i.e., in order
to function correctly, they have to perform their actions within limited amounts of wall-clock time.
A major task in verifying a system’s real-time behavior is to analyze each software component’s
worst-case execution time (WCET). Due to the large influence of caches on execution times,
WCET analyses have to soundly and precisely characterize a software component’s cache behavior.
To this end, various static cache analyses have been developed. Simply assuming each memory
access to yield a cache miss would result in extremely pessimistic execution-time bounds.

∗ This work was supported by the Deutsche Forschungsgemeinschaft as part of the project PEP.

© Jan Reineke;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 5, Issue 1, Article No. 3, pp. 03:1–03:52
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reineke@cs.uni-saarland.de
http://orcid.org/0000-0002-3459-2214
http://dx.doi.org/10.4230/LITES-v005-i001-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

03:2 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

Listing 1 Example program motivating persistence analysis.
for (int i=0; i < N; i++) {

if (read_sensor ())
a++;

else
b++;

}

Static cache analysis comes in two flavours [19]: 1. Classifying Cache Analysis aims to classify
individual memory accesses as cache hits or misses. 2. Quantitative Cache Analysis aims to
determine bounds on the number of misses resulting from a set of memory accesses in a program.

Classifying cache analysis for caches with least-recently-used (LRU) replacement has been
well-understood since the introduction of may and must analysis by Ferdinand et al. [11, 12] in the
late 1990s. May and must analysis are formalized and proven correct in the framework of abstract
interpretation [3]. Both may and must analysis answer questions about the set of reachable cache
states. For example, must analysis determines whether a memory block is guaranteed to be cached
in all cache states that may be reached at a given program point. If that is the case, an access to
such a block must result in a cache hit.

One instance of quantitative cache analysis is persistence analysis. Persistence analysis
collectively considers all memory accesses in a program, or a fragment of a program such as a loop,
that access the same memory block. Various slightly different interpretations of cache persistence
exist in the literature [1, 12], which we discuss later in this article. Intuitively, a memory block is
persistent if, during any possible program execution, all memory accesses referring to this block
may cumulatively result in at most one cache miss.

Consider the program in Listing 1 for a motivating example. Assume that variables a and b
are kept in two distinct memory blocks. Further, assume that in each loop iteration it is equally
possible for the program to take the then- and the else-branch of the conditional, as the outcome of
read_sensor() depends on external inputs. Then it is impossible to classify the memory accesses
to a or b in any loop iteration as guaranteed cache hits and a WCET analysis would have to
pessimistically account for misses upon all memory accesses. However, provided the cache is large
enough to hold a and b simultaneously, among all memory accesses to a (and similarly to b) only
the very first may result in a cache miss1. Both a and b are persistent, and WCET analysis can
safely account for at most two misses.

Various persistence analyses have been proposed in the literature starting from Mueller’s [20,
1, 31, 21] and Ferdinand’s [11, 12] work in the 1990s up until today [2, 6, 17, 23, 22, 8, 7, 32]. In
our opinion, however, persistence analysis is so far not as well-understood as classifying cache
analysis. In particular, even though persistence analysis clearly determines semantic properties
of programs, it has never been formalized and proven correct as a semantics-based program
analysis, i.e., as an abstract interpretation of an appropriate semantics in which persistence is
expressible. Instead, persistence analyses have so far been described and argued correct in rather
ad hoc manners. Possibly as a consequence of this lack of foundations, a flaw in one of the early
persistence analyses [12] was long overlooked.

In this article we seek to fill this gap by providing a solid semantic underpinning for persistence
analysis. We observe that persistence is a property of traces rather than states. Thus, semantics
that capture sets of reachable states – such as those used as a basis for may and must analysis,

1 Assuming that neither a nor b are evicted by read_sensor().

J. Reineke 03:3

and in fact most other static program analyses – are not appropriate to understand and prove
correct persistence analyses. In Section 2, we define a trace collecting semantics, which captures
all possible cache traces of a program, i.e., alternating sequences of cache states and memory
accesses. On this basis, we are then able to provide the first formal definition of the various cache
persistence notions found in the literature.

After discussing standard abstractions and simplifications in Section 3, we introduce a generic
abstract-interpretation-based persistence analysis framework in Section 4. This framework defines
the components of a persistence analysis and provides conditions on these components that
are sufficient to guarantee the correctness of the persistence classifications of the analysis. As
is usual in abstract interpretation, the framework uses concretization functions to capture the
relation between concrete and abstract semantics. The key difference to prior work on abstract-
interpretation-based cache analysis is that concretization functions map to sets of cache traces
rather than sets of cache states, as persistence is a property of traces rather than states. To
analyze the relative precision of two different persistence analyses, we also provide conditions on
the components of two arbitrary analyses A and B that are sufficient to show that A is more
precise than B, i.e., if B classifies a memory block as persistent then so does A.

A generic analysis framework is only useful if it has interesting instantiations. In Section 5, we
identify four basic persistence analyses. Using the framework introduced in Section 4 we prove
their correctness and determine their relative precision. Then we introduce two generic cooperation
mechanisms that enable the exchange of analysis information between different persistence analyses
in order to obtain more precise combined analyses. Combining the four basic persistence analyses
using these two cooperation mechanisms yields a lattice of ten persistence analyses of varying
precision. These ten analyses include, to the best of our knowledge, all persistence analyses
previously described in the literature. Thus we obtain uniform correctness proofs for all these
analyses and a precise understanding of how and why these analyses work, as well as how they
relate to each other in terms of precision. In Section 6, we discuss how the persistence analyses
from the literature map to the lattice of persistence analyses developed in Section 5.

Due to uncertainty about the memory accesses induced by loads and stores in a program,
persistence analysis is more challenging for data caches than for instruction caches. We briefly
describe a generic approach to data-cache persistence analysis in Section 7. Finally, we conclude
the article by summarizing our results and discussing future work in Section 8.

This article may be read in different ways depending on a reader’s intent:
Readers primarily interested in understanding the intuition of the various persistence analyses
may focus their attention on Section 5. To enable readers to quickly obtain a basic understanding
of the state of the art, many of the correctness proofs have been moved to the appendix.
Readers who would like to understand the semantic foundations of persistence analysis in
detail, will have to study Sections 2 to 4 more carefully. Further, they may selectively read
the detailed correctness proofs in the appendix. These proofs are linked from the respective
theorems and lemmas of Section 5.
Readers interested in a historical perspective may focus on Sections 5.3 and 6.

2 A Formal Definition of Cache Persistence

In this section, we provide a formal definition of cache persistence. As persistence is a semantic
property of a program’s execution traces, we first introduce a generic trace collecting semantics in
Section 2.1. As persistence involves cache behavior, we require a semantics taking into account
caches. We show how to instantiate the generic trace collecting semantics accordingly in Section 2.2.
Finally, in Section 2.3 we formally capture the various notions of persistence found in the literature
as properties of the semantics introduced in the two preceding sections.

LITES

03:4 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

2.1 Programs, Computations, Trace Collecting Semantics
A program P = 〈Σ, I, E , T 〉 consists of the following components:

Σ - a set of program states
I ⊆ Σ - a set of initial states
E - a set of events
T ⊆ Σ× E × Σ - a transition relation, which captures how a computation of the program may
step through its state space.

An execution trace t of P is an alternating sequence of states and events t = σ0e0σ1e1 . . . σn
such that σ0 ∈ I and for all i ∈ {0, . . . , n − 1}, 〈σi, ei, σi+1〉 ∈ T . The set of all execution
traces of P is its trace collecting semantics Col(P) ⊆ Traces, where Traces denotes the set of
all alternating sequences of states and events. When considering terminating programs, the
trace collecting semantics can be formally defined as the least fixpoint2 of the next operator
containing I:

Col(P) = lfp⊆I next

where next describes the effect of one computation step:

next(S) = {t.σnenσn+1 | t.σn ∈ S ∧ 〈σn, en, σn+1〉 ∈ T }

In the definition of next above, t.σn denotes a trace that ends in state σn following its prefix t.
Similarly, t.σnenσn+1 is a trace obtained by extending t.σn by enσn+1.

In other words, Col(P) is the least solution, i.e., the smallest set of traces X that satisfies the
equation X = I ∪ next(X).

Cousot and Cousot [5] give a detailed proof of why the set of all finite execution traces of a
program is indeed captured by the least fixpoint of a next operator as in our definition above.

2.2 Taking Caches Into Account
For reasoning about caches, we need to consider a semantics in which the state of the cache is
part of the program state. To this end, the state will consist of two components: (1) the logical
memory state in M (representing the values of memory locations and CPU registers) and (2)
the cache state in C. So Σ =M×C. The set of initial states is the product of the set of initial
memory states and the set of initial cache states, i.e., I = IM × IC .

We define the transition relation on this domain based on four functions that model the
evolution of the logical memory and the cache as well as their interaction:
1. The memory update is a function updateM : M→M that captures the logical memory state

the system transitions into from a given logical memory state.
2. The memory effect is a function effM : M→EM that determines the memory block, if any,

that is accessed when transitioning from a given logical memory state. We denote the set of
memory blocks by B. Thus, the set of memory events is defined as EM = B ∪ {⊥}, where ⊥
denotes that no memory block is accessed.

3. The cache update is a function updateC : C ×EM → C that determines the successor cache state
given a memory effect.

2 Here, and later, we denote by lfp⊆I next, the least fixpoint of the function next that is greater than or equal
to I. This is the same as the least fixpoint of the function nextI(X) := I ∪ next(X).

J. Reineke 03:5

4. The cache effect is a function effC : C × EM → EC that determines whether or not the memory
access results in a cache hit or a cache miss. Thus, the set of cache events is defined as
EC = {hit,miss,⊥}, where ⊥ is used when the memory effect is ⊥, and so no memory block is
actually accessed.

Events are pairs of memory events and cache events, i.e., E = EM × EC .
The definition of persistence as a property of traces in Section 2.3, as well as the persistence

analysis framework developed in Sections 3 and 4 applies to arbitrary replacement policies.
Particular replacement policies can be captured by appropriately defining updateC and effC . Below,
we provide definitions of these two functions for the LRU strategy, denoted as updateLRU

C and
effLRU
C . This is because all the persistence analysis instances that we will introduce in Section 5

apply to caches with LRU replacement. In the following, whenever we make statements that hold
for arbitrary caches, we use updateC and effC. Whenever our statements refer to LRU, we use
updateLRU

C and effLRU
C .

Upon a cache miss, LRU replaces the least-recently-used memory block. To this end, it tracks
the ages of memory blocks within each cache set, where the youngest block has age 0 and the
oldest cached block has age k − 1, where k is the associativity of the cache. Thus, the state of the
cache can be modeled as a function that assigns an age to each memory block, where non-cached
blocks are assigned age k. For simplicity of exposition, we consider a fully-associative cache3, in
other words, all blocks map to the same cache set.

C := {c ∈ B → A | ∀a, b ∈ B : a 6= b ⇒ (c(a) 6= c(b) ∨ c(a) = c(b) = k)},

where A := {0, ..., k − 1, k} is the set of ages. The constraint encodes that no two cached blocks
can have the same age. For readability we omit the additional constraint that blocks of non-zero
age are preceded by other blocks, i.e. that cache sets do not contain “holes”.

Below, we define the cache update and the cache effect for the cases where a memory access
occurs, i.e., for the subset B of their domain EM = B ∪ {⊥}. Both cache update and cache effect
are naturally extended to the case where no memory access occurs.

The cache update for LRU is given by

updateLRU
C (c, b) := λb′ ∈ B.

0 : b′ = b,

c(b′) + 1 : c(b′) < c(b),
c(b′) : c(b′) ≥ c(b).

The accessed block attains age 0 (case 1), blocks younger than the accessed block age by 1 (case 2),
and the ages of other blocks are not affected (case 3).

The cache effect captures that a hit occurs whenever the age of the accessed block is less than
the cache’s associativity:

effLRU
C (c, b) :=

{
hit : c(b) < k,

miss : else.

Both updateLRU
C and effLRU

C are naturally extended to the case where no memory access occurs.
Then, the cache state remains unchanged and the cache effect is ⊥.

3 Set-associative caches as they are typically found in actual caches can be considered as arrays of fully-associative
caches. Thus, analyses that apply to fully-associative caches can be lifted to set-associative caches in a rather
straightforward manner.

LITES

03:6 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

With this, we can now connect the components and obtain the global transition relation
T ⊆ Σ× E × Σ by

T = {〈〈m, c〉, 〈em, ec〉, 〈m′, c′〉〉 | m′ = updateM(m) ∧ em = effM(m)
∧ c′ = updateC(c, em) ∧ ec = effC(c, em)},

which formally captures the asymmetric relationship between caches, logical memories, and events:
The memory update determines the next memory states: m′ = updateM(m), and the memory
effect determines the memory block, if any, that is accessed on the transition: em = effM(m).
Based on the memory effect, the cache update determines the next cache state: c′ =
updateC(c, em), and the cache effect determines whether or not the current memory access
results in a hit or a miss: ec = effC(c, em).

2.3 Persistence as a Property of Traces
Given a trace collecting semantics that takes caches into account as defined in the previous
two sections, we are now ready to formally capture multiple notions of persistence found in the
literature. Persistence is a property of traces, and thus, the following predicates determine for a
given trace τ and a memory block b, whether b is persistent in τ according to a particular notion
of persistence.

The most liberal notion of persistence is that a persistent block may cause at most one miss:

AtMostOneMiss(σ0e0σ1e1 . . . en−1σn, b) := |{i | ei = 〈b,miss〉}| ≤ 1 (1)

A stronger notion of persistence is that only the very first access to a persistent block may
result in a miss [1]:

FirstAccessIsAMiss(σ0e0σ1e1 . . . en−1σn, b) :=
∀i : (ei = 〈b,miss〉) ⇒ ∀j < i : (ej 6= 〈b, hit〉 ∧ ej 6= 〈b,miss〉). (2)

This condition is stronger, i.e., FirstAccessIsAMiss(τ, b) implies AtMostOneMiss(τ, b) but not vice
versa, as AtMostOneMiss(τ, b) is equivalent to ∀i : (ei = 〈b,miss〉)⇒ ∀j < i : (ej 6= 〈b,miss〉).

Another stronger notion of persistence is that, after a block has been brought into the cache
via a miss, it is not evicted from the cache anymore [12]:

NoEviction(σ0e0σ1e1 . . . en−1σn, b) := ∀i : (ei = 〈b,miss〉)⇒ ∀j > i : b ∈ σj , (3)

where b ∈ σl means that b is cached in state σl, i.e., it is an abbreviation for σl = 〈ml, cl〉 ∧
effC(cl, b) = hit. Clearly, persistence according to (3) also implies persistence according to (1).

The above definitions refer to individual traces. We say that a memory block b is persistent in
program P , if it is persistent in all traces of P ’s trace collecting semantics:

I Definition 1 (Persistence in a Program). Memory block b is persistent in program P , if

∀τ ∈ Col(P) : AtMostOneMiss(τ, b).

We choose to use the most liberal notion of persistence in Definition 1, because it corresponds
to the property that is being exploited in the later phases of WCET analysis. As we will see, all
persistence analyses introduced in Section 5 are in fact based on the stronger NoEviction notion
expressed by (3). It is conceivable though that future persistence analyses will take advantage of
the more liberal AtMostOneMiss notion to classify more memory blocks as persistent.

J. Reineke 03:7

3 Preliminaries: Standard Abstractions and Simplifications

The trace collecting semantics as defined above is not practically computable. In this section,
we discuss two very common abstractions that lead to an abstract semantics that is closer to
being computable. Based on the resulting sticky-collecting semantics, we then develop further
abstractions in Sections 4 and 5 that allow to prove the persistence of memory blocks in practice.

3.1 Control Flow Graph Abstraction
In contrast to data accesses, instruction accesses depend solely on the flow of control through the
program and are thus much easier to predict. As the focus of this article is on the analysis of
the cache behavior rather than the analysis of the memory accesses generated by a program, we
initially limit ourselves to the analysis of instruction caches. Later, in Section 7 we discuss how to
lift this restriction. Thus we abstract the state of the memory, inM, to the program location,
in L, that the program is currently at.

A common abstraction of a program P is its control flow graph GP = 〈L, E, i〉, where
the nodes in L represent program locations,
the edges in E ⊆ L× L represent possible control flow, and
i ∈ L represents the start node, which has no incoming edges.

The set of edges E can be seen as an abstraction of the memory update updateM. While
updateM is a function, E is a relation, because the successor location may depend on values
of registers that have been abstracted away. Similarly, let effL : E → B capture the memory
block holding the instruction that needs to be fetched when moving from one program location
to another. This corresponds to the memory effect effM. As we limit ourselves to instruction
accesses, which are precisely determined by control flow, there is no loss in precision moving from
effM to effL. Also, each edge corresponds to exactly one memory access, and so we do not need
to consider the trivial case that no memory access is performed upon a transition. With this
abstraction, the set of states is Σins = L × C, and the set of initial states is Iins = {i} × IC .

Based on these notions, we obtain the following global transition relation Tins:

Tins = {〈〈l, c〉, 〈b, h〉, 〈l′, c′〉〉 | 〈l, l′〉 ∈ E∧b = effL(l, l′)∧c′ = updateC(c, b)∧h = effC(c, b)},

which yields the abstraction Pins of P : Pins = 〈Σins, Iins, E , Tins〉.
One could formally relate Col(Pins) and Col(P) by concretization and abstraction functions

and derive correctness conditions on E and effL, but we omit this here4 and assume that the
control flow graph is the starting point of the analyses presented below, as is common in the
literature [1, 20, 31, 11, 12, 21, 2, 6, 17, 8, 7, 32].

We note, however, that more precise results can be obtained if persistence analysis is carried
out on more precise abstractions of the program’s memory access behavior, which can be obtained
by e.g. trace partitioning [28].

3.2 Abstraction from Locations in Traces
As we can see from Definition 1, to determine whether a block is persistent it suffices to inspect
the cache and memory effects of the trace collecting semantics. We thus further abstract the
trace collecting semantics to a semantics that only maintains traces of cache and memory effects,
forgetting about the intermediate locations. We denote the set of such traces by CacheTraces.

4 We consider the problem of soundly abstracting a program’s memory access behavior to be distinct from the
problem of cache persistence analysis based on such an abstraction, which is the topic of this article. See
Section 4.2 in [10] for a concretization function relating Col(Pins) and Col(P).

LITES

03:8 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

This sticky cache trace collecting semantics5 , StickyCol(Pins) : L → 2CacheTraces, captures
the set of traces of cache states and cache and memory effects that may reach a given program
location. It is defined as the least fixpoint of nextins, defined below, including Init:

StickyCol(Pins) := lfp≤Init nextins,

where Init = λl.(l = i ? IC : ∅), the partial order ≤ denotes the point-wise comparison, i.e,
S ≤ T := ∀l ∈ L : S(l) ⊆ T (l), which induces the join S ∨ T := λl ∈ L.S(l) ∪ T (l), and nextins is
defined as follows:

nextins(S) = λl′ ∈ L.
⋃
〈l,l′〉∈E{t.cec′ | t.c ∈ S(l) ∧ 〈〈l, c〉, e, 〈l′, c′〉〉 ∈ Tins}

Def. of Tins= λl′ ∈ L.
⋃
〈l,l′〉∈E{t.c〈b, h〉c′ | t.c ∈ S(l) ∧ b = effL(l, l′)

∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

The function nextins defined above captures how the set of cache traces reaching location l′ is
recursively determined by the set of cache traces reaching predecessor locations of l′ and the
memory accesses on the edges from the predecessors to l′.

We can relate the sticky cache trace collecting semantics to the corresponding trace collecting
semantics by the concretization function γins:

γins(S) = {〈l0, c0〉e0〈l1, c1〉 . . . en−1〈ln, cn〉 ∈ Traces | ∀i ≤ n : c0e0 . . . ci ∈ S(li)} (4)

It can be shown that Col(Pins) ⊆ γins(StickyCol(Pins)).

4 A Generic Persistence Analysis Framework

The sticky cache trace collecting semantics defined above associates sets of cache traces with
each program point. These traces may be arbitrarily long and there may be infinitely many
associated with a single program point. Thus, an effective analysis needs to further abstract from
this semantics, by representing potentially infinite sets of cache traces in a finite fashion. Before
discussing particular abstractions of cache traces in Section 5, we show in this section how to lift
any such abstraction to a sound persistence analysis in Sections 4.1 and 4.2, and in Section 4.3 we
show how to characterize the relative precision of different persistence analyses.

4.1 Sound Cache Trace Abstractions
Before formally defining cache trace abstractions, let us informally state their components. First,
we need a set of abstract traces, which will be used by the analysis in place of sets of concrete
cache traces. To enable a proof of correctness, these abstract traces need to be related to sets of
concrete traces by a concretization function, which specifies the set of concrete traces represented
by each abstract trace. Usually no information is available about the initial state of the cache.
Thus, the abstract traces need to contain an initial abstract trace that represents all possible
initial cache states. To combine analysis information at control flow joins, a join operator on
abstract traces is required. The core of a cache trace abstraction is the abstract update function,
which captures the effect of a memory access on abstract cache traces. Finally, a persistence
classification function is required to determine whether a memory block is persistent in all concrete
cache traces represented by an abstract trace. These components yield the following definition of
a cache trace abstraction.

5 We call this semantics “sticky” because it sticks sets of traces to each program location.

J. Reineke 03:9

I Definition 2 (Cache Trace Abstraction). A cache trace abstraction is a tuple

A =
〈
C#

A , γA, ÎA,vA,tA, update#
A , classify

#
A

〉
,

consisting of the following components:
1. C#

A , a set of abstract traces,
2. γA : C#

A → 2CacheTraces, a concretization function, which specifies the set of concrete cache
traces represented by each abstract trace,

3. ÎA ∈ C#
A , an abstract initial trace that represents all possible initial cache states,

4. vA, a partial order on C#
A , such that 〈C#

A ,vA〉 is a complete lattice [9],
5. tA, a join operator on abstract traces6,
6. update#

A : C#
A × B → C#

A , an abstract update function,
7. classify#

A : C#
A × B → B, a persistence classification function.

We will introduce requirements on the components of a cache trace abstraction in Theorems 3
and 4 that together imply correct analysis results.

Given a cache trace abstraction A we can define the abstract next operator as follows:

next#
ins,A(Ŝ) = λl′ ∈ L.

⊔
〈l,l′〉∈E

{update#
A(Ŝ(l), b) | b = effL(l, l′)}

Intuitively, the abstract next operator captures how the analysis state at location l′ depends on
the analysis state at predecessor locations and the abstract update function of the cache trace
abstraction.

Based on the abstract initial trace ÎA, we can define the initial analysis state ÎnitA := λl ∈
L.(l = i ? ÎA : ⊥A) analogously to the definition of Init earlier. The abstract sticky trace collecting
semantics ̂StickyColA is then defined as the least fixpoint of next#

ins,A greater than ÎnitA:

̂StickyColA(Pins) = lfpvA

ÎnitA

next#
ins,A, (5)

where vA is lifted to functions as follows: Ŝ vA T̂ := ∀l ∈ L : Ŝ(l) vA T̂ (l).
In order for the abstract sticky trace collecting semantics to be well-defined, we require

the abstract update function to be monotone in the first parameter. This guarantees that the
abstract next#

ins,A operator is monotone. Then, the Knaster-Tarski fixpoint theorem [9], which is
reproduced in Theorem 30 in the appendix, guarantees the existence of a unique least fixpoint.
Note that requiring the abstract update function to be monotone is not a restriction: the best
abstract update function [4] for a given abstraction is always monotone.

If the partial order vA on abstract traces satisfies the ascending chain condition [18], i.e., if
there are no infinite ascending chains of abstract traces, then ̂StickyColA(Pins) can effectively
be computed by fixpoint iteration [3]. In Section 4.2 we recapitulate a variant of the worklist
algorithm [24, 29] to more efficiently compute ̂StickyColA(Pins).

For the analysis results to be correct, the abstract semantics should soundly approximate its
concrete counterpart. This is the case if the cache trace abstraction satisfies these three conditions,
which are formalized in the following theorem: 1. The abstract initial trace needs to represent all
possible concrete initial cache states. 2. The concretization function needs to be monotone in vA.
3. The abstract update function needs to overapproximate the concrete update of cache states.

6 Note that in a complete lattice 〈L,v〉 the partial order v uniquely defines the join operator t. Vice versa, a
given join operator uniquely defines a corresponding partial order. Nevertheless, we explicitly provide both
partial order and join operator here and in the following.

LITES

03:10 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

I Theorem 3 (Soundness of Persistence Analysis?). If the cache trace abstraction A satisfies the
following conditions:

IC ⊆ γA(ÎA), (6)

∀Ŝ, T̂ ∈ C#
A : Ŝ vA T̂ ⇒ γA(Ŝ) ⊆ γA(T̂), (7)

∀Ŝ ∈ C#
A , b ∈ B : {t.c〈b, h〉c′ | t.c ∈ γA(Ŝ) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(update#
A(Ŝ, b)). (8)

Then, its abstract semantics soundly approximates its concrete counterpart:

StickyCol(Pins) ≤ γA(̂StickyColA(Pins)), (9)

where γA is lifted to functions as follows: γA(Ŝ) = λl ∈ L.γA(Ŝ(l)).
The proof to this theorem, and all other proofs that are not provided in the main part of the

article, can be found in the appendix. Whenever a lemma or theorem is not immediately followed
by its proof, the theorem’s name is marked with a ? and serves as a link to the corresponding
proof in the appendix. Similarly, theorems reproduced without proof in the appendix link back to
their proofs in the main part.

As a consequence, the abstract sticky trace collecting semantics also soundly approximates the
trace collecting semantics:

Col(Pins) ⊆ γins(StickyCol(Pins)) ⊆ γins(γA(̂StickyColA(Pins))).

The following theorem gives a condition on the persistence classification function that implies
correct persistence classifications of memory blocks:

I Theorem 4 (Soundness of Persistence Classification?). If the cache trace abstraction A satisfies
conditions (6), (7), (8) from Theorem 3, and classify#

A satisfies

∀Ŝ ∈ C#
A , b ∈ B : classify#

A(Ŝ, b)⇒

∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA(Ŝ) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b), (10)

then classify#
A(Pins, b) := ∀l ∈ L : classify#

A(̂StickyColA(Pins)(l), b) implies the persistence of
memory block b in program Pins.

The condition on classify#
A in the theorem above is based on the NoEviction persistence

notion from (3). It could be replaced by weaker conditions corresponding to the FirstMiss or the
AtMostOneMiss persistence notions from (1) and (2). However, all persistence analyses we are
aware of can be shown correct using the NoEviction notion.

4.2 Computing the Abstract Sticky Trace Collecting Semantics
Algorithm 1 shows how to compute the abstract sticky trace collecting semantics of a program
for a given cache trace abstraction by Kleene iteration. The algorithm computes an increasing
sequence of analysis states Ŝ0 vA Ŝ1 vA . . . starting from the initial analysis state Ŝ0 = ÎnitA,
until a fixpoint is reached. This process is guaranteed to terminate if the complete lattice of
abstract traces satisfies the ascending chain condition [18].

Algorithm 2 shows a worklist algorithm [24, 29]. The goal of worklist algorithms is to be more
efficient than the Kleene iteration by avoiding redundant recomputations of parts of the abstract
next operator next#

ins,A. Specifically, next
#
ins,A involves the application of the abstract update

function to each edge in the control flow graph. However, update#
A(Ŝ(l), b) in (5) will only deliver

a different value than in the previous iteration if Ŝ(l) has changed in the meantime.

J. Reineke 03:11

Algorithm 1: Kleene Iteration
Input :Control Flow Graph GP = 〈L, E, i〉 and Cache Trace Abstraction A
Output :Abstract Sticky Trace Collecting Semantics ̂StickyColA(Pins)

1 Ŝ0 := ÎnitA
2 i := 0
3 repeat
4 Ŝi+1 := ÎnitA tA next#

ins,A(Ŝi)
5 i := i + 1
6 until Ŝi = Ŝi−1

7 return Ŝi

Algorithm 2: Worklist Algorithm
Input :Control flow Graph GP = 〈L, E, i〉 and Cache Trace Abstraction A
Output :Abstract Sticky Trace Collecting Semantics ̂StickyColA(Pins)

1 Ŝ := ÎnitA
2 worklist := {〈i, l〉 ∈ E}
3 while exists 〈l, l′〉 ∈ worklist do
4 remove 〈l, l′〉 from worklist
5 t := update#

A(Ŝ(l), effL(l, l′))
6 if t 6vA Ŝ(l′) then
7 Ŝ(l′) := t tA Ŝ(l′)
8 worklist := worklist ∪ {〈l′, l′′〉 ∈ E}
9 end

10 end
11 return Ŝ

Worklist algorithms maintain a set of edges, stored in the variable worklist algorithm, whose
source locations have been modified, and which thus have to be (re-)evaluated. Initially, only
those edges emanating from the start node i of the control flow graph need to be evaluated. Thus
worklist is initialized to edges emanating from i in line 2 of the algorithm. While there are edges to
(re-)evaluate, the algorithm picks one of these edges, and removes it from worklist (lines 3 and 4).
If the value update#

A(Ŝ(l), effL(l, l′)) computed (line 5) for an edge is not covered (line 6) by the
abstract trace Ŝ(l′) stored for its target location, then Ŝ(l′) is updated (line 7), and all edges
emanating from l′ need to be recomputed, and are thus added to worklist (line 8).

The performance of worklist algorithms depends on the iteration strategy. If the worklist
contains multiple edges, the iteration strategy determines which edge to pick next. Nielson et
al. [24, Chapter 6.1] discuss various iteration strategies and their performance characteristics.

4.3 On the Relative Precision of Different Cache Trace Abstractions
In Section 5 we introduce various basic approaches to persistence analysis as well as ways of
combining basic approaches to obtain more precise combined analyses. In addition to proving
these approaches correct, we also characterize their relative precision, based on the following
notion of precision:

LITES

03:12 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

I Definition 5 (Precision). Given two cache trace abstractions A and B, we say that A is at least
as precise as B, denoted by A � B, if A classifies each block as persistent that B classifies as
persistent:

∀Pins,∀b : classify#
B (Pins, b)⇒ classify#

A(Pins, b).

We say that A is more precise than B, denoted by A � B, if A � B, but B 6� A. If neither A � B
nor vice versa, we say that A and B are incomparable.

Note that � is a non-strict partial order, i.e., it is reflexive, antisymmetric, and transitive. Its
strict counterpart � is a strict partial order, i.e., it is irreflexive, asymmetric, and transitive.

One way of showing A � B is to show that B is a sound approximation of A, just like we
show that individual domains soundly approximate the concrete trace collecting semantics. This
approach yields the following two theorems, which mirror Theorems 3 and 4:

I Theorem 6 (Approximation of Abstract Semantics?). Given two cache trace abstractions A
and B, and a function γB→A : C#

B → C#
A that satisfies the following conditions:

ÎA ⊆ γB→A(ÎB), (11)

∀Ŝ, T̂ ∈ C#
B : Ŝ vB T̂ ⇒ γB→A(Ŝ) vA γB→A(T̂), (12)

∀Ŝ ∈ C#
B , b ∈ B : update#

A(γB→A(Ŝ), b) vA γB→A(update#
B (Ŝ, b)). (13)

Then, B’s abstract semantics soundly approximates its more concrete counterpart:

̂StickyColA(Pins) vA γB→A(̂StickyColB(Pins)), (14)

where γB→A is lifted to the abstract sticky trace collecting semantics as follows:
γB→A(Ŝ) = λl ∈ L.γB→A(Ŝ(l)).

I Theorem 7 (Precision). Given cache trace abstractions A,B and a function γB→A that satisfies
conditions (11), (12), and (13) from Theorem 6, and further

∀Ŝ ∈ C#
B , b ∈ B : classify#

B (Ŝ, b)⇒ classify#
A(γB→A(Ŝ), b), (15)

∀Ŝ, T̂ ∈ C#
A , b ∈ B : Ŝ vA T̂ ⇒

(
classify#

A(T̂ , b)⇒ classify#
A(Ŝ, b)

)
. (16)

Then, A is at least as precise as B, i.e., A � B.

Proof. From Theorem 6 we have that ̂StickyColA(Pins) vA γB→A(̂StickyColB(Pins)), which by
definition is equivalent to ∀l ∈ L : ̂StickyColA(Pins)(l) vA γB→A(̂StickyColB(Pins)(l)).

Assume classify#
B (Pins, b) for an arbitrary b:

classify#
B (Pins, b) ⇔ ∀l ∈ L : classify#

B (̂StickyColB(Pins)(l), b)
(15)⇒ ∀l ∈ L : classify#

A(γB→A(̂StickyColB(Pins)(l)), b)
(∗)⇒ ∀l ∈ L : classify#

A(̂StickyColA(Pins)(l), b)
⇔ classify#

A(Pins, b)

(∗) follows from (16) and the fact that ∀l ∈ L : ̂StickyColA(Pins)(l) vA γB→A(̂StickyColB(Pins)(l)).
J

Proving that a sound cache trace abstraction A is at least as precise as cache trace abstraction B
also proves B’s soundness:

J. Reineke 03:13

I Theorem 8 (Soundness of Persistence Classification). Given two cache trace abstractions A
and B. If A is sound, and A is at least as precise as B, then B is also sound.

Proof. We need to show that classify#
B (Pins, b) := ∀l ∈ L : classify#

B (̂StickyColB(Pins)(l), b)
implies the persistence of memory block b in program Pins.

Assume classify#
B (Pins, b). Because A is at least as precise as B this implies classify#

A(Pins, b).
As A is sound, this implies the persistence of memory block b in program Pins. J

While we give independent soundness proofs for all persistence analyses introduced in Section 5,
in some cases the relative precision results constitute alternative soundness proofs based on the
above theorem.

5 Instantiations of the Analysis Framework: Abstractions of Cache Traces

In this section, we explain and prove correct existing and new abstractions of cache traces for
cache-persistence analysis.

Paraphrasing the soundness condition from Theorem 4, a memory block is persistent, if it is
guaranteed to remain in the cache in case it has been accessed. This suggests that persistence
analyses should maintain information about memory blocks under the condition that the memory
blocks have been accessed. All sound persistence analyses can be seen as maintaining such
information as we will see below.

Before describing particular analysis domains let us characterize under which conditions a
memory block is guaranteed to be cached under LRU replacement. To this end, we first define
the set LRUCacheTraces, which consists of all cache traces that are possible under LRU
replacement, assuming an arbitrary initial cache state and an arbitrary sequence of memory access:

LRUCacheTraces := {c0〈b0, h0〉c1 . . . cn | c0 ∈ C ∧ ∀i, 0 ≤ i < n : bi ∈ B ∧ (17)
ci+1 = updateLRU

C (ci, bi) ∧ hi = effLRU
C (ci, bi)}

The following lemma precisely captures when a memory block is guaranteed to be cached under
LRU replacement:

I Lemma 9 (Persistence under LRU?). Consider an arbitrary cache trace c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈
LRUCacheTraces. Then cn(b0) < k, if |{bi | 0 ≤ i < n}| ≤ k.

In other words, after a block b is accessed, this block is guaranteed to be cached as long as less
than k distinct conflicting blocks have been accessed.

In Section 5.1, we discuss basic abstractions for persistence analysis. These abstractions either
bound the number of conflicting blocks or overapproximate the set of conflicting blocks for each
memory block. As we will see, these two approaches are incomparable, i.e., neither of the two
dominates the other in terms of precision.

In Section 5.2, we then discuss how to combine these basic abstractions in order to obtain more
precise analyses. By exchanging information during analysis time, such combinations go beyond
simply running two incomparable analyses in parallel. As a consequence they may classify memory
blocks as persistent that none of the basic abstractions would be able to classify as persistent on
its own.

5.1 Basic Abstractions
5.1.1 Global-CS: Global May-Conflict Set
If at most k distinct memory blocks may be accessed in a given cache set, then, following Lemma 9,
none of these blocks may be evicted after entering the cache. Thus, the global may-conflict set

LITES

03:14 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

analysis, abbreviated to Global-CS, overapproximates the set of memory blocks that may have
been accessed, and so its abstract traces are sets of memory blocks:

C#
Global-CS := 2B (18)

An abstract trace Ŝ represents all concrete cache traces that may be formed by accessing blocks
from the set Ŝ:7

γGlobal-CS

(
Ŝ
)

:= LRUCacheTraces ∩ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ} (19)

At program start, no accesses have yet been performed, and so the initial abstract trace is the
empty set, which by γGlobal-CS represents exactly cache traces of length 0, in other words, all
initial cache states:

̂IGlobal-CS := ∅ (20)

In order to soundly approximate all memory blocks that may have been accessed, abstract traces
are joined by taking their union:

Ŝ vGlobal-CS T̂ :⇔ Ŝ ⊆ T̂ Ŝ tGlobal-CS T̂ := Ŝ ∪ T̂ (21)

Upon a memory access, the accessed block is simply added to the abstract trace:

update#
Global-CS

(
Ŝ, b
)

:= Ŝ ∪ {b} (22)

Following Lemma 9, as long as at most k memory blocks have been accessed, any block must still
be cached if it has been accessed:

classify#
Global-CS

(
Ŝ, b
)

:= b ∈ Ŝ ⇒ |Ŝ| ≤ k (23)

See Figure 1 for a small example of the Global-CS analysis. The figure shows the fixpoint of the
set of equations determined by the update and join functions of the analysis on the given control
flow graph. At any point in the loop, each of the blocks v, w, and x may have been accessed. In a
cache of associativity 3 or higher these blocks would all be declared as persistent by Global-CS.
On the other hand, while w and x are persistent even in a cache of associativity 2, the analysis is
unable to detect this.

I Theorem 10 (Soundness of Global May-Conflict Set?). Global-CS is a sound persistence analysis.

If the set of memory blocks B is finite, then C#
Global-CS = 2B is also finite, and thus it satisfies

the ascending chain condition [18, 9], which guarantees termination of the fixpoint iteration to
compute the abstract semantics. Following Davey and Priestley [9], we define the length of an
ascending chain as the number of elements of the chain minus one. The length of a chain thus
corresponds to the number of steps a fixpoint iteration takes to traverse it. The longest ascending
chains in C#

Global-CS are of length |B|, starting from ∅ and ending in B.
For readability we limit our exposition to the analysis of fully-associative caches throughout

the article. The extension to set-associative caches is straightforward: Either, a separate set of
blocks should be maintained for each cache set, or the classification function classify#

Global-CS

(
Ŝ, b
)

should count only those blocks mapping to the same cache set as b.

7 We have found two alternative approaches to formalize the cache trace abstractions discussed in this article:
(1) by constraints on the memory access trace, and (2) by constraints on the resulting final cache states of the
traces. The advantage of approach (1) is that, except for the persistence classification function, it can be
proved correct independently of the employed cache replacement policy.

In approach (1) the final cache states are constrained implicitly by considering only cache traces that are
compatible with the cache replacement policy. Proving correct the persistence classification function then
requires invoking a property of LRU, which is condensed in Lemma 9.

J. Reineke 03:15

v

w x

Global-CS : ∅

Global-CS : {v, w, x}

Global-CS : {v, w, x}

Figure 1 Example illustrating Global-CS.

5.1.2 Block-CS: Block-wise May-Conflict Set
As soon as more than k memory blocks are accessed by a program, no block can be classified
persistent by Global-CS. In such cases, many memory blocks may actually still be persistent:
Following Lemma 9, a block is persistent if at most k−1 distinct other blocks are accessed between
any two accesses to the block itself.

The block-wise may-conflict set analysis, abbreviated to Block-CS, maintains a separate conflict
set for each memory block, rather than a single global conflict set:

C#
Block-CS := B → 2B (24)

Then, an abstract trace Ŝ represents all concrete cache traces in which, following the final access
to a block, only blocks from its conflict set may have been accessed:

γBlock-CS

(
Ŝ
)

:= LRUCacheTraces ∩ (25)

{s = c0〈b0, h0〉 . . . cn | ∀i, 0 ≤ i < n : bi ∈ CSi+1(s) ∨ CSi(s) ⊆ Ŝ(bi)},

where CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.
Similarly to the global conflict-set case, the initial abstract trace assigns the empty conflict set to

each block, which by the concretization function above exactly represents all cache traces of length 0.
At joins, the union of the conflict sets is taken in order to overapproximate the conflicting blocks:

̂IBlock-CS := λb ∈ B.∅ (26)

Ŝ vBlock-CS T̂ :⇔ ∀b ∈ B : Ŝ(b) ⊆ T̂ (b) Ŝ tBlock-CS T̂ := λb ∈ B.Ŝ(b) ∪ T̂ (b) (27)

Upon a memory access, the accessed block b is added to the conflict sets of all memory blocks that
may have been accessed, i.e. blocks for which Ŝ(b′) 6= ∅, and crucially b’s conflict set is reset to con-
tain only b. This is where the analysis profits from maintaining separate conflict sets for each block.

update#
Block-CS

(
Ŝ, b
)

:= λb′.

∅ : b′ 6= b ∧ Ŝ(b′) = ∅
{b} : b′ = b

Ŝ(b′) ∪ {b} : b′ 6= b ∧ Ŝ(b′) 6= ∅
(28)

Finally, a block is locally classified as persistent, if its conflict set, which includes the block itself
if it may have been accessed, is guaranteed to contain at most k blocks:

classify#
Block-CS

(
Ŝ, b
)

:= |Ŝ(b)| ≤ k (29)

LITES

03:16 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

v

w x

Block-CS : v, w, x 7→ ∅

Block-CS : v 7→ {v, w, x}, w 7→ {w, x}, x 7→ {w, x}

Block-CS : v 7→ {v, w, x}, w 7→ {w, x}, x 7→ {w, x}

Figure 2 Example illustrating Block-CS.

Figure 2 shows the result of running Block-CS on the same example program as Global-CS in
the previous section. By tracking each block’s conflict set separately – in contrast to Global-CS–
the analysis is able to determine that w and x are persistent in a cache of associativity 2 as their
conflict sets both only contain w and x.

I Theorem 11 (Soundness of Block-wise May-Conflict Set?). Block-CS is a sound persistence
analysis.

If the set of memory blocks B is finite, then C#
Block-CS = B → 2B is also finite, and thus

it satisfies the ascending chain condition [18, 9], which guarantees termination of the fixpoint
iteration to compute the abstract semantics. More precisely, the longest ascending chains are of
length |B|2: Each of the longest ascending chains begins with the bottom element, i.e., the least
element of the complete lattice, λb ∈ B.∅, mapping each block to an empty conflict set, and ends
in the top element of the complete lattice, λb ∈ B.B, mapping each block to the greatest possible
conflict set, consisting of all |B| memory blocks. In each step of any strictly ascending chain, the
conflict set of at least one of the memory blocks needs to grow by at least one block, while none of
the conflict sets may shrink. Thus, any ascending chain may contain at most |B|2 that are greater
than the bottom element.

We note that due to the classification condition in (29), it is not necessary to distinguish
conflict sets that have more than k elements. Thus, for efficiency, implementations of Block-CS
should represent all conflict sets with more than k elements by a single unique representative. This
has no effect on analysis correctness or precision but reduces the maximum length of ascending
chains to (k + 1) · |B|.

I Theorem 12 (Block-CS vs. Global-CS). Block-CS is more precise than Global-CS.

Proof. In Section 5.1.4 we introduce the conditional may analysis, abbreviated to C-May. In the
same section, in Theorems 16 and 17 we show that Block-CS is more precise than C-May, and
that C-May is more precise than Global-CS. As the more-precise relation is transitive these two
statements imply the theorem. J

We note that by Theorem 8 the above two theorems also imply the correctness of Global-CS.

5.1.3 C-Must: Conditional Must Analysis
The block-wise may-conflict set approach may lose precision at joins, as the union of the conflict
sets needs to be taken. Instead of overapproximating the set of conflicting blocks, the conditional

J. Reineke 03:17

must analysis, abbreviated to C-Must, bounds the number of conflicting blocks. Then it is safe to
take the maximum rather than the sum of the bounds at joins.

The conditional must analysis thus maintains a bound on the size of the conflict sets of each
memory block. A bound of 0 is used to encode that a block is guaranteed not to have been
accessed so far, in which case 0 correctly bounds the size of its conflict set. Further, for the
purpose of classifying a memory block as persistent, it is not useful to track the size of a block’s
conflict set beyond k. Therefore, all bounds greater than k are collapsed to ∞:

C#
C-Must := B → {0, 1, . . . , k,∞} (30)

Its concretization is very similar to that of the block-wise may-conflict set analysis. Instead of
overapproximating a block’s conflict set, the size of its conflict set is bounded:

γC-Must

(
Ŝ
)

:= LRUCacheTraces ∩ (31)

{s = c0〈b0, h0〉 . . . cn | ∀i, 0 ≤ i < n : bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi)},

where, as before, CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.
In the initial abstract cache trace, each block is assigned a bound of 0. By the concretization

function this represents all cache traces of length 0, i.e., traces consisting of an arbitrary initial
cache state but no memory accesses.

̂IC-Must := λb ∈ B.0 (32)

The advantage of the conditional must analysis over the block-wise may-conflict set analysis is
that the maximum of the bounds can be taken at joins, rather than their sum:

Ŝ vC-Must T̂ :⇔ ∀b ∈ B : Ŝ(b) ≤ T̂ (b) Ŝ tC-Must T̂ := λb ∈ B.max{Ŝ(b), T̂ (b)} (33)

Upon a memory access, the sizes of the conflict sets of all memory blocks that may have been
accessed, i.e. for which Ŝ(b′) > 0 holds, may increase by 1, while the accessed block’s conflict set
includes only itself, and so its size bound may be reset to 1.

update#
C-Must

(
Ŝ, b
)

:= λb′.

0 : b′ 6= b ∧ Ŝ(b′) = 0
1 : b′ = b

Ŝ(b′) + 1 : b′ 6= b ∧ 0 < Ŝ(b′) < k

∞ : b′ 6= b ∧ k ≤ Ŝ(b′)

(34)

Because the conflict sets are not tracked explicitly, a single memory block may increase the bound
of another block multiple times. In such scenarios the block-wise may-conflict set analysis may be
more precise.

A memory block is locally classified as persistent, if its conflict set is guaranteed to contain
less than k blocks:

classify#
C-Must

(
Ŝ, b
)

:= Ŝ(b) ≤ k (35)

I Theorem 13 (Soundness of Conditional Must?). C-Must is a sound persistence analysis.

If the set of memory blocks B is finite, then C#
C-Must = B → {0, 1, . . . , k,∞} is also finite, and

thus termination of the fixpoint iteration to compute the abstract semantics is guaranteed. The
longest ascending chains are of length (k + 1) · |B|: Each of the longest ascending chains begins
with the bottom element, i.e., the least element of the complete lattice, λb.0. In each step of any
strictly ascending chain, the bound for at least one block needs to grow, while none of the bounds
may shrink. As the bound of each block may grow at most k+ 1 times, no strictly ascending chain
may be of length greater than (k + 1) · |B|.

LITES

03:18 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

x y

Global-CS : {x, y}
Block-CS : x 7→ {x, y}, y 7→ {x, y}
C-Must: x 7→ ∞, y 7→ ∞

(a) C-Must 6� Global-CS and C-Must 6� Block-CS.

v

w x

Global-CS : {v, w, x}
Block-CS : v 7→ {v, w, x}, ...
C-Must: v 7→ 2, ...

Global-CS : {v, w, x}
Block-CS : v 7→ {v}, ...
C-Must: v 7→ 1, ...

(b) Global-CS 6� C-Must and Block-CS 6� C-Must.

Figure 3 Examples illustrating the incomparability of C-Must with Global-CS and Block-CS.

I Theorem 14 (Global-CS vs. Block-CS). C-Must is incomparable to Global-CS and Block-CS.

Proof. Consider the examples in Figures 3a and 3b. Assume a cache with associativity 2. In the
first example, both x and y are classified as persistent by Global-CS and Block-CS, in constrast
to C-Must. This is because C-Must may account for the same conflicting block multiple times.
On the other hand, in the second example, C-Must classifies v as persistent, while Block-CS and
Global-CS do not. Here, unlike Global-CS and Block-CS, C-Must is able to capture that in any
trace either w or x conflicts with v, but never both. J

From the description of the C-Must analysis it may not be obvious why we choose to call it
the conditional must analysis. The reason is that it strongly resembles the original must analysis
by Ferdinand and Wilhelm [12]. The bound on the size of the conflict set of each memory block
corresponds to a bound on a memory block’s age in the final state of a cache trace under the
condition that the block has been accessed at least once.

5.1.4 C-May: Conditional May Analysis
Somewhat surprisingly it is also possible to classify memory blocks as persistent with an analysis
that determines lower rather than upper bounds on the sizes of memory blocks’ conflict sets.
The conditional may analysis, abbreviated to C-May, maintains a lower bound on the size of the
conflict set of each memory block. These lower bounds need to hold only for blocks that have
been accessed at least once during program execution. In this sense the bounds are conditional.
For the purpose of classifying memory blocks as persistent, it is not useful to track the size of a
block’s conflict set beyond k. Therefore, all lower bounds greater than k are collapsed to k+ 1. In
addition, ∞ is used to indicate that a block has never been accessed: in such cases, ∞ is a correct
lower bound on the block’s conflict set on the set of traces on which it has been accessed, which is
empty.

C#
C-May := B → {1, . . . , k, k + 1,∞} (36)

Its concretization is very similar to that of the conditional must analysis. Instead of bounding the
size of a block’s conflict set from above, it is bounded from below:

γC-May

(
Ŝ
)

:= LRUCacheTraces ∩ (37)

{s = c0〈b0, h0〉 . . . cn | ∀i : 0 ≤ i < n : bi ∈ CSi+1(s) ∨ |CSi(s)| ≥ Ŝ(bi)},

where, as before, CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.

J. Reineke 03:19

In the initial abstract cache trace, each block is assigned a bound of ∞. By the concretization
function this represents all cache traces of length 0, i.e., traces consisting of an arbitrary initial
cache state but no memory accesses.

ÎC-May := λb ∈ B.∞ (38)

At joins the minimum of the lower bounds needs to be taken for each memory block:

Ŝ vC-May T̂ :⇔ ∀b ∈ B : Ŝ(b) ≥ T̂ (b) Ŝ tC-May T̂ := λb ∈ B.min{Ŝ(b), T̂ (b)} (39)

Upon an access, the accessed block’s conflict set shrinks to size 1 (case 1 in (40)). Other block’s
conflict sets may or may not grow (cases 2 and 3 in (40)). It is safe to increase the lower bound
for memory block b′, if the previous lower bound for the accessed block b was at least as high (case
3 below) as its own lower bound, which can be understood by the following case distinction:
1. Either b was actually contained in b′’s conflict set before the access. Then b’s conflict set is a

strict subset of b′’s conflict set, and so Ŝ(b) + 1 ≥ Ŝ(b′) + 1 is a lower bound on the size of b′’s
conflict set.

2. Or b was not contained in b′’s conflict set before the access. Then b′’s conflict set grows by 1
due to the access to b and thus Ŝ(b′) + 1 is a correct lower bound following the access.

Lower bounds beyond k + 1 are not distinguished (case 4 in (40)), and finally, blocks that are
guaranteed not to have been accessed yet retain a lower bound of ∞:

update#
C-May

(
Ŝ, b
)

:= λb′.

1 : b′ = b

Ŝ(b′) : b′ 6= b ∧ Ŝ(b) < Ŝ(b′)
Ŝ(b′) + 1 : b′ 6= b ∧ Ŝ(b) ≥ Ŝ(b′) ∧ Ŝ(b′) ≤ k
k + 1 : b′ 6= b ∧ Ŝ(b) ≥ Ŝ(b′) ∧ Ŝ(b′) = k + 1
∞ : b′ 6= b ∧ Ŝ(b′) =∞

(40)

Maybe surprisingly8, it is possible to classify memory blocks as persistent using the lower bounds
derived by the conditional may analysis. The intuition behind the classification function is the
following: In any concrete cache trace, the conflict sets of the i most-recently-used memory blocks
have sizes 1 to i. So only blocks with a lower bound less than or equal to i may be among these i
most-recently-used blocks. If there are at most i ≤ k memory blocks with a lower bound less than
or equal to i, then at most i blocks compete for the first i locations in the cache. So all of these
blocks must be cached if they have previously been accessed:

classify#
C-May

(
Ŝ, b
)

:= (Ŝ(b) =∞) ∨ (∃i ≤ k : |Ci(Ŝ, b)| < i), (41)

where Ci(Ŝ, b) := {b′ ∈ B | b′ 6= b ∧ Ŝ(b′) ≤ i} is the set of memory blocks with a lower bound less
than or equal to i other than block b. A detailed proof of correctness is given in the proof of the
following theorem:

I Theorem 15 (Soundness of Conditional May?). C-May is a sound persistence analysis.

If the set of memory blocks B is finite, then C#
C-May = B → {1, . . . , k, k + 1,∞} is also finite,

and thus termination of the fixpoint iteration to compute the abstract semantics is guaranteed.
The longest ascending chains are of length (k+ 1) · |B|, which can be seen following the same train
of thought as in the case of C-Must.

8 Classifying a memory block as persistent following Lemma 9 requires deriving an upper bound on the size of a
block’s conflict set. Thus it may be surprising that the lower bounds on blocks’ conflict sets determined by
C-May can be used for this purpose.

LITES

03:20 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

v

w

x

w

C-May: v 7→ ∞, w 7→ ∞, x 7→ ∞
Global-CS : ∅

C-May: v 7→ 1, w 7→ ∞, x 7→ ∞
Global-CS : {v}

C-May: v 7→ 2, w 7→ 1, x 7→ ∞
Global-CS : {v, w}

C-May: v 7→ 3, w 7→ 1, x 7→ 1
Global-CS : {v, w, x}

C-May: v 7→ 3, w 7→ 1, x 7→ 2
Global-CS : {v, w, x}

(a) Global-CS 6� C-May.

v

w

x

Block-CS : w 7→ ∅, x 7→ ∅, ...
C-May: v 7→ ∞, w 7→ ∞, x 7→ ∞

Block-CS : w 7→ {w, x}, x 7→ {x}, ...
C-May: v 7→ 1, w 7→ 2, x 7→ 1

Block-CS : w 7→ {w}, x 7→ {w, x}, ...
C-May: v 7→ 2, w 7→ 1, x 7→ 2

(b) C-May 6� Block-CS.

Figure 4 Examples illustrating that Global-CS 6� C-May and C-May 6� Block-CS.

Let us consider two example programs and their analysis using C-May in Figure 4. On the left,
in Figure 4a, C-May is able to classify both w and x as persistent in a cache of associativity 2,
while none of the blocks are determined persistent by Global-CS. For C-May, the figure shows the
lower bounds on each block’s conflict set at each program point. There are at most two blocks
with a lower bound of 2 at any program point and thus these blocks are guaranteed to be cached
if they have been accessed. On the right, in Figure 4b, C-May is unable to classify w and x as
persistent in a cache of associativity 2, while Block-CS is. This is because all three blocks v, w,
and x have a lower bound less than or equal to 2 within the loop.

I Theorem 16 (C-May vs. Global-CS?). C-May is more precise than Global-CS.

I Theorem 17 (Block-CS vs. C-May?). Block-CS is more precise than C-May.

By Theorem 8, Theorems 11 and 17 also imply the correctness of C-May. Also, due to the
transitivity of the more-precise relation, Theorems 16 and 17 together imply Theorem 12, which
states that Block-CS is more precise than Global-CS.

5.2 Combinations of Basic Abstractions
We have seen four basic cache persistence abstractions: Block-CS, C-May, Global-CS, and C-Must.
Among these, Block-CS is more precise than C-May, which in turn is more precise than Global-CS.
On the other hand, C-Must is incomparable to Block-CS, C-May, and Global-CS.

To obtain more precise analysis results, it may be beneficial to combine incomparable cache
trace abstractions with each other. In Section 5.2.1 we show how to construct the direct product
of two arbitrary abstractions and show that the direct product of two incomparable abstractions
A and B is more precise than A and B individually.

To further increase analysis precision, Section 5.2.2 introduces two ways to exchange information
between two abstractions A and B, which may yield cache trace abstractions that are more precise
than the direct product of A and B. In the remainder of the section, we then show how to exploit

J. Reineke 03:21

these two ways of information exchange to build more precise analyses for various combinations of
basic analyses.

5.2.1 Direct Product of Cache Trace Abstractions
The direct product of two persistence analyses corresponds to running the two analyses in parallel
and classifying a block as persistent if at least one of the two analyses is able to classify the block
persistent. Formally, it is defined as follows:

I Definition 18 (Direct Product). The direct product A×B of two persistence analyses A and B
is the tuple A×B =

〈
C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , update

#
A×B , classify

#
A×B

〉
with

C#
A×B := C#

A × C
#
B ,

γA×B(ŜA, ŜB) := γA(ŜA) ∩ γB(ŜB),

ÎA×B := 〈ÎA, ÎB〉,

〈ŜA, ŜB〉 vA×B 〈T̂A, T̂B〉 :⇔ ŜA vA T̂A ∧ ŜB vB T̂B ,

〈ŜA, ŜB〉 tA×B 〈T̂A, T̂B〉 := 〈ŜA tA T̂A, ŜB tB T̂B〉,

update#
A×B(〈ŜA, ŜB〉, b) := 〈update#

A(ŜA, b), update#
B (ŜB , b)〉,

classify#
A×B(〈ŜA, ŜB〉, b) := classify#

A(ŜA, b) ∨ classify#
B (ŜB , b).

I Theorem 19 (Soundness of Direct Product?). The direct product A×B of two sound persistence
analyses A and B that satisfy (6), (7), (8), and (10) is a sound persistence analysis.

In the proof in the appendix, we show that A×B satisfies the conditions of Theorems 3 and 4,
i.e., (6), (7), (8), and (10), and is thus a sound persistence abstraction.

We note that if both A and B satisfy the ascending chain condition, then so does A×B. Thus,
persistence analysis with a direct product of two analyses terminates if both constituent analyses
are guaranteed to terminate. Moreover, if the lengths of the ascending chains of A and B are
bounded by lA and lB , then the length of A×B’s longest ascending chains is bounded by lA + lB .

I Theorem 20 (Precision of Direct Product). The direct product A×B of two persistence analyses
A and B is at least as precise as A and B, i.e., A×B � A and A×B � B.

Proof. This follows from the fact that the two constituents of A×B exactly mirror A and B,
respectively, and from the fact that

classify#
A(ŜA, b)⇒ classify#

A×B(〈ŜA, ŜB〉, b) = classify#
A(ŜA, b) ∨ classify#

B (ŜB , b),

classify#
B (ŜB , b)⇒ classify#

A×B(〈ŜA, ŜB〉, b) = classify#
A(ŜA, b) ∨ classify#

B (ŜB , b). J

It is not useful to construct the direct product of two analyses A and B if A � B, as the result
is not going to be more precise than A. If, on the other hand, A and B are incomparable, their
direct product will be more precise than both A and B:

I Corollary 21 (Precision of Direct Product). The direct product A×B of two incomparable
persistence analyses A and B is more precise than A and B, i.e., A×B � A and A×B � B.

Proof. From Theorem 20 we already know that A×B � A and A×B � B. Assume for a
contradiction that B � A×B. By transitivity of � this would imply B � A, which contradicts
the assumption that A and B are incomparable. Thus B 6� A×B and so A×B � B. The fact
that A×B � A can be shown analogously. J

LITES

03:22 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

5.2.2 Domain Cooperation
To increase precision, it is sometimes possible for different analyses in a product to exchange
information with each other. Here, we distinguish two ways in which such an information exchange
can take place between two analyses A and B:

State reduction: the analysis state of A is refined using the analysis state of B.
Cooperative update: The abstract update function for A takes into account not only A’s analysis
state but also B’s to compute a more precise successor state.

Below we state correctness conditions for state and update reductions.

I Definition 22 (State Reduction). Let A and B be persistence analyses. A reduction operator
for A in the context of B is a function red : C#

A × C
#
B → C#

A that is reductive and that preserves
concretizations, i.e., for all ŜA ∈ C#

A , ŜB ∈ C
#
B :

red(ŜA, ŜB) vA ŜA, (42)

γA(red(ŜA, ŜB)) ∩ γB(ŜB) = γA(ŜA) ∩ γB(ŜB). (43)

A reduction operator can be used as follows to obtain a potentially more precise reduced
update for the product of A and B:

I Theorem 23 (State Reduction?). Let A and B be sound persistence analyses that satisfy (6),
(7), (8), and (10), and let red be a reduction operator for A in the context of B. Let the reduced
update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (red(update#
A(ŜA, b), update#

B (ŜB , b)), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis that is at least as precise as A×B, i.e., A×B′ � A×B.

Sometimes, it is not possible to come up with a state reduction to transfer information between
two domains A and B, but it is still possible to profit from the information in B during the update
of A. We call such an update cooperative:

I Definition 24 (Cooperative Update). Let A and B be two persistence analyses. A cooperative
update for A in the context of B is a function coop-upd : (C#

A × C
#
B)× B → C#

A , such that:

∀〈ŜA, ŜB〉 ∈ C#
A × C

#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA(ŜA) ∩ γB(ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(coop-upd(〈ŜA, ŜB〉, b)) (44)

Given a cooperative update, it is straightforward to define the following reduced update for
the product of A and B:

I Theorem 25 (Cooperative Update). Let A and B be sound persistence analyses that satisfy (6),
(7), (8), and (10), and let coop-upd be a cooperative update function for A in the context of B.
Let the reduced update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (coop-upd(〈ŜA, ŜB〉, b), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis.

J. Reineke 03:23

Proof. We know that A×B is a sound persistence analysis from Theorem 19. The only condition
from Theorem 4 that involves the update function is (8). Thus all conditions but (8) are fulfilled
by A×B′ as they are fulfilled by A×B.

For (8), we need to show:

∀〈ŜA, ŜB〉 ∈ C#
A×B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA×B(ŜA, ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA×B(red-upd(〈ŜA, ŜB〉, b)) (45)

= γA(coop-upd(〈ŜA, ŜB〉, b)) ∩ γB(update#
B (ŜB , b))

By the soundness of B and by (44) we have

∀ŜA ∈ C#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γB(ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γB(update#
B (ŜB , b)) (46)

∀〈ŜA, ŜB〉 ∈ C#
A × C

#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA×B(ŜA, ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(coop-upd(〈ŜA, ŜB〉, b)) (47)

Together, (46) and (47) imply (45), and thus (8). J

Given the definition of a cooperative update in Definition 24 it is not possible to conclude that
the product A×B′ from Theorem 25 is more precise than A×B . However, it is relatively easy to
see that this is indeed the case if coop-upd(〈ŜA, ŜB〉, b) vA update#

A(ŜA, b) for all ŜA, ŜB , and b.

5.2.3 State Reduction between C-Must and Block-CS
In terms of precision, the block-wise may-conflict set and the conditional must analyses are
incomparable, as the former has more precise updates, while the latter has more precise joins.
Here we show how to exchange information between the two analyses, by a state reduction, to
achieve higher precision than the direct product of the two analyses would.

How can information be exchanged between the two domains? Clearly, the size of the may-
conflict set of a block is also a bound on the number of conflicting blocks. Thus, we introduce the
following reduction operation:

reduceC-Must×Block-CS

(
ŜC-Must, ŜBlock-CS

)
:= λb ∈ B.min

{
ŜC-Must(b), |ŜBlock-CS(b)|

}
(48)

I Theorem 26 (Soundness of the State Reduction between C-Must and Block-CS). The function
reduceC-Must×Block-CS is a reduction operator for C-Must in the context of Block-CS.

Proof. reduceC-Must×Block-CS is reductive, as min
{
ŜC-Must(b), |ŜBlock-CS(b)|

}
≤ ŜC-Must(b).

It remains to show that for all Ŝ1 ∈ C#
C-Must, Ŝ2 ∈ C#

Block-CS:

γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
= γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

As reduceC-Must×Block-CS is reductive and γC-Must×Block-CS is monotone, we have
γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
⊇ γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

LITES

03:24 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

v

w

w

x y

C-Must: v 7→ 4, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

C-Must: v 7→ 1, . . .
Block-CS : v 7→ {v}, . . .

C-Must: v 7→ 2, . . .
Block-CS : x 7→ 1, v 7→ {v, w}, . . .

C-Must: v 7→ 3, . . .
Block-CS : v 7→ {v, w}, . . .

C-Must: v 7→ 4, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

(a) C-Must× Block-CS without domain cooperation.

v

w

w

x y

C-Must: v 7→ 3, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

C-Must: v 7→ 1, . . .
Block-CS : v 7→ {v}, . . .

C-Must: v 7→ 2, . . .
Block-CS : x 7→ 1, v 7→ {v, w}, . . .

C-Must: v 7→ 2 = |{v, w}| , . . .
Block-CS : v 7→ {v, w} , . . .

C-Must: v 7→ 3, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

(b) C-Must× Block-CS with state reduction.

Figure 5 Example illustrating C-Must× Block-CS.

To show that
γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
⊆ γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
, assume for a

contradiction that there is a trace s = c0〈b0, h0〉 . . . cn in γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
that is not in

γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

Then, there must be an i, 0 ≤ i < n, such that |CSi| ≤ Ŝ1(bi) and CSi ⊆ Ŝ2(bi), but |CSi| 6≤
min{Ŝ1(bi), |Ŝ2(bi)|}. However, observe that CSi ⊆ Ŝ2(bi) implies that |CSi| ≤ |Ŝ2(bi)|, and so
|CSi| ≤ min{Ŝ1(bi), |Ŝ2(bi)|}, which yields a contradiction. J

We have seen previously that C-Must and Block-CS are incomparable in terms of precision.
See Figure 5 for an example where the state reduction described above yields a more precise
analysis result than is possible with any of the two analyses in isolation. In the example, v is
persistent in a cache of associativity 3, which neither C-Must nor Block-CS are able to prove on
their own. The example consists of a loop whose body contains two phases, each of which can only
be handled precisely by one of the two domains. In the first phase of the loop body, containing
the two accesses to w, Block-CS is more precise, as it does not double count these two accesses
in v’s conflict set. In the second phase of the loop body, C-Must is more precise as it accounts
for a single conflict due to the potential accesses to x and y, whereas Block-CS accounts for two
conflicts. State reduction enables C-Must to profit from the more precise Block-CS analysis in
the phase of the loop body, reducing the bound for v to 2, as highlighted in the figure on the
right. Due to this reduction, C-Must is then able to show that v is indeed persistent in a cache of
associativity 3.

5.2.4 State Reduction between C-Must and C-May
Similarly to the information exchange between C-Must and Block-CS, information can also be
exchanged between C-Must and C-May.

J. Reineke 03:25

The idea of the reduction is the following: C-May and C-Must provide lower and upper bounds
on the ages of memory blocks that have been accessed. A memory block b’s conflict set may only
include another block c, if c’s lower bound is less than b’s upper bound. Thus b’s conflict set
must be a subset of {b} ∪ {c ∈ B | c 6= b ∧ ŜC-May(c) < ŜC-Must(b)} and so its size is bounded by
|{c ∈ B | c 6= b ∧ ŜC-May(c) < ŜC-Must(b)}|+ 1.

Based on this insight, we introduce the following reduction operation:

reduceC-Must×C-May

(
ŜC-Must, ŜC-May

)
:=

λb ∈ B.min
{
ŜC-Must(b), |{c ∈ B | c 6= b ∧ ŜC-May(c) < ŜC-Must(b)}|+ 1

}
(49)

I Theorem 27 (Soundness of the State Reduction between C-Must and C-May?). The operator
reduceC-Must×C-May is a reduction operator for C-Must in the context of C-May.

On the example program given in Figure 5 the state reduction between C-Must and C-May
yields the same analysis result as the state reduction between C-Must and Block-CS given in the
previous section.

5.2.5 Must Analysis
Recall the update of the C-Must analysis in (34). The bound on the size of a block’s conflict set
is increased by 1 upon any access to a different block (case 3 in (34)). At first sight it may seem
that the update could be improved. It is tempting to take into account the size of the conflict
set of the accessed block, as we did in case of C-May. Unfortunately, any such attempt would
be incorrect: This is because the size bounds determined by C-Must are conditional, i.e., they
only hold given that a block has been accessed at all. Given this definition of C-Must, it is always
possible that an access is the very first access to the given block, which would contribute to the
conflict sets of all other blocks, which have been accessed before, necessitating the update as it is.

In order to improve the update of C-Must, unconditional bounds on the sizes of blocks’ conflict
sets are required. Such unconditional bounds can be determined using the original LRU must
analysis by Ferdinand and Wilhelm [12]. In this section, we recapitulate this must analysis, which
we simply call Must. In order to use it in a cooperative update of C-Must in the context of Must
in Section 5.2.6, we formalize the Must analysis as a persistence analysis. In particular, we provide
a concretization function that expresses the set of cache traces represented by a Must analysis
state. As a stand-alone persistence analysis, Must is not useful at all: no memory block can be
classified as persistent by a stand-alone Must analysis. Its utility in persistence analysis stems
from the fact that it may be used to improve the precision of C-Must via a cooperative update,
which is provided in the following section.

Must analysis maintains an upper bound on the ages of memory blocks, where age bounds
greater than k are collapsed to ∞:

C#
Must := B → {1, . . . , k,∞} (50)

The original formalization of Must in [12] is not based on a trace collecting semantics. There,
an abstract state corresponds to a set of concrete cache states. To fit into our persistence
analysis framework, we here give an alternative formalization that captures the set of cache traces
represented by an abstract cache trace9. The resulting concretization is quite similar to the one

9 We use the term abstract trace rather than abstract state as we interpret it to represent a set of cache traces.

LITES

03:26 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

for C-Must. The difference is that C#
Must(b) must be ∞ for blocks that have not been accessed:

γMust

(
Ŝ
)

:= LRUCacheTraces ∩ (51)

{s = c0〈b0, h0〉 . . . cn | (∀b ∈ B : (∀i, 0 ≤ i < n : bi 6= b)⇒ Ŝ(b) =∞)

∧ ∀i, 0 ≤ i < n : bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi)},

where, as before, CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.
The concretization function given in the original formalization by Ferdinand and Wilhelm [12]

is an abstraction of the one given above. It captures the final cache states of the cache traces
determined by γMust

(
Ŝ
)
, which is sufficient to classify memory accesses as guaranteed hits.

In the initial abstract cache trace, each block is assigned a bound of ∞. By the concretization
function this represents all possible cache traces, in particular those of length 0, i.e., traces
consisting of an arbitrary initial cache state:

ÎMust := λb ∈ B.∞ (52)

As in C-Must the maximum of the bounds is taken at joins:

Ŝ vMust T̂ :⇔ ∀b ∈ B : Ŝ(b) ≤ T̂ (b) Ŝ tMust T̂ := λb ∈ B.max{Ŝ(b), T̂ (b)} (53)

Upon a memory access, the accessed block’s bound is reduced to 1, as its conflict set will only
contain the block itself (case 1, below). Other blocks’ bounds are increased only if the accessed
block’s bound is greater than their bound (cases 2 and 3). This is sound because the bounds are
unconditional in the must analysis.

update#
Must

(
Ŝ, b
)

:= λb′.

1 : b′ = b

Ŝ(b′) : b′ 6= b ∧ Ŝ(b) ≤ Ŝ(b′)
Ŝ(b′) + 1 : b′ 6= b ∧ Ŝ(b) > Ŝ(b′) ∧ Ŝ(b′) < k

∞ : b′ 6= b ∧ Ŝ(b) > Ŝ(b′) ∧ Ŝ(b′) = k

(54)

For completeness, we provide the following classification function. A memory block is locally
classified as persistent, if its bound is less than or equal to k, which implies that the block must
be cached:

classify#
Must

(
Ŝ, b
)

:= Ŝ(b) ≤ k (55)

As the bounds are initialized to ∞, prior to the first access to a block, no block can be classified
as persistent. This is why Must is not useful as a stand-alone persistence analysis.

I Theorem 28 (Soundness of Must Analysis?). Must is a sound persistence analysis.

5.2.6 Cooperative Update for C-Must in the Context of Must
The unconditional bounds computed by Must can be used to improve the update of C-Must. A
cooperative update for C-Must in the context of Must is given below:

coop-updC-Must×Must

(
Ŝ, ŜMust, b

)
:= λb′.

0 : b′ 6= b ∧ Ŝ(b′) = 0
1 : b′ = b

Ŝ(b′) : b′ 6= b ∧ ŜMust(b) ≤ Ŝ(b′)
Ŝ(b′) + 1 : b′ 6= b ∧ ŜMust(b) > Ŝ(b′) ∧ 0 < Ŝ(b′) < k

∞ : b′ 6= b ∧ ŜMust(b) > Ŝ(b′) ∧ k ≤ Ŝ(b′)
(56)

J. Reineke 03:27

v

x

x

C-Must: v 7→ 3, x 7→ 1

C-Must: v 7→ 1, x 7→ 2

C-Must: v 7→ 2, x 7→ 1

C-Must: v 7→ 3, x 7→ 1

(a) C-Must without cooperation with Must.

v

x

x

C-Must: v 7→ 2, x 7→ 1
Must: . . .

C-Must: v 7→ 1, x 7→ 2
Must: . . .

C-Must: v 7→ 2, x 7→ 1
Must: x 7→ 1 , . . .

C-Must: v 7→ 2 , x 7→ 1
Must: . . .

(b) C-Must×Must with cooperative update.

Figure 6 Example illustrating C-Must×Must.

The update differs from the stand-alone update for C-Must in the third case, where the bound
for b′ is not increased even though another block is accessed. The correctness of all other cases
follows from the correctness of the original update for C-Must. Let’s consider the third case more
carefully. It occurs under the condition that b′ 6= b ∧ ŜMust(b) ≤ Ŝ(b′). If Ŝ(b′) = ∞ then the
update is trivially correct. So assume Ŝ(b′) ≤ k and thus also ŜMust(b) ≤ k. In this case, the
correctness of the update can be understood by the following case distinction:
1. Either b was actually contained in b′’s conflict set before the access. Then b′’s conflict set does

not grow due to the access to b and keeping the previous bound on its size is correct.
2. Or b was not contained b′’s conflict set before the access. Crucially, b must have been accessed

before, as ŜMust(b) ≤ k, and so b’s conflict set must contain b′’s conflict set. Further, b’s
conflict set additionally contains b itself. As a consequence, b’s conflict set before the access
contains b′’s conflict set after the access, and thus its bound, ŜMust(b) ≤ Ŝ(b′) is a correct
bound for b′’s conflict set after the access.

A more formal and detailed correctness argument is given in the proof of the following theorem:

I Theorem 29 (Soundness of Cooperative Update?). The function coop-updC-Must×Must is a coop-
erative update for C-Must in the context of Must.

Let’s consider a small example illustrating the benefit of the cooperative update for C-Must in
the context of Must. Figures 6a and 6b show the analysis results of C-Must with and without
cooperation with Must on a loop containing a conditional. Without cooperation, C-Must is unable
to prove that v is persistent in a cache of associativity 2. This is because, the two accesses to x
both cause the bound on the size of v’s conflict set to increase by 1, even though only the first
access to x may actually increase its size. In contrast, C-Must×Must with a cooperative update is
able to prove that v is persistent in a cache of associativity 2, as illustrated in Figure 6b. Here, we
only show the relevant information that Must provides for the cooperative update: Right before
the potential second access to x in the loop, Must determines an unconditional bound on the size
of x’s conflict set of 1. This information is then exploited in the cooperative update to determine
that this second access may not increase the size of v’s conflict set, and so 2 is a correct bound on
v’s conflict set at the end of the loop body.

LITES

03:28 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

5.3 Summary: The Landscape of Persistence Abstractions
In this section, we summarize the results obtained in Sections 5.1 and 5.2. In Section 5.1 we have
seen abstractions following these two general approaches to persistence analysis:
1. Overapproximating the set of conflicting blocks
2. Overapproximating the number of conflicting blocks

Global-CS, C-May, and Block-CS all follow the first of these two approaches. Further, these
three abstractions are totally ordered in terms of precision, with Block-CS strictly dominating
C-May, and C-May strictly dominating Global-CS.

The only basic abstraction following the second approach is C-Must, which is incomparable to
Global-CS, C-May, and Block-CS, i.e., there are cases where C-Must is more precise than Block-CS,
but there are also cases where even Global-CS is more precise than C-Must.

In Section 5.2 we have then seen how to combine two incomparable basic abstractions into their
so-called direct product, which is more precise than its constituents. To further increase analysis
precision, we have also introduced two general mechanisms to exchange information between two
abstractions:

state reduction – where the analysis state of one abstraction is refined based on the analysis
state of another abstraction, and
update reduction – where the update of one abstraction takes into account information provided
by another abstraction.

Then, we have seen three concrete instantiations of these mechanisms: state reductions between
C-Must and Block-CS and between C-Must and C-May, as well as an update reduction between
C-Must and a regular must cache analysis, which we simply call Must here. To facilitate the
update reduction with C-Must, we have formalized Must as a persistence analysis, i.e., as an
abstraction of sets of cache traces rather than sets of cache states.

We note that a state reduction between C-Must and Global-CS could be defined easily, similarly
to the state reduction between C-Must and Block-CS. We do not provide this reduction here,
because we believe that it would have little practical value: We have shown C-May to strictly
dominate Global-CS, while it is hardly more expensive in terms of analysis time and memory
consumption than Global-CS.

Figure 7 illustrates the landscape of persistence abstractions formalized in this article in the
form of a Hasse diagram. Two comparable abstractions are connected by an edge, with the
more precise abstraction drawn higher up in the diagram. Transitive relations are omitted for
readability. Each abstraction is annotated with the corresponding theorem that shows its soundness.
Similarly, relations between abstractions that are not the consequence of a product constructions
are annotated with the corresponding dominance theorem. We also annotate abstractions with
papers from the literature, which are based on the given abstraction. We discuss the related work
in more detail in the following section.

6 Related Work and How It Maps Into the Landscape of Persistence
Abstractions

In 1994, Mueller et al. [20, 1] introduced the “first miss” persistence notion and a corresponding
persistence analysis for direct-mapped instruction caches. Later they extended their analysis to
set-associative data [31] and instruction caches [21] with LRU replacement. The basic idea behind
their analysis for set-associative caches is to collect all conflicting blocks in a given cache set within
a loop. If all conflicting blocks fit into the cache together, then these blocks are classified as “first
miss”. This corresponds to Global-CS applied separately to each loop in the program.

J. Reineke 03:29

C-Must
Thm. 13
[11, 12]

C-Must×C-May
Thm. 27

[6, 8, 7, 32]
C-Must×Must

Thm. 29

C-Must×Block-CS
Thm. 26
[7, 32]

Block-CS
Thm. 11
[17, 7]

C-Must×Must×C-May
Thms. 29+27

[23, 22]

C-Must×Must×Block-CS
Thms. 29+26

C-May
Thm. 15

Global-CS
Thm. 10

[1, 20, 31, 21, 8, 7]

(Must)
Thm. 28
[11, 12]

Thm. 16

Thm. 17

Figure 7 Hasse diagram illustrating the relative precision of different persistence abstractions. The
Must domain is in parentheses because it is not suitable to prove persistence of memory blocks on its own,
but it may be useful in conjunction with other domains.

Ferdinand andWilhelm [11, 12] introduced the “no eviction” persistence notion and a persistence
analysis for set-associative caches. They characterized their analysis [12] as computing “themaximal
position (relative age) for all memory blocks that may be in the cache.” Intuitively, their analysis
thus corresponds to the C-Must analysis defined in this article. However, while their analysis
employs the same join function as in the C-Must analysis, its update function differs; it is identical
to the update function of the Must analysis: upon an access to memory block b only the ages
of younger blocks are incremented. Unfortunately, this is unsound. To our knowledge, Hugues
Cassé was the first to point this out. Given the concretization function of C-Must defined in this
article, it is apparent why the update function is incorrect: C-Must bounds the age (the size of its
conflict set) of a block only in case the block has previously been accessed. If the accessed block
has not been accessed previously, it increases the ages of all other previously accessed blocks (the
sizes of their conflict sets, respectively). Thus, without any additional information, upon an access
to block b, a sound update function has to increase the bounds of all blocks, other than b, that
have potentially been accessed before. The original Must analysis may provide such additional
information, as it provides unconditional bounds on the maximum ages of blocks. The cooperative
update for C-Must in the context of Must defined in Section 5.2.6 shows how to exploit this
information for a more precise update of C-Must.

Aiming to solve the soundness issue of Ferdinand’s analysis, Cullmann [6] proposed an analysis
combining Ferdinand’s persistence analysis with a slightly modified version of the may analysis
from [12]. This combination corresponds to the product of C-Must and C-May, however with a
less precise reduction than the one given in (49).

In a different approach to fix the soundness issues of the original persistence analysis, Huynh et
al. [17] proposed a scope-aware persistence analysis for set-associative data caches. Their analysis
tracks a younger set for each memory block, which corresponds to the Block-CS analysis in this
article. To increase precision in the analysis of data caches, temporal scopes are used to distinguish
different loop iterations in which array accesses in a loop touch different memory blocks.

LITES

03:30 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

Listing 2 Input- and loop-iteration-dependent data accesses.
for (int i=0; i<N; i++) {

k = read_sensor ();
sum[k] = sum[k] + arr[i];

}

Later, Cullmann [8] proposed “set-wise conflict counting”, which corresponds to Global-CS in
this article and is similar to Mueller et al.’s approach. In his dissertation [7], Cullmann discusses
two further analyses:
1. Element-wise conflict counting, which corresponds to the younger-set analysis by Huynh et

al. [17] and Block-CS in this article.
2. Age-tracking conflict counting, which corresponds to the direct product of C-Must and Block-CS

in this article, however, without the state reduction given in (48).

Nagar and Srikant [23, 22] show how to improve the precision of must, may, and persistence
analysis by exchanging information between the analyses via what we call reductions in this
article. Along the way they also identify and correct the soundness issue of Ferdinand’s persistence
analysis. In case of persistence analysis, their approach corresponds to C-Must×Must× C-May
with the update and state reductions given in Theorems 29 and 27.

Similarly to Nagar and Srikant, Zhang and Koutsoukos [32] show how to combine C-Must
and C-May using an update reduction. Their update improves upon Cullmann’s update in the
combination of C-Must and C-May, which only uses the information from C-May to exclude
the eviction of memory blocks from C-Must. Zhang and Koutsoukos also note that Block-CS is
incomparable to C-Must×C-May. They propose to combine C-Must×C-May and Block-CS in a
single analysis to achieve higher precision than any of its constituents. As Block-CS dominates
C-May, the resulting analysis is equivalent to C-Must × Block-CS in our framework (with the
appropriate state reduction), and one might wonder why it could be useful to run the two analyses
together with C-May. However, Zhang and Koutsoukos show how to derive “younger sets” from
C-Must× C-May. Whenever the derived younger set is equal to the one maintained by Block-CS
it is not necessary to explicitly represent the younger set in Block-CS. In this way, the memory
consumption of the analysis can be significantly reduced.

Ballabriga and Cassé [2] note that different blocks can be persistent within different scopes.
For example, while an inner loop may entirely fit into the cache, its enclosing loop might not. In
such a case, a sound persistence analysis would not be able to declare any of the loop’s memory
blocks as persistent. Still, during any execution of the inner loop, each of its memory blocks may
miss the cache at most once. Ballabriga and Cassé thus propose “multi-level” persistence analysis,
which determines for each loop nesting level, whether blocks are persistent within the execution of
the loop at that nesting level. This idea was later also applied to “temporal scopes” by Huynh et
al. [17] as discussed earlier.

7 Extension to Data Caches

In the preceding sections we have focused on persistence analysis for instruction caches. Persistence
analysis for data caches faces the additional challenge that an individual load or store instruction
may result in different data memory accesses depending on the program’s inputs or the loop
iteration the instruction is executed in. Consider the example in Listing 2. Within the loop, the
access to the array arr depends on the loop iteration, and the accesses to the array sum depend
on external sensor inputs.

J. Reineke 03:31

It is possible to employ a control flow abstraction similar to the one described in Section 3.1
to such programs. However, due to input- and loop-iteration-dependent data accesses, some
transitions in the control flow graph will have to be annotated with a set of possible memory
blocks rather than an single one. The abstract trace update function then needs to be lifted to
sets, which can be done in a generic manner as follows:

update#
A

(
Ŝ, B

)
:=
⊔
b∈B

update#
A

(
Ŝ, b
)
, (57)

where B is a set of memory blocks.
In this way, all the persistence analyses discussed in this article can also be applied to the

analysis of data caches. However, this generic approach comes with two drawbacks:
1. Reduced efficiency: Implementing (57) literally, the update and join functions need to be

applied |B| and |B| − 1 times, respectively. So if the set of potentially-accessed blocks B is
large the analysis may become quite costly. However, in most cases, it is fairly straightforward
to derive an expression for update#

A(Ŝ, B) that does not involve applying the original update
and join functions that often. For example, update#

Global-CS(Ŝ, B) =
⊔
b∈B update#

Global-CS(Ŝ, b)
can be simplified to update#

Global-CS(Ŝ, B) = Ŝ ∪B. Nagar and Srikant [23, 22] describe such
simplifications for their persistence analysis.

2. Limited precision: Due to uncertainty about the accessed memory blocks the analysis may
be imprecise. In case of loop-iteration-dependent data accesses, more precise persistence
classifications could be derived by performing the analysis on a more fine-grained abstraction
of the program than its control flow abstraction. For instance, to increase analysis precision,
Huynh et al. [17] introduce temporal scopes to distinguish different loop iterations in which
array accesses in a loop touch different memory blocks.

8 Conclusions and Future Work

Our main goal has been to put persistence analysis on a more solid semantic foundation. We have
argued that persistence is a property of cache traces rather than cache states. Accordingly, we
introduced a trace-based semantics to formally capture varying persistence notions and to enable
rigorous correctness proofs of persistence analyses.

Section 5 demonstrates that persistence analyses can be defined and proved correct as ab-
stractions of a trace collecting semantics; we believe rather elegantly. Such formalizations also
contribute to a better understanding of how and why an analysis works, simply by requiring
its designer to precisely capture the meaning of the abstraction that the analysis is based upon.
To our own surprise, it is possible to explain the essence of all prior persistence abstractions as
combinations of just a few rather basic abstractions.

We note that our focus has been on the underlying abstractions and not on their efficient
implementation. Different implementations of the same abstraction will deliver the same persistence
classifications, but may exhibit different performance characteristics, in particular in terms of
space consumption. This is, for example, demonstrated by Zhang and Koutsoukous [32], who
show how to implement Block-CS more efficiently than a straightforward implementation that
directly matches its logical definition.

In this article, we have only considered private single-level caches with LRU replacement.
Future work should consider replacement policies other than LRU, which have received some
attention in classifying cache analysis [26, 27, 25, 13, 14] and in the broader scope of quantitative
cache analysis [16, 15], but which have so far received very little attention in persistence analysis.
It may also be interesting to study persistence analysis for shared caches in multi cores. Such

LITES

03:32 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

shared caches are usually second- or third-level caches and thus any step in this direction would
also require the analysis of multi-level caches. The lattice of abstractions in Figure 7 may be a
good starting point for a rigorous experimental evaluation of the various persistence analyses that
have been proposed to date. All abstractions studied in this article are sound but incomplete. It
is conceivable to design a sound and complete persistence analysis along the lines of the recent
work of Touzeau et al. [30].

Acknowledgments. I would like to sincerely thank the anonymous reviewers for their help in
improving this paper.

References
1 Robert D. Arnold, Frank Mueller, David B. Whal-

ley, and Marion G. Harmon. Bounding worst-
case instruction cache performance. In Proceedings
of the 15th IEEE Real-Time Systems Symposium
(RTSS ’94), San Juan, Puerto Rico, December 7-
9, 1994, pages 172–181. IEEE Computer Society,
1994. doi:10.1109/REAL.1994.342718.

2 Clément Ballabriga and Hugues Cassé. Improv-
ing the first-miss computation in set-associative
instruction caches. In 20th Euromicro Confer-
ence on Real-Time Systems, ECRTS 2008, 2-4
July 2008, Prague, Czech Republic, Proceedings,
pages 341–350. IEEE Computer Society, 2008. doi:
10.1109/ECRTS.2008.34.

3 Patrick Cousot and Radhia Cousot. Abstract inter-
pretation: A unified lattice model for static analy-
sis of programs by construction or approximation
of fixpoints. In Robert M. Graham, Michael A.
Harrison, and Ravi Sethi, editors, Conference
Record of the Fourth ACM Symposium on Princi-
ples of Programming Languages, Los Angeles, Cal-
ifornia, USA, January 1977, pages 238–252. ACM,
1977. doi:10.1145/512950.512973.

4 Patrick Cousot and Radhia Cousot. Systematic
design of program analysis frameworks. In Al-
fred V. Aho, Stephen N. Zilles, and Barry K.
Rosen, editors, Conference Record of the Sixth
Annual ACM Symposium on Principles of Pro-
gramming Languages, San Antonio, Texas, USA,
January 1979, pages 269–282. ACM Press, 1979.
doi:10.1145/567752.567778.

5 Patrick Cousot and Radhia Cousot. Basic concepts
of abstract interpretation. In René Jacquart, edi-
tor, Building the Information Society, IFIP 18th
World Computer Congress, Topical Sessions, 22-
27 August 2004, Toulouse, France, volume 156
of IFIP, pages 359–366. Kluwer/Springer, 2004.
doi:10.1007/978-1-4020-8157-6_27.

6 Christoph Cullmann. Cache persistence analy-
sis: a novel approachtheory and practice. In Jan
Vitek and Bjorn De Sutter, editors, Proceedings
of the ACM SIGPLAN/SIGBED 2011 conference
on Languages, compilers, and tools for embedded
systems, LCTES 2011, Chicago, IL, USA, April
11-14, 2011, pages 121–130. ACM, 2011. doi:
10.1145/1967677.1967695.

7 Christoph Cullmann. Cache persistence analy-
sis for embedded real-time systems. PhD thesis,
Saarland University, Saarbrücken, Germany, 2013.
URL: http://d-nb.info/1052779867.

8 Christoph Cullmann. Cache persistence analy-
sis: Theory and practice. ACM Trans. Embed-
ded Comput. Syst., 12(1s):40:1–40:25, 2013. doi:
10.1145/2435227.2435236.

9 B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge University Press,
second edition, 2002.

10 Goran Doychev, Boris Köpf, Laurent Mauborgne,
and Jan Reineke. Cacheaudit: A tool for the static
analysis of cache side channels. ACM Trans. Inf.
Syst. Secur., 18(1):4:1–4:32, 2015. doi:10.1145/
2756550.

11 Christian Ferdinand. Cache behavior prediction
for real-time systems. PhD thesis, Saarland Uni-
versity, Saarbrücken, Germany, 1997. URL: http:
//d-nb.info/953983706.

12 Christian Ferdinand and Reinhard Wilhelm. Effi-
cient and precise cache behavior prediction for real-
time systems. Real-Time Systems, 17(2-3):131–
181, 1999. doi:10.1023/A:1008186323068.

13 Daniel Grund and Jan Reineke. Precise and ef-
ficient fifo-replacement analysis based on static
phase detection. In 22nd Euromicro Conference on
Real-Time Systems, ECRTS 2010, Brussels, Bel-
gium, July 6-9, 2010, pages 155–164. IEEE Com-
puter Society, 2010. doi:10.1109/ECRTS.2010.8.

14 Daniel Grund and Jan Reineke. Toward precise
PLRU cache analysis. In Björn Lisper, editor, 10th
International Workshop on Worst-Case Execution
Time Analysis, WCET 2010, July 6, 2010, Brus-
sels, Belgium, volume 15 of OASICS, pages 23–
35. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany, 2010. doi:10.4230/OASIcs.WCET.
2010.23.

15 Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu.
WCET analysis with MRU cache: Challenging
LRU for predictability. ACM Trans. Embedded
Comput. Syst., 13(4s):123:1–123:26, 2014. doi:
10.1145/2584655.

16 Nan Guan, Xinping Yang, Mingsong Lv, andWang
Yi. FIFO cache analysis for WCET estimation: a
quantitative approach. In Enrico Macii, editor, De-
sign, Automation and Test in Europe, DATE 13,
Grenoble, France, March 18-22, 2013, pages 296–
301. EDA Consortium San Jose, CA, USA / ACM
DL, 2013. doi:10.7873/DATE.2013.073.

17 Bach Khoa Huynh, Lei Ju, and Abhik Roychoud-
hury. Scope-aware data cache analysis for WCET
estimation. In 17th IEEE Real-Time and Em-
bedded Technology and Applications Symposium,

http://dx.doi.org/10.1109/REAL.1994.342718
http://dx.doi.org/10.1109/ECRTS.2008.34
http://dx.doi.org/10.1109/ECRTS.2008.34
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1007/978-1-4020-8157-6_27
http://dx.doi.org/10.1145/1967677.1967695
http://dx.doi.org/10.1145/1967677.1967695
http://d-nb.info/1052779867
http://dx.doi.org/10.1145/2435227.2435236
http://dx.doi.org/10.1145/2435227.2435236
http://dx.doi.org/10.1145/2756550
http://dx.doi.org/10.1145/2756550
http://d-nb.info/953983706
http://d-nb.info/953983706
http://dx.doi.org/10.1023/A:1008186323068
http://dx.doi.org/10.1109/ECRTS.2010.8
http://dx.doi.org/10.4230/OASIcs.WCET.2010.23
http://dx.doi.org/10.4230/OASIcs.WCET.2010.23
http://dx.doi.org/10.1145/2584655
http://dx.doi.org/10.1145/2584655
http://dx.doi.org/10.7873/DATE.2013.073

Jan Reineke 03:33

RTAS 2011, Chicago, Illinois, USA, 11-14 April
2011, pages 203–212. IEEE Computer Society,
2011. doi:10.1109/RTAS.2011.27.

18 Gary A. Kildall. A unified approach to global pro-
gram optimization. In Patrick C. Fischer and Jef-
frey D. Ullman, editors, Conference Record of the
ACM Symposium on Principles of Programming
Languages, Boston, Massachusetts, USA, Octo-
ber 1973, pages 194–206. ACM Press, 1973. doi:
10.1145/512927.512945.

19 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard
Wilhelm, and Wang Yi. A survey on static cache
analysis for real-time systems. LITES, 3(1):05:1–
05:48, 2016. doi:10.4230/LITES-v003-i001-a005.

20 Frank Mueller. Static cache simulation and
its applications. PhD thesis, Florida State
University, Tallahassee, United States, 1994.
URL: http://www.cs.fsu.edu/~whalley/papers/
mueller_diss94.pdf.

21 Frank Müller. Timing analysis for instruction
caches. Real-Time Systems, 18(2/3):217–247, 2000.
doi:10.1023/A:1008145215849.

22 Kartik Nagar. Cache analysis for multi-level data
caches. Master’s thesis, Indian Institute of Science,
Bangalore, India, 2012.

23 Kartik Nagar and Y. N. Srikant. Interdependent
cache analyses for better precision and safety. In
Tenth ACM/IEEE International Conference on
Formal Methods and Models for Codesign, MEM-
CODE 2012, Arlington, VA, USA, July 16-17,
2012, pages 99–108. IEEE, 2012. doi:10.1109/
MEMCOD.2012.6292306.

24 Flemming Nielson, Hanne R. Nielson, and Chris
Hankin. Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

25 Jens Palsberg and Zhendong Su, editors. Static
Analysis, 16th International Symposium, SAS
2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings, volume 5673 of Lecture Notes in Com-
puter Science. Springer, 2009. doi:10.1007/978-
3-642-03237-0.

26 Jan Reineke. Caches in WCET Analy-
sis. PhD thesis, Universität des Saarlan-
des, November 2008. URL: http://rw4.cs.

uni-saarland.de/~reineke/publications/
DissertationCachesInWCETAnalysis.pdf.

27 Jan Reineke and Daniel Grund. Relative compet-
itive analysis of cache replacement policies. In
Krisztián Flautner and John Regehr, editors, Pro-
ceedings of the 2008 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES’08), Tucson, AZ,
USA, June 12-13, 2008, pages 51–60. ACM, 2008.
doi:10.1145/1375657.1375665.

28 Xavier Rival and Laurent Mauborgne. The trace
partitioning abstract domain. ACM Trans. Pro-
gram. Lang. Syst., 29(5):26, 2007. doi:10.1145/
1275497.1275501.

29 Helmut Seidl, Reinhard Wilhelm, and Sebastian
Hack. Compiler Design - Analysis and Transfor-
mation. Springer, 2012. doi:10.1007/978-3-642-
17548-0.

30 Valentin Touzeau, Claire Maïza, David Monniaux,
and Jan Reineke. Ascertaining uncertainty for ef-
ficient exact cache analysis. In Rupak Majum-
dar and Viktor Kuncak, editors, Computer Aided
Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II, volume 10427 of Lecture
Notes in Computer Science, pages 22–40. Springer,
2017. doi:10.1007/978-3-319-63390-9_2.

31 Randall T. White, Christopher A. Healy, David B.
Whalley, Frank Mueller, and Marion G. Harmon.
Timing analysis for data caches and set-associative
caches. In 3rd IEEE Real-Time Technology and
Applications Symposium, RTAS ’97, Montreal,
Canada, June 9-11, 1997, pages 192–202. IEEE
Computer Society, 1997. doi:10.1109/RTTAS.1997.
601358.

32 Zhenkai Zhang and Xenofon D. Koutsoukos. Im-
proving the precision of abstract interpretation
based cache persistence analysis. In Sam H. Noh,
Sebastian Fischmeister, and Jason Xue, editors,
Proceedings of the 16th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools
for Embedded Systems, LCTES 2015, CD-ROM,
Portland, OR, USA, June 18 - 19, 2015, pages
10:1–10:10. ACM, 2015. doi:10.1145/2670529.
2754967.

A Proofs

I Definition 1 (Persistence in a Program). Memory block b is persistent in program P , if

∀τ ∈ Col(P) : AtMostOneMiss(τ, b).

I Definition 2 (Cache Trace Abstraction). A cache trace abstraction is a tuple

A =
〈
C#

A , γA, ÎA,vA,tA, update#
A , classify

#
A

〉
,

consisting of the following components:
1. C#

A , a set of abstract traces,
2. γA : C#

A → 2CacheTraces, a concretization function, which specifies the set of concrete cache
traces represented by each abstract trace,

LITES

http://dx.doi.org/10.1109/RTAS.2011.27
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.4230/LITES-v003-i001-a005
http://www.cs.fsu.edu/~whalley/papers/mueller_diss94.pdf
http://www.cs.fsu.edu/~whalley/papers/mueller_diss94.pdf
http://dx.doi.org/10.1023/A:1008145215849
http://dx.doi.org/10.1109/MEMCOD.2012.6292306
http://dx.doi.org/10.1109/MEMCOD.2012.6292306
http://dx.doi.org/10.1007/978-3-642-03237-0
http://dx.doi.org/10.1007/978-3-642-03237-0
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://dx.doi.org/10.1145/1375657.1375665
http://dx.doi.org/10.1145/1275497.1275501
http://dx.doi.org/10.1145/1275497.1275501
http://dx.doi.org/10.1007/978-3-642-17548-0
http://dx.doi.org/10.1007/978-3-642-17548-0
http://dx.doi.org/10.1007/978-3-319-63390-9_2
http://dx.doi.org/10.1109/RTTAS.1997.601358
http://dx.doi.org/10.1109/RTTAS.1997.601358
http://dx.doi.org/10.1145/2670529.2754967
http://dx.doi.org/10.1145/2670529.2754967

03:34 Appendix

3. ÎA ∈ C#
A , an abstract initial trace that represents all possible initial cache states,

4. vA, a partial order on C#
A , such that 〈C#

A ,vA〉 is a complete lattice [9],
5. tA, a join operator on abstract traces10,
6. update#

A : C#
A × B → C#

A , an abstract update function,
7. classify#

A : C#
A × B → B, a persistence classification function.

In the proof of the following theorem, we will make use of Knaster-Tarski’s fixpoint theorem.
Many variants of Knaster-Tarski’s fixpoint theorem can be found in the literature. Below, we
reproduce one such variant and its proof from [9], adapted to the terminology used in this article:

I Theorem 30 (Knaster-Tarski Fixpoint Theorem). Let (L,≤) be a complete lattice and F : L→ L

a monotone function. Let
∧
A denote the greatest lower bound of A ⊆ L. Then,

α :=
∧
{x ∈ L | F (x) ≤ x}

is a fixpoint of F . Further, α is the least fixpoint of F .

Proof. Let H = {x ∈ L | F (x) ≤ x}. For all x ∈ H, we have α ≤ x, so F (α) ≤ F (x) ≤ x. Thus
F (α) is a lower bound of H, and so F (α) ≤ α, as α is the greatest lower bound of H.

Since F is monotone, F (F (α)) ≤ F (α), and so F (α) ∈ H, and thus α ≤ F (α). Thus we have
established that α is a fixpoint of F .

If β is any fixpoint of F , then β ∈ H, and so α ≤ β. Thus α is the least fixpoint of F . J

I Theorem 3 (Soundness of Persistence Analysis). If the cache trace abstraction A satisfies the
following conditions:

IC ⊆ γA(ÎA), (6)

∀Ŝ, T̂ ∈ C#
A : Ŝ vA T̂ ⇒ γA(Ŝ) ⊆ γA(T̂), (7)

∀Ŝ ∈ C#
A , b ∈ B : {t.c〈b, h〉c′ | t.c ∈ γA(Ŝ) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(update#
A(Ŝ, b)). (8)

Then, its abstract semantics soundly approximates its concrete counterpart:

StickyCol(Pins) ≤ γA(̂StickyColA(Pins)), (9)

where γA is lifted to functions as follows: γA(Ŝ) = λl ∈ L.γA(Ŝ(l)).

Proof. We first show that (8) implies the “local consistency” of next#
ins,A relative to nextins, i.e.,

nextins(γA(Ŝ)) ≤ γA(next#
ins,A(Ŝ)).

Choose an arbitrary l′ ∈ L. Then:

nextins(γA(Ŝ))(l′) Def.=
⋃
〈l,l′〉∈E{t.c〈b, h〉c′ | t.c ∈ γA(Ŝ)(l)
∧b = effL(l, l′) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

(8)
⊆

⋃
〈l,l′〉∈E γA(update#

A(Ŝ(l), effL(l, l′)))
(7)
⊆ γA(

⊔
〈l,l′〉∈E update#

A(Ŝ(l), effL(l, l′)))
Def.= γA(next#

ins,A(Ŝ)(l′))

10Note that in a complete lattice 〈L,v〉 the partial order v uniquely defines the join operator t. Vice versa, a
given join operator uniquely defines a corresponding partial order. Nevertheless, we explicitly provide both
partial order and join operator here and in the following.

Jan Reineke 03:35

From this it follows that γA(̂StickyColA(Pins)) is a post fixpoint of nextins:

γA(̂StickyColA(Pins))
fixpoint= γA(ÎnitA tA next#

ins,A(̂StickyColA(Pins)))
(7)
≥ γA(Înit) ∨ γA(next#

ins,A(̂StickyColA(Pins)))
“local consistency”

≥ γA(Înit) ∨ nextins(γA(̂StickyColA(Pins)))
(6)
≥ Init ∨ nextins(γA(̂StickyColA(Pins)))

In order to apply Knaster-Tarski’s fixpoint theorem, we need to show that the domain of the sticky
cache trace collecting semantics (L → 2CacheTraces,≤) is a complete lattice, and that nextins is
a monotone function. The power set 2A of any set A is a complete lattice with respect to the
subset relation ⊆. Thus (2CacheTraces,⊆) is a complete lattice. Also, the total function space
A→ B between a set A and a complete lattice (B,≤) is a complete lattice w.r.t. to the pointwise
ordering f ≤ g :⇔ ∀a ∈ A : f(a) ≤ g(a). Thus L → 2CacheTraces is a complete lattice w.r.t. to ≤,
as it is defined in Section 3.2.

To see that nextins is monotone w.r.t. ≤, first observe that the lifting F (X) := {f(x) | x ∈ X}
of any function f to sets is a monotone function w.r.t. ⊆, i.e., if X ⊆ Y , then also F (X) ⊆ F (Y).
Thus F (l, l′) := {t.c〈b, h〉c′ | t.c ∈ X ∧ b = effL(l, l′) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)} is
monotone w.r.t. ⊆ for any l, l′. Also, the union of multiple monotone functions w.r.t. ⊆ is
monotone w.r.t. ⊆. Finally, the pointwise application of monotone functions w.r.t. ≤ is monotone
w.r.t. its pointwise extension ≤, as defined in Section 3.2, and so nextins is monotone. Further,
any constant function is monotone w.r.t. to any order. Thus, the pointwise union of the constant
function Init and nextins is monotone as well.

Applying Knaster-Tarski’s fixpoint theorem to the complete lattice (L → 2CacheTraces,≤) and
the monotone function Init∨ nextins, we get that its post fixpoint γA(̂StickyColA(Pins)) is greater
than or equal to its least fixpoint

StickyCol(Pins)
Def.= lfp≤Init nextins

= lfp≤(Init ∨ nextins)
Knaster-Tarski=

∧
{x | x ≥ Init ∨ nextins(x)}. J

I Theorem 4 (Soundness of Persistence Classification). If the cache trace abstraction A satisfies
conditions (6), (7), (8) from Theorem 3, and classify#

A satisfies

∀Ŝ ∈ C#
A , b ∈ B : classify#

A(Ŝ, b)⇒

∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA(Ŝ) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b), (10)

then classify#
A(Pins, b) := ∀l ∈ L : classify#

A(̂StickyColA(Pins)(l), b) implies the persistence of
memory block b in program Pins.

Proof. Proof by contradiction. Assume that ∀l ∈ L : classify#
A(̂StickyColA(Pins)(l), b) holds for

some memory block b, but b is not persistent in Pins according to Definition 1. Then, there must
be a trace τ = 〈l0, c0〉e0〈l1, c1〉e1 . . . en−1〈ln, cn〉 ∈ Col(Pins), such that AtMostOneMiss(τ, b) does
not hold. Let i and j be such that ei = ej = 〈b,miss〉 and i < j.

By conditions (6), (7), and (8), Theorem 3 holds, and so

Col(Pins) ⊆ γins(StickyCol(Pins)) ⊆ γins(γA(̂StickyColA(Pins))).

So τ ∈ γins(γA(̂StickyColA(Pins))). By (4), this implies that

c0e0. . .cj ∈ γA(̂StickyColA(Pins))(lj) = γA(̂StickyColA(Pins)(lj)).

LITES

03:36 Appendix

By assumption classify#
A(̂StickyColA(Pins)(lj), b) holds, and so due to (10), we have

b ∈ cj ∨ (∀i, 0 ≤ i < j : bi 6= b).

As ei = 〈b,miss〉, we can exclude the second part of the disjunction. However, b ∈ cj contradicts
ej = 〈b,miss〉, which concludes the proof. J

I Definition 5 (Precision). Given two cache trace abstractions A and B, we say that A is at least
as precise as B, denoted by A � B, if A classifies each block as persistent that B classifies as
persistent:

∀Pins,∀b : classify#
B (Pins, b)⇒ classify#

A(Pins, b).

We say that A is more precise than B, denoted by A � B, if A � B, but B 6� A. If neither A � B
nor vice versa, we say that A and B are incomparable.

I Theorem 6 (Approximation of Abstract Semantics). Given two cache trace abstractions A and B,
and a function γB→A : C#

B → C#
A that satisfies the following conditions:

ÎA ⊆ γB→A(ÎB), (11)

∀Ŝ, T̂ ∈ C#
B : Ŝ vB T̂ ⇒ γB→A(Ŝ) vA γB→A(T̂), (12)

∀Ŝ ∈ C#
B , b ∈ B : update#

A(γB→A(Ŝ), b) vA γB→A(update#
B (Ŝ, b)). (13)

Then, B’s abstract semantics soundly approximates its more concrete counterpart:

̂StickyColA(Pins) vA γB→A(̂StickyColB(Pins)), (14)

where γB→A is lifted to the abstract sticky trace collecting semantics as follows:
γB→A(Ŝ) = λl ∈ L.γB→A(Ŝ(l)).

Proof. We first show that (13) implies the “local consistency” of next#
ins,B relative next#

ins,A,
i.e., next#

ins,a(γB→A(Ŝ)) vA γB→A(next#
ins,B(Ŝ)).

Choose an arbitrary l′ ∈ L. Then:

next#
ins,A(γB→A(Ŝ))(l′) Def.=

⊔
〈l,l′〉∈E update#

A(γB→A(Ŝ(l)), effL(l, l′))
(13)
vA

⊔
〈l,l′〉∈E γB→A(update#

B (Ŝ(l), effL(l, l′)))
(12)
vA γB→A(

⊔
〈l,l′〉∈E update#

B (Ŝ(l), effL(l, l′)))
Def.= γB→A(next#

ins,B(Ŝ)(l′))

From this it follows that γB→A(̂StickyColB(Pins)) is a post fixpoint of next#
ins,A:

γB→A(̂StickyColB(Pins))
fixpoint= γB→A(ÎnitB tB next

#
ins,B(̂StickyColB(Pins)))

(12)
wA γB→A(ÎnitB) tA γB→A(next#

ins,B(̂StickyColB(Pins)))
“local consistency”

wA γB→A(ÎnitB) tA next#
ins,A(γB→A(̂StickyColB(Pins)))

(11)
wA ÎnitA tA nextins(γB→A(̂StickyColB(Pins)))

In order to apply Knaster-Tarski’s fixpoint theorem, we need to show that the domain of abstrac-
tion A, (L → C#

A ,vA) is a complete lattice, and that next#
ins,A is a monotone function. The total

function space A→ B between a set A and a complete lattice (B,≤) is a complete lattice w.r.t.

Jan Reineke 03:37

to the pointwise ordering f ≤ g :⇔ ∀a ∈ A : f(a) ≤ g(a). Thus L → C#
A is a complete lattice

w.r.t. to vA, as it is defined in Section 4.1.
To see that next#

ins,A is monotone w.r.t. vA, observe that by assumption update#
A is monotone

in its first parameter. Thus, Fl,l′(X) := update#
A(Ŝ(l), effL(l, l′)) is monotone in Ŝ for any l, l′.

Also, the least upper bound of multiple monotone functions is a monotone function, and so
F (l′) :=

⊔
〈l,l′〉∈E{update

#
A(Ŝ(l), b) | b = effL(l, l′)} is monotone in Ŝ. Finally, the pointwise

application of monotone functions w.r.t. ≤ is monotone w.r.t. its pointwise extension ≤, and so
next#

ins,A = λl′ ∈ L.F (l′) is monotone. Further, any constant function is monotone w.r.t. to any
order. Thus, the pointwise union of the constant function ÎnitA and next#

ins,A is monotone as
well.

Applying Knaster-Tarski’s fixpoint theorem to the complete lattice (L → C#
A ,vA) and the

monotone function ÎnitA tA next#
ins,A, we get that its post fixpoint γB→A(̂StickyColB(Pins)) is

greater than or equal to its least fixpoint:

̂StickyColA(Pins)
Def.= lfpvA

ÎnitA

next#
ins,A

= lfpvA ÎnitA tA next#
ins,A

Knaster-Tarski= ⊔

A

{x | x wA ÎnitA tA next#
ins,A(x)}. J

Whenever the proof of a theorem is in the main part of the article, the name of the theorem is
marked with a ? and serves as a link to the corresponding proof. The first example of such a case
is the following theorem:

I Theorem 7 (Precision?). Given cache trace abstractions A,B and a function γB→A that satisfies
conditions (11), (12), and (13) from Theorem 6, and further

∀Ŝ ∈ C#
B , b ∈ B : classify#

B (Ŝ, b)⇒ classify#
A(γB→A(Ŝ), b), (15)

∀Ŝ, T̂ ∈ C#
A , b ∈ B : Ŝ vA T̂ ⇒

(
classify#

A(T̂ , b)⇒ classify#
A(Ŝ, b)

)
. (16)

Then, A is at least as precise as B, i.e., A � B.

I Theorem 8 (Soundness of Persistence Classification?). Given two cache trace abstractions A
and B. If A is sound, and A is at least as precise as B, then B is also sound.

I Lemma 31 (Monotonicity of LRU). Consider an arbitrary cache trace c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈
LRUCacheTraces. Assume that c0(b) > c0(b′) and b 6∈ {b0, b1, . . . , bn−1}. Then:

∀i, 0 ≤ i ≤ n : ci(b) > ci(b′).

Proof. Proof by induction over i:
Base case (i = 0):
c0(b) > c0(b′) holds by assumption.
Inductive step:
We must show that ci+1(b) > ci+1(b′).
By the inductive hypothesis (I.H.) we have ci(b) > ci(b′).
We distinguish two cases:
1. ci(b) > ci(b′) + 1:

By the definition of updateLRU
C we have ci(b′) + 1 ≥ ci+1(b′).

As by assumption b 6= bi, it also follows from the definition of updateLRU
C that ci+1(b) ≥ ci(b).

Thus, ci+1(b) ≥ ci(b) > ci(b′) + 1 ≥ ci+1(b′).

LITES

03:38 Appendix

2. ci(b) = ci(b′) + 1:
We distinguish four cases based on the value of ci(bi):
ci(bi) < ci(b′):
By the definition of updateLRU

C (third case), ci+1(b′) = ci(b′) and ci+1(b) = ci(b).
And so ci+1(b) = ci(b)

I.H.
> ci(b′) = ci+1(b′).

ci(bi) = ci(b′):
This implies that bi = b′. Thus, by the definition of updateLRU

C , ci+1(b′) first case= 0 <

ci(b′) + 1 = ci+1(b) third case= ci(b).
ci(bi) = ci(b):
This implies that bi = b, which contradicts our assumption that b 6∈ {b0, b1, . . . , bn−1}.
ci(bi) > ci(b′):
By the definition of updateLRU

C , ci+1(b′) second case= ci(b′)+1 and ci+1(b) second case= ci(b)+1.
And so ci+1(b) = ci(b) + 1

I.H.
> ci(b′) + 1 = ci+1(b′). J

I Lemma 9 (Persistence under LRU). Consider an arbitrary cache trace c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈
LRUCacheTraces. Then cn(b0) < k, if |{bi | 0 ≤ i < n}| ≤ k.

Proof. Let s = c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈ LRUCacheTraces be an arbitrary cache trace and
assume that B = {bi | 0 ≤ i < n} with |B| ≤ k. We need to show that cn(b0) < k.

Let j be the index of the last occurrence of b0 in s, i.e., bj = b0 and ∀l > j : bl 6= b0. Observe
that cj+1(b0) = 0, because of the preceding access to b0 = bj . Let Bj = {bi | j < i < n}. By
construction, b0 6∈ Bj . As b0 ∈ B and Bj ⊆ B, we have |Bj | < |B| ≤ k and thus |Bj | < k.

Each memory block in Bj occurs one or more times in the suffix sj = cj+1〈bj+1, hj+1〉 . . . cn.
Let I be the set of indices of the first occurrences of the blocks in Bj in sj , i.e.,

I = {i | j < i < n ∧ ∀l, j < l < i : bl 6= bi}.

Let IC be the complement of I, i.e., IC = {j + 1, . . . , n− 1} \ I. We claim that
1. ci+1(b0) ≤ ci(b0) + 1 for all i ∈ I, and
2. ct+1(b0) = ct(b0) for all t ∈ IC .
These two claims imply that cn(b0) ≤ cj+1(b0) + |I| = |I|. As |I| = |Bj | < k, cn(b0) = |I| < k,
and it only remains to show the two claims:
1. The fact that ci+1(b0) ≤ ci(b0) + 1 follows immediately from the definition of updateLRU

C .
2. Let t be an arbitrary index in IC and let v be the greatest index smaller than t such that

bv = bt. As t ∈ IC there must be such a v > j due to the definitions of I and IC .
Observe that cv+1(bt) = cv+1(bv) = 0 and cv+1(b0) > 0. Applying Lemma 31 to the the
subsequence cv+1〈bv+1, hv+1〉 . . . ct with b = b0 and b′ = bt yields that ct(b0) > ct(bt).
As ct(b0) > ct(bt), the third case in updateLRU

C applies and we get ct+1(b0) = ct(b0). J

I Theorem 10 (Soundness of Global May-Conflict Set). Global-CS is a sound persistence analysis.

Proof. We show that Global-CS satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 are
unconstrained in the definition of γGlobal-CS.
Let Ŝ vGlobal-CS T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γGlobal-CS(Ŝ).
Then {bi | 0 ≤ i < n} ⊆ Ŝ ⊆ T̂ and so by definition of γGlobal-CS, s ∈ γGlobal-CS(T̂), which
shows that (7) is satisfied.

Jan Reineke 03:39

Let Ŝ ∈ C#
Global-CS, b ∈ B, and t.c ∈ γGlobal-CS(Ŝ) be arbitrary.

To show that (8) is satisfied, we have to show that t.c〈b, h〉c′ with h = effLRU
C (c, b) and

c′ = updateLRU
C (c, b) is an element of γGlobal-CS(update#

Global-CS(Ŝ, b)).
By definition of γGlobal-CS and update#

Global-CS we have
γGlobal-CS(update#

Global-CS(Ŝ, b))
Def. update#

Global-CS= γGlobal-CS(Ŝ ∪ {b})
Def. γGlobal-CS= LRUCacheTraces ∩ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ ∪ {b}}

Because t.c ∈ γGlobal-CS(Ŝ), we have that t.c ∈ LRUCacheTraces. From h = effLRU
C (c, b)

and c′ = updateLRU
C (c, b), it follows that t.c〈b, h〉c′ ∈ LRUCacheTraces.

It remains to show that t.c〈b, h〉c′ ∈ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ ∪ {b}}.
As t.c ∈ γGlobal-CS(Ŝ), we have that t.c ∈ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ}. So
t.c〈b, h〉c′ ∈ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ ∪ {b}}
Let Ŝ ∈ C#

Global-CS and b ∈ B be arbitrary.
To show that (10) is satisfied, we consider two cases: 1. b 6∈ Ŝ and 2. b ∈ Ŝ.
Case 1: If c0〈b0, h0〉c1 . . . cn ∈ γGlobal-CS(Ŝ), then {bi | 0 ≤ i < n} ⊆ Ŝ by the definition of
γGlobal-CS. As b 6∈ Ŝ, the second disjunct in (10) holds: ∀i, 0 ≤ i < n : bi 6= b.

Case 2: Let c0〈b0, h0〉c1 . . . cn ∈ γGlobal-CS(Ŝ). Assume bi = b for some i. Otherwise the
second disjunct of (10) holds. As c0〈b0, h0〉c1 . . . cn ∈ γGlobal-CS(Ŝ), in particular {bj |
i ≤ j < n} ⊆ Ŝ. As |Ŝ| ≤ k and c0〈b0, h0〉c1 . . . cn ∈ LRUCacheTraces, we can apply
Lemma 9 to the trace ci〈bi, hi〉ci+1 . . . cn to conclude that b ∈ cn. J

I Theorem 11 (Soundness of Block-wise May-Conflict Set). Block-CS is a sound persistence
analysis.

Proof. We show that Block-CS satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 are
unconstrained in the definition of γBlock-CS.
Let Ŝ vBlock-CS T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γBlock-CS(Ŝ).
Because Ŝ(bi) ⊆ T̂ (bi) for all i, and ⊆ is transitive, s is also an element of γBlock-CS(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

Block-CS, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γBlock-CS(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γBlock-CS(T̂), with T̂ =

update#
Block-CS(Ŝ, bn).

Because s ∈ γBlock-CS(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn)

and cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (25) holds11, i.e.,

∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ CSi(t) ⊆ T̂ (bi), (58)

where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.
In order to show that (58) holds, we distinguish two cases based on the value of i:

11The constraint below accounts for the fact that t contains n + 1 accesses, where n is the number of accesses
in s.

LITES

03:40 Appendix

1. i = n:
Observe that CSn(t) = {bn}.
Due to the second case in the definition of update#

Block-CS, T̂ (bn) = {bn}, and so

CSn(t) = {bn} ⊆ {bn} = T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ CSi(s) ⊆ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γBlock-CS(Ŝ).
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi+1(s) = CSi+1(t) ∪ {bn}, the fact that bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus CSi(s) ⊆ Ŝ(bi):

We distinguish two cases:
i. bi 6= bn:

Then CSi(t) = CSi(s)∪{bn} ⊆ Ŝ(bi)∪{bn} = T̂ (bi) as the third case in update#
Block-CS

applies:
CSi(s) 6= ∅ and thus Ŝ(bi) 6= ∅ and bi 6= bn.

ii. bi = bn:
Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bi}.

Let Ŝ ∈ C#
Block-CS and b ∈ B be arbitrary.

To show that (10) is satisfied, assume classify#
Block-CS(Ŝ, b) holds and thus |Ŝ(b)| ≤ k. Let

s = c0〈b0, h0〉 . . . cn be an arbitrary cache trace in γBlock-CS(Ŝ). Let bi be the last occurrence
of b in the trace. If b does not occur in the trace, then (10) holds by the second disjunct.
Otherwise, bi 6∈ CSi+1(s) and so CSi(s) ⊆ Ŝ(b). As |Ŝ(b)| ≤ k and s ∈ LRUCacheTraces,
we can apply Lemma 9 to the suffix ci〈bi, hi〉 . . . cn to prove that b ∈ cn. J

I Theorem 12 (Block-CS vs. Global-CS?). Block-CS is more precise than Global-CS.

I Theorem 13 (Soundness of Conditional Must). C-Must is a sound persistence analysis.

Proof. We show that C-Must satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 only
are unconstrained in the definition of γC-Must.
Let Ŝ vC-Must T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γC-Must(Ŝ).
Because Ŝ(bi) ≤ T̂ (bi) for all i, and ≤ is transitive, s is also an element of γC-Must(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

C-Must, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γC-Must(T̂), with T̂ =

update#
C-Must(Ŝ, bn).

Because s ∈ γC-Must(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and

cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (31) holds, i.e.,

∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≤ T̂ (bi), (59)

where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.
In order to show that (59) holds, we distinguish two cases based on the value of i:

Jan Reineke 03:41

1. i = n:
Observe that CSn(t) = {bn}.
Due to the second case in the definition of update#

C-Must, T̂ (bn) = 1, and so

|CSn(t)| = |{bn}| = 1 ≤ 1 = T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ).
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi+1(s) = CSi+1(t) ∪ {bn}, the fact that bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus |CSi(s)| ≤ Ŝ(bi):

We distinguish two cases:
i. bi 6= bn:

Then CSi(t) = CSi(s) ∪ {bn}.
Because 1 ≤ |CSi(s)| ≤ Ŝ(bi) and bi 6= bn, the third or fourth case in update#

C-Must
applies. Thus |CSi(t)| = |CSi(s) ∪ {bn}| ≤ Ŝ(bi) + 1 ≤ T̂ (bi).

ii. bi = bn:
Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bi}.

Let Ŝ ∈ C#
C-Must and b ∈ B be arbitrary.

To show that (10) is satisfied, assume classify#
C-Must(Ŝ, b) holds and thus Ŝ(b) < k. Let

s = c0〈b0, h0〉 . . . cn be an arbitrary trace in γC-Must(Ŝ). Let bi be the last occurrence of b in
the trace. If b does not occur in the trace, then (10) holds by the second disjunct. Otherwise,
bi 6∈ CSi+1(s) and so |CSi(s)| ≤ Ŝ(b). As Ŝ(b) ≤ k and s ∈ LRUCacheTraces, we can
apply Lemma 9 to the suffix ci〈bi, hi〉 . . . cn to prove that b ∈ cn. J

I Theorem 14 (Global-CS vs. Block-CS?). C-Must is incomparable to Global-CS and Block-CS.

I Theorem 15 (Soundness of Conditional May). C-May is a sound persistence analysis.

Proof. We show that C-May satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 only
are unconstrained in the definition of γC-May.
Let Ŝ vC-May T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γC-May(Ŝ).
Because Ŝ(bi) ≥ T̂ (bi) for all i, and ≥ is transitive, s is also an element of γC-May(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

C-May, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γC-May(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γC-May(T̂), with T̂ =

update#
C-May(Ŝ, bn).

Because s ∈ γC-May(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and

cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (37) holds, i.e.,

∀i : 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≥ T̂ (bi), (60)

where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.
In order to show that (60) holds, we distinguish two cases based on the value of i:

LITES

03:42 Appendix

1. i = n:
CSn(t) = {bn}. Due to the first case in the definition of update#

C-May, T̂ (bn) = 1, and so
|CSn(t)| ≥ T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≥ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γC-May(Ŝ).
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi+1(s) = CSi+1(t) ∪ {bn}, the fact that bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus |CSi(s)| ≥ Ŝ(bi):

We distinguish two cases:
i. bi 6= bn:

We distinguish two cases:
A. Ŝ(bn) < Ŝ(bi):

Then |CSi(t)| ≥ |CSi(s)| ≥ Ŝ(bi) = T̂ (bi), as the second case of update#
C-May

applies.
B. Ŝ(bn) ≥ Ŝ(bi):

Then, by the definition of update#
C-May, T̂ (bi) ≤ Ŝ(bi) + 1.

Let j be the index of the last occurrence of bn in s. We distinguish two cases:
i > j:
Then bj 6∈ CSi(s). Thus

|CSi(t)| = |CSi(s)∪̇{bn}| = |CSi(s)|+ 1 ≥ Ŝ(bi) + 1 ≥ T̂ (bi).

i < j:
Then bi, bj ∈ CSi(s) and bi 6∈ CSj(s) and CSi(s) ⊇ CSj(s). Thus

|CSi(t)| = |CSi(s) ∪ {bj}| ≥ |CSj(s)|+ 1 ≥ Ŝ(bj) + 1 = Ŝ(bn) + 1 ≥ T̂ (bi).

ii. bi = bn:
Then bi ∈ CSi(t) = CSi(s) ∪ {bi}.

Let Ŝ ∈ C#
C-May and b ∈ B be arbitrary.

To show that (10) is satisfied, assume classify#
C-May(Ŝ, b) holds and thus Ŝ(b) = ∞ or

|Ci(Ŝ, b)| < i for some i ≤ k. Let s = c0〈b0, h0〉 . . . cn be an arbitrary trace in γC-May(Ŝ). Let
i′ be the index of the last occurrence of b in the trace. If b does not occur in the trace, then
(10) holds by the second disjunct. If Ŝ(b) =∞ holds, then b is guaranteed not to occur in the
trace s.
Otherwise, |Ci(Ŝ, b)| = |{b′ ∈ B | b′ 6= b ∧ Ŝ(b′) ≤ i}| < i and bi′ 6∈ CSi′+1(s).
We will show that |CSi′(s)| ≤ i.
Assume for a contradiction that |CSi′(s)| > i. Let j > i′ be an index such that |CSj(s)| = i,
which must then exist as |CSi′(s)| > i and CSi(s) is monotonically decreasing in i and
eventually reaches |CSn(s)| = 1.
For each element b′ of CSj(s), we must have Ŝ(b′) ≤ i as s ∈ γC-May(Ŝ). So CSj(s) ⊆ Ci(Ŝ, b).
Thus i = |CSj(s)| ≤ |Ci(Ŝ, b)|, which contradicts the fact that |Ci(Ŝ, b)| < i.
Thus |CSi′(s)| ≤ i. As i ≤ k and s ∈ LRUCacheTraces, we can apply Lemma 9 to the
suffix ci′〈bi′ , hi′〉 . . . cn to prove that b ∈ cn. J

I Theorem 16 (C-May vs. Global-CS). C-May is more precise than Global-CS.

Jan Reineke 03:43

Proof. We will show this by making use of Theorem 7. To this end, we need to define a function
γCS→May : C#

Global-CS → C#
C-May that satisfies conditions (11), (12), (13), (15), and (16).

We define γCS→May as follows:

γCS→May(Ŝ) := λb.

{
∞ : b 6∈ Ŝ
1 : b ∈ Ŝ

(61)

The rationale is that if b 6∈ Ŝ then it has not yet been accessed and thus ∞ is a sound lower bound
on the size of b’s conflict set. On the other hand, if b ∈ Ŝ, and thus may have been accessed, then
1 is the best sound lower bound on the size of b’s conflict set that can be given, as the access to b
may have been the final one in the cache trace.

Proof of satisfaction of (11): γCS→May(̂IGlobal-CS) = γCS→May(∅) = λb.∞ = ÎC-May.
Proof of satisfaction of (12): Let Ŝ, T̂ be arbitrary abstract traces from C#

Global-CS.
Assume Ŝ vGlobal-CS T̂ , i.e., Ŝ ⊆ T̂ .
Then ∀b ∈ Ŝ : γCS→May(Ŝ)(b) = 1 = γCS→May(T̂)(b) and

∀b 6∈ Ŝ : γCS→May(Ŝ)(b) =∞ ≥ γCS→May(T̂)(b),

which implies

∀b : γCS→May(Ŝ)(b) ≥ γCS→May(T̂)(b), i.e., γCS→May(Ŝ) vC-May γCS→May(T̂),

which shows (12).
Proof of satisfaction of (13): We need to show that

∀Ŝ ∈ C#
Global-CS, b ∈ B :

update#
C-May(γCS→May(Ŝ), b) vC-May γCS→May(update#

Global-CS(Ŝ, b)).

Let Ŝ ∈ C#
Global-CS and b ∈ B be arbitrary.

Due to the definition of vC-May, we need to show

∀b′ ∈ B : update#
C-May(γCS→May(Ŝ), b)(b′) ≥ γCS→May(update#

Global-CS(Ŝ, b))(b′).

To prove this, let b′ ∈ B be arbitrary.
We distinguish two cases:
1. b′ ∈ update#

Global-CS(Ŝ, b):
Then γCS→May(update#

Global-CS(Ŝ, b))(b′) = 1, which is the smallest value that a block may
be assigned to in C#

C-May, and so

update#
C-May(γCS→May(Ŝ), b)(b′) ≥ 1 = γCS→May(update#

Global-CS(Ŝ, b))(b′).

2. b′ 6∈ update#
Global-CS(Ŝ, b):

Then, b′ 6= b and b′ 6∈ Ŝ. Thus, γCS→May(Ŝ)(b′) =∞ and the fifth case in the definition of
update#

C-May applies, so

update#
Global-CS(γCS→May(Ŝ), b)(b′) =∞ ≥∞ = γCS→May(update#

Global-CS(Ŝ, b))(b′).

Proof of (15): Let Ŝ ∈ C#
Global-CS and b ∈ B be arbitrary.

Assume classify#
Global-CS(Ŝ, b) holds.

Then, either b 6∈ Ŝ or |Ŝ| ≤ k:

LITES

03:44 Appendix

If b 6∈ Ŝ, then γCS→May(Ŝ)(b) =∞ and by definition, classify#
C-May(γCS→May(Ŝ)), b) holds

as well.
If b ∈ Ŝ and thus |Ŝ| ≤ k we have exactly |Ŝ| blocks b′ for which γCS→May(Ŝ)(b) ≤ k.
Thus, the second disjunct of classify#

C-May applies and classify#
C-May(γCS→May(Ŝ)), b) holds.

Proof of satisfaction of (16): Let Ŝ, T̂ ∈ C#
C-May with Ŝ vC-May T̂ and b ∈ B be arbitrary.

Assume classify#
C-May(T̂ , b) holds.

If T̂ (b) =∞, then Ŝ(b) =∞ as Ŝ(b) ≥ T̂ (b). Then, classify#
C-May(Ŝ, b) holds as well.

If T̂ (b) ≤ k + 1, then there is an i ≤ k, such that |Ci(T̂ , b)| < i.
As Ŝ vC-May T̂ we have Ŝ(b′) ≥ T̂ (b′) for all b′ ∈ B.
So Ci(Ŝ, b) = {b′ ∈ B | b′ 6= b ∧ T̂ (b′) ≤ Ŝ(b′) ≤ i} ⊆ Ci(T̂ , b),
and thus |Ci(Ŝ, b)| ≤ |Ci(T̂ , b)| < i, which implies classify#

C-May(Ŝ, b).
To see that C-May is more precise than Global-CS, consider the example in Figure 4a. Here, x is
classified as persistent by C-May, but not by Global-CS. J

I Theorem 17 (Block-CS vs. C-May). Block-CS is more precise than C-May.

Proof. We will show this by making use of Theorem 7. To this end, we need to define a function
γMay→CS : C#

C-May → C#
Block-CS that satisfies conditions (11), (12), (13), (15), and (16).

We define γMay→CS as follows:

γMay→CS(Ŝ) := λb.

{
∅ : Ŝ(b) =∞
{b} ∪ Cn(Ŝ, b) : Ŝ(b) 6=∞∧ n = min{i ∈ N | |Ci(Ŝ, b)| < i}

(62)

where Ci(Ŝ, b) := {b′ ∈ B | b′ 6= b ∧ Ŝ(b′) ≤ i}.

Proof of satisfaction of (11): γMay→CS(ÎC-May) = γMay→CS(λb.∞) = λb.∅ = ̂IBlock-CS.
Proof of satisfaction of (12): Let Ŝ, T̂ be arbitrary abstract traces from C#

C-May.
Assume Ŝ vC-May T̂ , i.e., ∀b : Ŝ(b) ≥ T̂ (b).
We need to show that

γMay→CS(Ŝ) vBlock-CS γMay→CS(T̂)⇔ ∀b : γMay→CS(Ŝ)(b) ⊆ γMay→CS(T̂)(b).

Let b be arbitrary. We will show γMay→CS(Ŝ)(b) ⊆ γMay→CS(T̂)(b) by the following case
distinction:
Ŝ(b) =∞:
Then γMay→CS(Ŝ)(b) = ∅, which is a subset of any set, in particular γMay→CS(T̂)(b).
Ŝ(b) ≤ k + 1:
Let n = min{i ∈ N | |Ci(T̂ , b)| < i} and thus γMay→CS(T̂)(b) = {b} ∪ Cn(T̂ , b).
As ∀b : Ŝ(b) ≥ T̂ (b), Ci(Ŝ, b) ⊆ Ci(T̂ , b) and so |Ci(Ŝ, b)| ≤ |Ci(T̂ , b)| < i.
Thus, γMay→CS(Ŝ)(b) = {b} ∪ Cn′(Ŝ, b), with n′ = min{i ∈ N | |Ci(Ŝ, b)| < i} ≤ n.
As CSi is monotone in i and CSi(Ŝ, b) ⊆ CSi(T̂ , b), we have
γMay→CS(Ŝ)(b) ⊆ γMay→CS(T̂)(b).

Proof of satisfaction of (13): We need to show that

∀Ŝ ∈ C#
C-May, b ∈ B : update#

Block-CS(γMay→CS(Ŝ), b) vBlock-CS γMay→CS(update#
C-May(Ŝ, b)).

Let Ŝ and b be arbitrary, and let T̂ = update#
C-May(Ŝ, b). Then, we need to show for all b′ ∈ B:

update#
Block-CS(γMay→CS(Ŝ), b)(b′) ⊆ γMay→CS(update#

C-May(Ŝ, b))(b′) = γMay→CS(T̂)(b′).

To prove this we distinguish two cases:

Jan Reineke 03:45

1. b′ = b:
Then update#

Block-CS(γMay→CS(Ŝ), b)(b′) = {b′} and as update#
C-May(Ŝ, b)(b′) 6=∞, we have

γMay→CS(update#
C-May(Ŝ, b))(b′) ⊇ {b′}, and so

update#
Block-CS(γMay→CS(Ŝ), b)(b′) = {b′} ⊆ γMay→CS(update#

C-May(Ŝ, b))(b′).

2. b′ 6= b:
We further distinguish two cases:
a. Ŝ(b′) =∞:

Then, it is easy to see that

update#
Block-CS(γMay→CS(Ŝ), b)(b′) = ∅ = γMay→CS(update#

C-May(Ŝ, b))(b′).

b. Ŝ(b′) ≤ k + 1:
Let n = min{i ∈ N | |Ci(Ŝ, b′)| < i} and n′ = min{i ∈ N | |Ci(T̂ , b′)| < i}.
We further distinguish three cases:
i. Ŝ(b) < n:

Then b ∈ γMay→CS(Ŝ)(b′) and so
update#

Block-CS(γMay→CS(Ŝ), b)(b′) = γMay→CS(Ŝ)(b′).
Observe that
C1(T̂ , b′) = {b},
Cj(T̂ , b′) = Cj−1(Ŝ, b′)∪̇{b} for j ∈ {2, . . . , Ŝ(b)}, and
Cj(T̂ , b′) = Cj(Ŝ, b′) for j ∈ {Ŝ(b) + 1, . . . , n}.

Due to the definition of n, we have that |Ci(Ŝ, b′)| ≥ i for all i < n, and so:
|C1(T̂ , b′)| ≥ 1,
|Cj(T̂ , b′)| ≥ |Cj−1(Ŝ, b′)|+ 1 ≥ j − 1 + 1 = j for j ∈ {2, . . . , Ŝ(b)}, and
|Cj(T̂ , b′)| = |Cj(Ŝ, b′)| ≥ j for j ∈ {Ŝ(b) + 1, . . . , n}.

As a consequence n′ ≥ n and thus

γMay→CS(T̂)(b′) ⊇ γMay→CS(Ŝ)(b′) = update#
Block-CS(γMay→CS(Ŝ), b)(b′).

ii. Ŝ(b) = n:
This case is impossible:
As n = min{i ∈ N | |Ci(Ŝ, b′)| < i}, we have |Cn−1(Ŝ, b)| ≥ n− 1.
However, Cn(Ŝ, b′) ⊇ Cn−1(Ŝ, b)∪̇{b}, if Ŝ(b) = n, which implies |Ci(Ŝ, b′)| ≥ n, which
contradicts of our definition of n, which implies |Cn(Ŝ, b′)| < n.

iii. Ŝ(b) > n:
Then b 6∈ γMay→CS(Ŝ)(b′) and so
update#

Block-CS(γMay→CS(Ŝ), b)(b′) = γMay→CS(Ŝ)(b′)∪̇{b}.
Observe that
C1(T̂ , b′) = {b}, and
Cj(T̂ , b′) = Cj−1(Ŝ, b′)∪̇{b} for j ∈ {2, . . . , n}.

Due to the definition of n, we have that |Ci(Ŝ, b′)| ≥ i for all i < n, and so:
|C1(T̂ , b′)| ≥ 1, and
|Cj(T̂ , b′)| ≥ |Cj−1(Ŝ, b′)|+ 1 ≥ j − 1 + 1 = j for j ∈ {2, . . . , n}.

Thus n′ ≥ n+ 1. Also, Cn+1(T̂ , b′) ⊇ Cn(Ŝ, b′)∪̇{b} and thus

γMay→CS(T̂)(b′) ⊇ Cn(Ŝ, b′)∪̇{b}

= γMay→CS(Ŝ)(b′) ∪ {b} = update#
Block-CS(γMay→CS(Ŝ), b)(b′).

LITES

03:46 Appendix

Proof of satisfaction of (15): Let Ŝ ∈ C#
C-May and b ∈ B be arbitrary. Assume classify#

C-May(Ŝ, b)
holds.
Then either Ŝ(b) =∞ or ∃i ≤ k : |Ci(Ŝ, b)| < i.
In the first case, γMay→CS(Ŝ)(b) = ∅ and so classify#

Block-CS(γMay→CS(Ŝ), b) holds.
In the second case, γMay→CS(Ŝ)(b) = {b} ∪ Cn(Ŝ, b) with |Cn(Ŝ, b)| < k and thus
|γMay→CS(Ŝ)(b)| ≤ k, which implies that classify#

Block-CS(γMay→CS(Ŝ), b) holds as well.
Proof of satisfaction of (16): Let Ŝ, T̂ ∈ C#

Block-CS with Ŝ vBlock-CS T̂ and b ∈ B be arbitrary.
Assume classify#

Block-CS(T̂ , b) holds. Then, |T̂ (b)| ≤ k. As Ŝ(b) ⊆ T̂ (b) this implies |Ŝ(b)| ≤ k
and so classify#

Block-CS(Ŝ, b) holds as well.
To see that Block-CS is more precise than C-May, consider the example in Figure 4b. Here, w
and x are classified as persistent by Block-CS, but not by C-May. J

I Definition 18 (Direct Product). The direct product A×B of two persistence analyses A and B
is the tuple A×B =

〈
C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , update

#
A×B , classify

#
A×B

〉
with

C#
A×B := C#

A × C
#
B ,

γA×B(ŜA, ŜB) := γA(ŜA) ∩ γB(ŜB),

ÎA×B := 〈ÎA, ÎB〉,

〈ŜA, ŜB〉 vA×B 〈T̂A, T̂B〉 :⇔ ŜA vA T̂A ∧ ŜB vB T̂B ,

〈ŜA, ŜB〉 tA×B 〈T̂A, T̂B〉 := 〈ŜA tA T̂A, ŜB tB T̂B〉,

update#
A×B(〈ŜA, ŜB〉, b) := 〈update#

A(ŜA, b), update#
B (ŜB , b)〉,

classify#
A×B(〈ŜA, ŜB〉, b) := classify#

A(ŜA, b) ∨ classify#
B (ŜB , b).

I Theorem 19 (Soundness of Direct Product). The direct product A×B of two sound persistence
analyses A and B that satisfy (6), (7), (8), and (10) is a sound persistence analysis.

Proof. We show that A×B satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

As A and B satisfy (6), we have IC ⊆ γA(ÎA) and IC ⊆ γB(ÎB). Thus,

IC ⊆ γA(ÎA) ∩ γB(ÎB) Def. γA×B= γA×B(ÎA, ÎB) Def. ÎA×B= γA×B(ÎA×B),

and so A×B satisfies (6).
For (7), we have to show that

∀Ŝ, T̂ ∈ C#
A×B : Ŝ vA×B T̂ ⇒ γA×B(Ŝ) ⊆ γA×B(T̂).

Let Ŝ = 〈ŜA, ŜB〉 and T̂ = (T̂A, T̂B) be arbitrary. Assume that Ŝ vA×B T̂ , otherwise the
implication trivially holds. Then, we have ŜA vA T̂A and ŜB vB T̂B by definition of vA×B.
As A and B satisfy (7) this implies γA(ŜA) ⊆ γA(T̂A) and γB(ŜB) ⊆ γB(T̂B), and so we have

γA×B(Ŝ) Def. γA×B= γA(ŜA) ∩ γB(ŜB)
⊆ γA(T̂A) ∩ γB(T̂B)

Def. γA×B= γA×B(T̂).
For (8), we have to show that

∀Ŝ ∈ C#
A×B , b ∈ B : {t.c〈b, h〉c′ | t.c ∈ γA×B(Ŝ) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA×B(update#
A×B(Ŝ, b)).

Jan Reineke 03:47

Let Ŝ = 〈ŜA, ŜB〉 ∈ C#
A×B and b ∈ B be arbitrary. Further, let t.c ∈ γA×B(Ŝ) be arbitrary. We

will show that t.c〈b, h〉c′ ∈ γA×B(update#
A×B(Ŝ, b)), with h = effC(c, b) and c′ = updateC(c, b).

By definition of γA×B , t.c ∈ γA(ŜA) and t.c ∈ γB(ŜB). Because A and B satisfy (8), we have
both t.c〈b, h〉c′ ∈ γA(update#

A(ŜA, b)) and t.c〈b, h〉c′ ∈ γB(update#
B (ŜB , b)), and thus:

t.c〈b, h〉c′ ∈ γA(update#
A(ŜA, b)) ∩ γB(update#

B (ŜB , b))
Def. γA×B= γA×B(update#

A(ŜA, b), update#
B (ŜB , b))

Def. update#
A×B= γA×B(update#

A×B(Ŝ, b)).

For (10), we have to show that

∀Ŝ ∈ C#
A×B , b ∈ B : classify#

A×B(Ŝ, b)⇒

∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA×B(Ŝ) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b), (63)

Let Ŝ = (ŜA, Ŝb) ∈ C#
A×B and b ∈ B be arbitrary. Assume classify#

A×B(Ŝ, b) holds, otherwise
the implication holds trivially.
By the definition of classify#

A×B, classify
#
A(ŜA, b) holds or classify#

B (ŜB , b) holds. Assume
classify#

A(ŜA, b) holds. The case that classify#
B (ŜB , b) is analogous.

As A satisfies (10), we have ∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA(ŜA) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6=
b). As by definition, γA×B(Ŝ) ⊆ γA(ŜA), we also have: ∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA×B(Ŝ) :
b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b). J

I Theorem 20 (Precision of Direct Product?). The direct product A×B of two persistence analyses
A and B is at least as precise as A and B, i.e., A×B � A and A×B � B.

I Corollary 21 (Precision of Direct Product?). The direct product A×B of two incomparable
persistence analyses A and B is more precise than A and B, i.e., A×B � A and A×B � B.

I Definition 22 (State Reduction). Let A and B be persistence analyses. A reduction operator
for A in the context of B is a function red : C#

A × C
#
B → C#

A that is reductive and that preserves
concretizations, i.e., for all ŜA ∈ C#

A , ŜB ∈ C
#
B :

red(ŜA, ŜB) vA ŜA, (42)

γA(red(ŜA, ŜB)) ∩ γB(ŜB) = γA(ŜA) ∩ γB(ŜB). (43)

I Theorem 23 (State Reduction). Let A and B be sound persistence analyses that satisfy (6),
(7), (8), and (10), and let red be a reduction operator for A in the context of B. Let the reduced
update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (red(update#
A(ŜA, b), update#

B (ŜB , b)), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis that is at least as precise as A×B, i.e., A×B′ � A×B.

Proof. We know that A×B is a sound persistence analysis from Theorem 19 that satisfies (6),
(7), (8), and (10). The only condition from Theorem 4 that involves the update function is (8).
Thus all conditions but (8) are fulfilled by A×B′ as they are fulfilled by A×B.

To show that (8) is satisfied, we argue that γA×B(red-upd(〈ŜA, ŜB〉, b)) =

LITES

03:48 Appendix

γA×B(update#
A×B(〈ŜA, ŜB〉, b)) for all 〈ŜA, ŜB〉 ∈ C#

A×B and b ∈ B:

γA×B(red-upd(〈ŜA, ŜB〉, b))
Def. red-upd= γA×B(red(update#

A(ŜA, b), update#
B (ŜB , b)), update#

B (ŜB , b))
Def. γA×B= γA(red(update#

A(ŜA, b), update#
B (ŜB , b))) ∩ γB(update#

B (ŜB , b)))
(43)= γA(update#

A(ŜA, b)) ∩ γB(update#
B (ŜB , b)))

Def. γA×B= γA×B(update#
A(ŜA, b), update#

B (ŜB , b))
Def. update#

A×B= γA×B(update#
A×B(〈ŜA, ŜB〉, b))

We can easily show that A×B′ is at least as precise as A×B by making use of Theorem 7.
To this end, we need to define a function γA×B′→A×B that satisfies conditions (11), (12), (13),
(15), and (16). We define γA×B′→A×B to be the identity function. Conditions (11), (12), (15), and
(16) trivially hold as the left and right hand sides of these inequalities are the same. Finally (13)
reduces to ∀〈ŜA, ŜB〉 ∈ C#

A×B , b ∈ B : red-upd(〈ŜA, ŜB〉, b) vA×B update#
A×B(〈ŜA, ŜB〉, b), which

follows from (42):

red-upd(〈ŜA, ŜB〉, b) = (red(update#
A(ŜA, b), update#

B (ŜB , b)), update#
B (ŜB , b))

(42)
vA×B (update#

A(ŜA, b), update#
B (ŜB , b))

= (update#
A×B(〈ŜA, ŜB〉, b) J

I Definition 24 (Cooperative Update). Let A and B be two persistence analyses. A cooperative
update for A in the context of B is a function coop-upd : (C#

A × C
#
B)× B → C#

A , such that:

∀〈ŜA, ŜB〉 ∈ C#
A × C

#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA(ŜA) ∩ γB(ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(coop-upd(〈ŜA, ŜB〉, b)) (44)

I Theorem 25 (Cooperative Update?). Let A and B be sound persistence analyses that satisfy
(6), (7), (8), and (10), and let coop-upd be a cooperative update function for A in the context of
B. Let the reduced update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (coop-upd(〈ŜA, ŜB〉, b), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis.

I Theorem 26 (Soundness of the State Reduction between C-Must and Block-CS?). The function
reduceC-Must×Block-CS is a reduction operator for C-Must in the context of Block-CS.

I Theorem 27 (Soundness of the State Reduction between C-Must and C-May). The operator
reduceC-Must×C-May is a reduction operator for C-Must in the context of C-May.

Proof. reduceC-Must×Block-CS is reductive, as min
{
ŜC-Must(b), . . .

}
≤ ŜC-Must(b).

It remains to show that for all Ŝ1 ∈ C#
C-Must, Ŝ2 ∈ C#

C-May:

γC-Must+C-May

(
Ŝ1, Ŝ2

)
= γC-Must+C-May

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
, Ŝ2

)
. (64)

Jan Reineke 03:49

If we can show

γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
= γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
, (65)

then (64) can be shown as follows:

γC-Must+C-May

(
Ŝ1, Ŝ2

) Def. γC-Must+C-May= γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
(65)= γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
Def. γC-Must+C-May= γC-Must+C-May

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
, Ŝ2

)
Let us now show that (65) holds:
As reduceC-Must×Block-CS is reductive and γC-Must is monotone, we know that

γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
⊇ γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
.

To prove that

γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
⊆ γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
,

assume for a contradiction that there is a trace s = c0〈b0, h0〉 . . . cn in γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
that is not in γC-Must+C-May

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

Then, there must be an i, such that bi 6∈ CSi+1 and |CSi| ≤ Ŝ1(bi), but not

|CSi| ≤ reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
(bi)

= min{Ŝ1(bi)|{b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) < Ŝ1(bi)}|+ 1}

≤ |{b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) < Ŝ1(bi)}|+ 1.

To reach a contradiction, we will show that CSi \ {bi} ⊆ {b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) ≤ Ŝ1(bi)}.
Let c be an arbitrary element of CSi \ {bi} and let j denote the index of the last occurrence of c
in the trace s. As c ∈ CSi \ {bi}, j must be greater than i. Thus j ≥ i+ 1, and so CSj ⊆ CSi+1.
As bi 6∈ CSi+1, we also have bi 6∈ CSj . So |CSi| ≤ Ŝ1(bi) implies |CSj | < Ŝ1(bi).
As the trace s is in γC-May

(
Ŝ2

)
, we have |CSj | ≥ Ŝ2(c).

Thus Ŝ2(c) ≤ |CSj | < Ŝ1(c), which shows that c ∈ {b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) < Ŝ1(bi)}. J

I Theorem 28 (Soundness of Must Analysis). Must is a sound persistence analysis.

Proof. We show that Must satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is satisfied, because γMust(ÎMust) represents all possible sequences.
Let Ŝ vMust T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γMust(Ŝ).
Because Ŝ(bi) ≤ T̂ (bi) for all i, and ≤ is transitive, s is also an element of γMust(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

Must, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γMust(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γMust(T̂), with T̂ =

update#
Must(Ŝ, bn).

LITES

03:50 Appendix

Because s ∈ γMust(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and

cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second and third constraint in (51) hold12, i.e.,
(∀b ∈ B : (∀i, 0 ≤ i < n+ 1 : bi 6= b)⇒ T̂ (b) =∞) (66)

∧ ∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≤ T̂ (bi) (67)
where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.

Let us consider the constraint (66) first.
Let b ∈ B be arbitrary. We distinguish two cases:
1. Ŝ(b) 6=∞:

Then, as s ∈ γMust(Ŝ), there must be an i, 0 ≤ i < n, such that bi = b. As t is an
extension of s, bi also is part of t and thus (∀i, 0 ≤ i < n+ 1 : bi 6= b) is false for t as well.

2. Ŝ(b) =∞:
Then, we further distinguish two cases:
a. bn = b:

Then, the constraints holds for t, because (∀i : bi 6= b) is false.
b. bn 6= b:

Then, T̂ (b) = ∞ due to the definition of update#
Must, where the second case applies.

With T̂ (b) =∞ the constraint holds trivially.
Let us now consider the constraint (67).
Let i be arbitrary. We distinguish two cases based on i’s value:
1. i = n:

CSn(t) = {bn}. Due to the first case in the definition of update#
Must, T̂ (bn) = 1, and so

|CSn(t)| ≤ T̂ (bn).
2. 0 ≤ i < n:

We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γMust(Ŝ).
Observe that CSi(t) = CSi(s) ∪ {bn} for all i, 0 ≤ i < n.
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi(t) ⊇ CSi(s), we have bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus |CSi(s)| ≤ Ŝ(bi):

We distinguish two further cases:
i. bi = bn:

Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bn} = CSi+1(s) ∪ {bi}.
ii. bi 6= bn:

We distinguish three cases based on which case in update#
Must applies:

A. First case in update#
Must applies:

This is impossible as bi 6= bn.
B. Second case in update#

Must applies:
Thus, Ŝ(bn) ≤ Ŝ(bi) and T̂ (bi) = Ŝ(bi).
We distinguish two further cases:
∗ Ŝ(bi) =∞:

Then, T̂ (bi) =∞ and trivially |CSi(t)| ≤ T̂ (bi).

12The constraints below account for the fact that t contains n + 1 accesses, where n is the number of accesses
in s.

Jan Reineke 03:51

∗ Ŝ(bi) <∞:
As Ŝ(bn) ≤ Ŝ(bi), we also have Ŝ(bn) <∞.
As a consequence, due to the second constraint in (51), bn must occur in s.
Let j be the index of the last occurrence of bn in s.
If i < j then CSi(t) = CSi(s) and so |CSi(t)| = |CSi(s)| ≤ Ŝ(bi) = T̂ (bi).
Otherwise, if j < i then CSi(t) = CSi(s) ∪ {bn} ⊆ CSj(s).
As |CSj(s)| ≤ Ŝ(bn) and Ŝ(bn) ≤ Ŝ(bi) = T̂ (bi), we have |CSi(t)| ≤ T̂ (bi).

C. Third or fourth case in update#
Must applies:

Then |CSi(t)| ≤ |CSi(s)|+ 1 ≤ Ŝ(bi) + 1 ≤ T̂ (bi)

Let Ŝ ∈ C#
Must and b ∈ B be arbitrary.

Assume classify#
Must(Ŝ, b) holds and thus Ŝ(b) < k. Let s = c0〈b0, h0〉 . . . cn be an arbitrary

trace in γMust(Ŝ). Let bi be the last occurrence of b in the trace. If b does not occur in the trace,
then (10) is satisfied by the second disjunct. Otherwise, bi 6∈ CSi+1(s) and so |CSi(s)| ≤ Ŝ(b).
As Ŝ(b) ≤ k and s ∈ LRUCacheTraces, we can apply Lemma 9 to the suffix ci〈bi, hi〉 . . . cn
to prove that b ∈ cn. J

I Theorem 29 (Soundness of Cooperative Update). The function coop-updC-Must×Must is a cooper-
ative update for C-Must in the context of Must.

Proof. We need to show that coop-updC-Must×Must satisfies (44), i.e.

∀(Ŝ, ŜMust) ∈ C#
C-Must × C

#
Must, b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γC-Must(Ŝ) ∩ γMust(ŜMust) ∧ h = effLRU
C (c, b) ∧ c′ = updateLRU

C (c, b)}

⊆ γC-Must(coop-updC-Must×Must(Ŝ, ŜMust, b)) (68)

Let (Ŝ, ŜMust) ∈ C#
C-Must × C

#
Must and b ∈ B be arbitrary.

Pick an arbitrary s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ) ∩ γMust(ŜMust). We have to show that
t = s.〈bn, hn〉cn+1 with hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of

γC-Must(T̂), with T̂ = update#
C-Must(coop-updC-Must×Must(Ŝ, ŜMust, bn)) for all bn ∈ B.

Because s ∈ γC-Must(Ŝ), s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and cn+1 =

updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (31) holds, i.e.:

∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≤ Ŝ(bi).

Let i be arbitrary. We distinguish two cases based on its value:
1. i = n:

Observe that CSn(t) = {bn}.
The second case in the definition of coop-updC-Must×Must applies, and so T̂ (bn) = 1.
Thus, |CSn(t)| ≤ T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ).
Clearly, bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
So the case where bi 6∈ CSi+1(s) and thus |CSi(s)| ≤ Ŝ(bi) remains.
Then, the first case in the update may not apply, because |CSi(s)| > 0 and thus Ŝ(bi) > 0.
We distinguish two cases:
a. bi = bn:

Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bn} = CSi+1(s) ∪ {bi}.

LITES

03:52 Appendix

b. bi 6= bn:
Because bi 6= bn, the second case in the update may not apply. So only the three final cases
in coop-updC-Must×Must are possible.

Observe that CSi(t) = CSi(s) ∪ {bn}.
We distinguish two cases:
i. bi ∈ CSi(s):

Then |CSi(t)| = |CSi(s)| ≤ Ŝ(bi) ≤ T̂ (bi) regardless of which of the three possible final
cases in coop-updC-Must×Must applies to bi.

ii. bn 6∈ CSi(s):
Then |CSi(t)| = |CSi(s)|+ 1.
We apply a case distinction based on the three possible final cases in coop-updC-Must×Must:
A. If the fourth case in coop-updC-Must×Must applies to bi, then

|CSi(t)| = |CSi(s)|+ 1 ≤ Ŝ(bi) + 1 = T̂ (bi).

B. If the fifth case in the update applies, then |CSi(t)| ≤ ∞ = T̂ (bi).
C. It remains to show that |CSi(t)| ≤ T̂ (bi) even if the third case in the update applies,

which is where the update profits from the information provided by the must analysis.
If bn does not occur in s, then by the definition of γMust, ŜMust(bn) = ∞, and so
T̂ (bn) = Ŝ(bn) =∞ > |CSi(t)|.
Otherwise, let j be the index of the last occurrence of bn in s.
As bn 6∈ CSi(s), j < i, and CSj(s) ⊇ CSi(s) ∪ {bj} = CSi(s) ∪ {bn} = CSi(t).
By the definition of γMust, |CSj(s)| ≤ ŜMust(bn).
Under the assumption that the third case in the update applies, ŜMust(bn) ≤ Ŝ(bi)
and thus |CSi(t)| ≤ |CSj(s)| ≤ ŜMust(bn) ≤ Ŝ(bi) = T̂ (bi). J

	Introduction
	A Formal Definition of Cache Persistence
	Programs, Computations, Trace Collecting Semantics
	Taking Caches Into Account
	Persistence as a Property of Traces

	Preliminaries: Standard Abstractions and Simplifications
	Control Flow Graph Abstraction
	Abstraction from Locations in Traces

	A Generic Persistence Analysis Framework
	Sound Cache Trace Abstractions
	Computing the Abstract Sticky Trace Collecting Semantics
	On the Relative Precision of Different Cache Trace Abstractions

	Instantiations of the Analysis Framework: Abstractions of Cache Traces
	Basic Abstractions
	Global-CS: Global May-Conflict Set
	Block-CS: Block-wise May-Conflict Set
	C-Must: Conditional Must Analysis
	C-May: Conditional May Analysis

	Combinations of Basic Abstractions
	Direct Product of Cache Trace Abstractions
	Domain Cooperation
	State Reduction between C-Must and Block-CS
	State Reduction between C-Must and C-May
	Must Analysis
	Cooperative Update for C-Must in the Context of Must

	Summary: The Landscape of Persistence Abstractions

	Related Work and How It Maps Into the Landscape of Persistence Abstractions
	Extension to Data Caches
	Conclusions and Future Work
	Proofs

