
Volume 5 | Issue 1 | October 2018

Vol. 5, Issue 1 ISSN 2199-2002 http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites

ISSN 2199-2002

Published online and open access by
the European Design and Automation Association
(EDAA) / EMbedded Systems Special Interest Group
(EMSIG) and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik GmbH, Dagstuhl Publishing, Saar-
brücken/Wadern, Germany.
Online available at
http://www.dagstuhl.de/dagpub/2199-2002.

Publication date
October 2018

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons At-
tribution 3.0 Germany license (CC BY 3.0 DE): http:
//creativecommons.org/licenses/by/
3.0/de/deed.en.

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier
10.4230/LITES-v005-i001

Aims and Scope
LITES aims at the publication of high-quality schol-
arly articles, ensuring efficient submission, reviewing,
and publishing procedures. All articles are published
open access, i.e., accessible online without any costs.
The rights are retained by the author(s).

LITES publishes original articles on all aspects of em-
bedded computer systems, in particular: the design,
the implementation, the verification, and the testing
of embedded hardware and software systems; the
theoretical foundations; single-core, multi-processor,
and networked architectures and their energy con-
sumption and predictability properties; reliability
and fault tolerance; security properties; and on
applications in the avionics, the automotive, the
telecommunication, the medical, and the production
domains.

Editorial Board
Alan Burns (Editor-in-Chief)
Bashir Al Hashimi
Karl-Erik Arzen
Neil Audsley
Sanjoy Baruah
Samarjit Chakraborty
Marco di Natale
Martin Fränzle
Steve Goddard
Gernot Heiser
Axel Jantsch
Florence Maraninchi
Sang Lyul Min
Lothar Thiele
Virginie Wiels

Editorial Office
Michael Wagner (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
LITES, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
lites@dagstuhl.de
http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/dagpub/2199-2002
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
https://doi.org/10.4230/LITES-v005-i001
http://www.dagstuhl.de/lites

Contents

Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions
Bader Naim Alahmad and Sathish Gopalakrishnan . 1:1–1:30

Errata for Three Papers (2004-05) on Fixed-Priority Scheduling with
Self-Suspensions

Konstantinos Bletsas, Neil C. Audsley, Wen-Hung Huang, Jian-Jia Chen, and
Geoffrey Nelissen . 2:1–2:20

The Semantic Foundations and a Landscape of Cache-Persistence Analyses
Jan Reineke . 3:1–3:52

A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits
Dmitry Burlyaev, Pascal Fradet, and Alain Girault . 4:1–4:26

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/en/about-dagstuhl/

Risk-Aware Scheduling of Dual Criticality Job
Systems Using Demand Distributions
Bader Naim Alahmad
The University of British Columbia
2366 Main Mall, Vancouver, BC, Canada V6T 1Z4
bader@ece.ubc.ca

https://orcid.org/0000-0002-6409-1277

Sathish Gopalakrishnan
The University of British Columbia
2332 Main Mall, Vancouver, BC, Canada V6T 1Z4
sathish@ece.ubc.ca

Abstract
We pose the problem of scheduling Mixed Critic-
ality (MC) job systems when there are only two
criticality levels, Lo and Hi—referred to as Dual
Criticality job systems—on a single processing plat-
form, when job demands are probabilistic and their
distributions are known. The current MC mod-
els require that the scheduling policy allocate as
little execution time as possible to Lo-criticality
jobs if the scenario of execution is of Hi critical-
ity, and drop Lo-criticality jobs entirely as soon
as the execution scenario’s criticality level can be
inferred and is Hi. The work incurred by “incor-
rectly” scheduling Lo-criticality jobs in cases of
Hi realized scenarios might affect the feasibility
of Hi criticality jobs; we quantify this work and
call it Work Threatening Feasibility (WTF). Our
objective is to construct online scheduling policies
that minimize the expected WTF for the given in-
stance, and under which the instance is feasible
in a probabilistic sense that is consistent with the
traditional deterministic definition of MC feasibil-
ity. We develop a probabilistic framework for MC

scheduling, where feasibility is defined in terms of
(chance) constraints on the probabilities that Lo
and Hi jobs meet their deadlines. The probabilit-
ies are computed over the set of sample paths, or
trajectories, induced by executing the policy, and
those paths are dependent upon the set of execution
scenarios and the given demand distributions. Our
goal is to exploit the information provided by job
distributions to compute the minimum expected
WTF below which the given instance is not feas-
ible in probability, and to compute a (randomized)
“efficiently implementable” scheduling policy that
realizes the latter quantity. We model the problem
as a Constrained Markov Decision Process (CMDP)
over a suitable state space and a finite planning
horizon, and show that an optimal (non-stationary)
Markov randomized scheduling policy exists. We de-
rive an optimal policy by solving a Linear Program
(LP). We also carry out quantitative evaluations on
select probabilistic MC instances to demonstrate
that our approach potentially outperforms current
MC scheduling policies.

2012 ACM Subject Classification Mathematics of computing → Markov processes, Software and its
engineering → Real-time systems software, Software and its engineering → Real-time schedulability
Keywords and Phrases Real-time scheduling; Mixed-criticality; Probability distribution; Chance-
constrained Markov decision process; Linear programming
Digital Object Identifier 10.4230/LITES-v005-i001-a001
Received 2016-02-04 Accepted 2018-01-07 Published 2018-05-30

1 Introduction

We consider a system comprised of a finite set of jobs executing upon a shared platform (processor),
and a scheduling policy that allocates processor time to jobs. A Mixed-Criticality (MC) real-time
job system is one that carries out multiple jobs, with each job being of a specific criticality. For
example, in an avionics/UAV system, some jobs relate to the flight stability or safety of the aircraft,

© Bader Naim Alahmad and Sathish Gopalakrishnan;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 5, Issue 1, Article No. 1, pp. 01:1–01:30
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bader@ece.ubc.ca
https://orcid.org/0000-0002-6409-1277
mailto:sathish@ece.ubc.ca
http://dx.doi.org/10.4230/LITES-v005-i001-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

and these jobs have the highest criticality. Other jobs may relate to the mission of the aircraft
(gather visual information of a particular region) and these jobs may be of a lower criticality. In
the special and important case—that we consider in this article—where every job assumes one of
exactly two criticality levels, Lo or Hi, we will refer to the MC system as Dual-Criticality.

From a job scheduling perspective, one would like to schedule jobs so that they meet their
timing constraints or deadlines. To do so, one needs to know the execution time requirements of
these jobs. Using worst-case execution time (WCET) estimates for execution time would lead to
infeasibility of low criticality jobs (because the worst-case utilization could saturate the system
capabilities) but, since worst-case execution times are rarely realized, one could use the same
platform for jobs of all criticality levels provided the scheduler makes suitable choices when the
execution duration of a job approaches the worst case or when it exceeds certain thresholds.

Vestal [38] was the first to offer an abstraction for scheduling MC job systems. In Vestal’s
model, there are L ≥ 2 distinct criticality levels, and n jobs J1, . . . , Jn. For notational convenience,
we denote as [n] the set {1, . . . , n} for integers n ≥ 1. Job Ji is characterized by the parameters
(χi, ci, di), where

χi ∈ [L] is job Ji’s criticality;
ci =

(
ci(1), . . . , ci(L)

)
∈ (0,∞)L is the vector of WCET estimates at all criticality levels;

di > 0 is job Ji’s deadline.
For example, consider a triple-criticality MC job system consisting of three jobs J1, J2, and J3 with
criticalities χ1 = 1, χ2 = 3, and χ3 = 2, respectively, and with the following WCET estimates:

J1 : c1 =
(
c1(1) = 90, c1(2) = 90, c1(3) = 90

)
J2 : c2 =

(
c2(1) = 10, c2(2) = 12, c1(3) = 20

)
J3 : c3 =

(
c3(1) = 1, c3(2) = 500, c3(3) = 500

)
.

We shall make the following common monotonicity assumption: ci(1) ≤ · · · ≤ ci(L) for every
i ∈ [n]. Moreover, we will assume that ci(`) = ci(χi) for all ` ≥ χi, so that it is sufficient to
specify job Ji’s WCET estimates by giving ci(1), . . . , ci(χi), i ∈ [n]. An execution scenario, or
behavior, is a particular realization of job demands in a particular run of the system; i.e., it is
a vector b = (b1, . . . , bn) in

∏n
i=1(0, ci(χi)]. In our example, (10, 11, 450) is a possible execution

scenario. In any particular run of the system, the scenario remains unknown until all jobs finish
execution. The criticality level of behavior b is defined as

critDemand(b) = min
{
` ∈ [L] : bi ≤ ci(`) ∀i ∈ [n]

}
.

For instance, critDemand
(
(10, 11, 450)

)
= 2. During a schedule, at time t, say, job Ji is said to

be operating at criticality level ` ∈ [L] if it has been given at least ci(`− 1) but less than ci(`)
units of execution, and has not finished execution at time t. We call this time-dependent quantity
the job’s operational criticality level at t. With the monotonicity assumption, the range of
execution times that job Ji might demand when operating at criticality level ` is the open interval
(ci(`− 1), ci(`)], with the convention that ci(0) = 0. In our example, if we take a snapshot of a
certain schedule at, say time 63, and observe that jobs J1, J2 and J3 have executed for 50, 10 and
3 time units, respectively, but J2 has not yet finished execution, then J2’s operational criticality
level at time 63 is 2. However, if J2 finishes execution at time 63 with 10 time units of execution,
then its operational criticality level for all t ≤ 63 is 1. The operational criticality level remains the
same from time t until Ji either signals that it has finished execution, or it executes for ci(`) time
unit at some t′ > t and does not signal completion, at which point its operational criticality level
jumps to `+ 1. As such, a job’s operational criticality level is an increasing piecewise-constant
function of time, demand, and the scheduling policy, with a (random) set of jump points.

B.N. Alahmad and S. Gopalakrishnan 01:3

At time t, the maximum of all job operational criticality levels is the system operational
criticality level at time t. We note that the system operational criticality level of an observed
allocation snapshot, say b, at some time, is not the same as critDemand(b); the system operational
criticality level depends on additional information not encoded in b, namely whether or not jobs
finished execution, whereas critDemand(b) assumes that all jobs finished execution. Since the
system operational criticality level is defined in terms of the job operational criticality levels, the
former is also an increasing piecewise-constant function. In our example, the system operational
criticality level at time 63 with the same execution snapshot (50, 10, 3) is 1 if J2 finishes execution
at or before time 63, and is 2 otherwise. If the scheduler selects J2 to execute from time 63 to
time 67, then at time 65, the system operational critical level makes a jump from 2 to 3 (since
then J2 has executed for 12 = c2(2) time units and has not finished execution), and remains 3
until the end of the schedule.

Once a job signals that it has finished execution, its demand is realized. A demand realization
is a scenario of execution. Every job demand realization maps naturally to a unique job criticality
level realization, and the maximum of which across all jobs is the system criticality level
realization. Different runs, or executions, of the input job system might yield different criticality
level realizations, since, generally, a job might demand anything in (0, ci(χi)], and job demand
realizations might differ across different executions.

The Job Dropping Model: Literature and Optimality
In addition to Vestal [38], there has been a substantial body of work that analyzes scheduling
policies for deterministic MC systems, wherein low(er) criticality jobs are dropped when a high(er)
criticality job demands more execution time. One such approach was studied by Baruah et al. [8, 10].
In this approach, low criticality jobs are dropped when it is deemed necessary to allocate more
time to a high criticality job. This decision is based on deterministic thresholds and is conservative
in the sense that worst-case assumptions are made about the execution time requirements of the
low criticality jobs and other high criticality jobs. As a consequence, low criticality jobs may
miss deadlines even when it may be possible to meet the deadlines for high and low criticality
jobs. Feasibility of a given Dual-Criticality instance in this model is defined as follows: For every
scenario of execution, if the scenario’s criticality level is Lo, all jobs should be given enough
execution time to complete entirely and should meet their deadlines, but if the scenario’s criticality
level is Hi, only Hi-criticality jobs need to be given execution budget and must complete before
their deadlines. In the latter case, giving any execution time to Lo-criticality jobs is considered as
an erroneous allocation, and doing so negatively affects the achievable processor utilization.

A non-clairvoyant, or online, scheduling policy does not know the scenario of execution in
advance, and only an omniscient clairvoyant policy knows the realized scenario at time 0, and
is therefore able to decide whether or not to drop Lo-criticality jobs at the beginning of system
operation and thus achieve the maximum processor utilization. An instance I = (J1, . . . , Jn;L) is
said to be correctly MC-schedulable by scheduling policy π if for every scenario (behavior)
b ∈

∏n
i=1(0, ci(χi)], if b has criticality level `, then every Ji with χi ≥ ` can be given bi units of

execution during [0, di] under π. An instance I is said to be MC-feasible if there is an online
scheduling policy under which I is correctly MC-schedulable.

Baruah et al. [10] showed that checking MC-feasibility can be reduced to checking its defining
condition only for the scenarios that assume the WCET estimates; i.e., for b ∈

{(
c1(`1), . . . , cn(`n)

)
:

`i ∈ [χi]
}
. The MC-feasibility problem was shown to NP-Hard in the strong sense [7]; however, it

is not yet clear whether or not MC-feasibility belongs to the class NP.
If an instance I is not MC-feasible, then there is no online scheduling policy under which it

is correctly MC-schedulable. Conversely, if instance I is MC-feasible, then an online scheduling
policy that correctly MC-schedules I may or may not exist.

LITES

01:4 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

A widely used measure of the performance of non-clairvoyant MC-scheduling policies is the
processor speed-up factor (Baruah et al. [8], Kalyanasundaram and Pruhs [30]). It is defined as
follows: If π is a non-clairvoyant scheduling policy, then its speed-up factor is the smallest real
number s > 1 such that, for every MC instance I, if I is MC-feasible on a unit-speed processor,
then policy π will correctly MC-schedule I on an s (or more)-speed processor. An optimal policy
is one that minimizes s.

In the MC context, a non-unit speed-up factor arises because of the following: A non-clairvoyant
algorithm has only WCET estimates available, and it does not know the scenario of execution in
advance, so in high criticality scenarios, the algorithm might allocate execution time to jobs whose
criticality is less than the realized system criticality level. Thus the earlier the time at which the
scenario’s criticality level is inferred under the scheduling policy while preserving feasibility (in
the MC sense), the less the “processor time waste” the policy incurs for that scenario. Since the
scheduler can drop all Lo-criticality jobs as soon as the scenario’s criticality is inferred as Hi,
predicting the earliest such time plays a central role in the MC-scheduling problem. Given an MC
job instance, a scenario of execution and a non-clairvoyant scheduling policy, we call the earliest
time instant at which the execution scenario’s criticality level is inferred with certainty the Time
of Criticality Inference (TCI) associated with the scheduling policy for the given scenario.
Giving any execution time to Lo-criticality jobs early on in the schedule will only delay the TCI,
and thus delay the time instant at which we can decide whether or not to drop Lo-criticality
jobs. However, to preserve the schedulability of Lo-criticality jobs in case the scenario is of Lo
criticality, the policy must judiciously give execution time to Lo-criticality jobs early on in the
schedule. Thus, we are facing conflicting objectives, and the optimal scheduling policy must strike
the right allocation balance.

Here is an example to illustrate the situation.

I Example 1. Consider a dual-criticality MC job system consisting of two jobs J1 and J2 with
the following parameters:

J1 : c1 =
(
c1(Lo) = 200, c1(Hi) = 300

)
, χ1 = Hi, d1 = 450

J2 : c2 =
(
c2(Lo) = 250

)
, χ2 = Lo, d2 = 300.

First let us examine how the clairvoyant algorithm would MC-schedule this job instance. If the
scenario is of Hi criticality, then the clairvoyant policy knows this at time 0 and drops J2 entirely
and schedules J1, which would then meet its deadline of 450. If the scenario is of Lo criticality,
then the clairvoyant policy schedules both J1 and J2 using the Earliest Deadline First (EDF)
policy, and they both meet their deadlines: The worst-case Lo-criticality scenario is (200, 250),
and under EDF, J2 is scheduled first and finishes at time 250 < d2 = 300, and then J1 occupies
the processor till time 450 (= d1). Now we consider two non-clairvoyant scheduling policies (see
Figure 1):

EDF. Suppose that the scenario of execution is (270, 250), which has Hi criticality. EDF first
schedules J2 up to time 250, and then selects J1 to occupy the processor until time 520. At
time 450, however, J1 misses its deadline.
Criticality Monotonic (CM), which is a fixed-priority scheduling policy that at each instant
schedules, among the jobs that have not finished execution, the job with the highest criticality.
Suppose that the scenario of execution is the Lo-criticality (150, 200). J1 occupies the processor
from time 0 to time 150, then J2 executes until time 350. J2, however, misses its deadline at
time 300.

The problem with EDF is that it does not consider criticalities, and consequently, in our
example, it scheduled J2 when it should have dropped it altogether. The work done by J2 affected

B.N. Alahmad and S. Gopalakrishnan 01:5

J1 : c1 =
(

c1(Lo) = 200; c1(Hi) = 300
)

; χ1 = Hi; d1 = 450

J2 J1

0 250

EDF

J2

0 270

Clairvoyant

J1

0 350

CM

J2

0

Clairvoyant

350

300150

200

J1

J2

300

300 450 520 450

scenario = (270; 250); crit

(

(270; 250)
)

= Hi scenario = (150; 200); crit

(

(150; 200)
)

= Lo

d2 d1d2 d1
| {z }

WTF

TCI

TCI

200

J2 : c2 =
(

c2(Lo) = 250
)

; χ2 = Lo; d2 = 300

× ×

Figure 1 Optimal clairvoyant vs. non-clairvoyant EDF (left) and clairvoyant vs. CM (right) schedules
for the job set of Example 1. EDF incurs WTF of 250, causing J1 to miss its deadline at 450. CM does
not allocate the Lo-criticality J2 enough execution time earlier in the schedule so as to guarantee its
feasibility if the realized scenario is Lo, which is the case in this example. This causes J2 to miss its
deadline at time 300.

the feasibility of J1 (which is the only job whose feasibility matters given that the scenario is of Hi
criticality). We call this processor time waste—caused by lack of knowledge of the scenario—Work
Threatening Feasibility (WTF). In the example, EDF incurred WTF of 250 for the given
scenario, caused by scheduling J2. The speed-up factor of a given scheduling policy measures
its worst case (maximum) incurred WTF across all MC instances that are MC-feasible (on a
unit-speed processor). We note that WTF is only incurred for scenarios that have Hi criticality
and, in this case, by giving execution time to Lo-criticality jobs; it is zero for Lo-criticality
behaviors. The problem with CM, on the other hand, is that it does not care about the feasibility
of Lo-criticality jobs in light of a Lo behavior, although it causes the system criticality level to
be realized the soonest possible.

Our example suggests that to both minimize the WTF and guarantee feasibility, the scheduling
policy must strive to achieve a balance between the following conflicting objectives:

O1. It should allocate Lo-criticality jobs sufficiently enough execution times early on; in particular,
prior to the TCI, so as to guarantee their schedulability in the case where the realized behavior
is of Lo criticality, and

O2. It should minimize any WTF, by

a. driving the revelation of the system criticality level sufficiently quickly by scheduling
Hi-criticality jobs, so as to decide whether to drop Lo-criticality jobs as soon as possible,
and

b. minimizing the allocation in O1 if the scenario is Hi-criticality (it is here where the
objectives are conflicting).

Probabilistic MC-Model: Justification

The MC model we consider in this article is a probabilistic variant of the MC model thus described.
But why use a probabilistic MC model? First, the current MC standards and accreditations express
the required performance guarantees of MC software components as failure probabilities. For

LITES

01:6 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Table 1 DO-178B Criticality Specifications (AdaCore [1]).

Level Failure Condition Failure Rate Limit (failures/hour) Example

A Catastrophic 10−9 Fly-by-wire
B Hazardous 10−7 Fuel management
C Major 10−5 Pilot/ATC communication
D Minor 10−3 Flight data recorder
E No effect n/a Entertainment system

instance, the DO-178B avionics standard1 lists 5 levels of criticality, and specifies for each criticality
level an upper bound on the failure rate of software components having that criticality (Table 1).
From the scheduling perspective, job failures are deadline misses. Then given how MC systems
are specified in practice, we believe that a probabilistic framework is the natural setting in which
MC systems ought to be framed and reasoned about.

Note. Failure rate estimation is a research problem in its own right, but is outside the scope of
this article. We refer the reader to Shooman [36] for an in-depth account of failure rate estimation
in avionics software systems, along with feasibility studies and the associated analysis.

Second, without any additional information about job demands other than WCET estimates,
the scheduler is oblivious to job demand realizations prior to job completion, until the realizations
present themselves online at one of the system operational criticality level jump instants. As a
consequence, working with WCET estimates solely will lead to underutilization of the processor
when the WCETs are not realized.

Contribution
Whereas the contribution in this specific article relates to a specific restriction of the MC job
model, the overall thrust of our work is to develop a framework for reasoning about workload of
different criticality levels and providing probabilistic guarantees about the successful execution of
jobs. The one-shot job model that we consider—as opposed to the more complex recurrent task
model—was, as we shall see below, studied extensively in the context of MC scheduling, and it
remains highly relevant due to the complexity of MC scheduling problems. We have chosen this
particular model as a first step towards reasoning about recurring tasks. One can interpret our
work as providing the boundaries for synthesizing feasible policies.

This article is an attempt to reconcile the widely used job-dropping model and the mixed-
criticality specifications as institued by the current standards and the industry requirements.
Baruah’s work and ours have following in common: We both regard allocating execution times to
Lo-criticality jobs in cases of Hi-criticality execution scenarios as undesirable behavior that the
scheduling algorithm should avoid. In our model, however, feasibility is defined more generally,
and our definition includes Baruah’s definition as a special case: We are given upper bounds on
the probabilities that jobs at each criticality level miss their deadlines, and one of our goals is
to determine a policy under which the probabilities of deadline misses respect the user-supplied
failure tolerance parameters. Toward this goal, we introduce the notion of probably feasible
MC instances in the job dropping model (for the precise definitions, see Definition 4).

1 Titled Software Considerations in Airborne Systems and Equipment Certification, and developed jointly by
RTCA SC-167 and EUROCAE WG-12.

B.N. Alahmad and S. Gopalakrishnan 01:7

We propose an approach for Dual-Criticality job systems that is not deterministic, and uses
the probability distribution of job execution times. Our contribution is a model of MC job
systems as a chance-Constrained Markov Decision Process (CMDP) that then allows
us to provide guarantees around jobs meeting their timing constraints with high probability.
The chance constraints are sample path constraints on the trajectories of the MDP induced by
executing a policy, and they represent the risk of missing deadlines at the various criticality levels.
We show how to derive a randomized non-stationary Markov scheduling policy that is expected
WTF-optimal, by solving a linear program.

This approach can be computationally expensive, but we envisage this as a first step in enabling
such probabilistic analysis. Nevertheless, the problem is amenable to approximation, and we briefly
outline one method that can be used to obtain approximately optimal and approximately feasible
scheduling policies.

More Literature
Before concluding this section, we mention some prior work related to MC-scheduling and to
probabilistic analysis of real-time systems.

Baruah and Vestal [11] showed that for recurrent MC task systems, Earliest Deadline First
(EDF) does not dominate Rate-Monotonic (RM), and neither are optimal for scheduling MC
tasks in the job dropping model. The Own Criticality-Based Priority (OCBP) algorithm was
among the first algorithms designed specifically for the scheduling of (deterministic) MC job
systems within the job dropping model [10]. OCBP is a fixed-priority scheduling policy, and
it utilizes Audsley’s priority assignment scheme [6]. OCBP was shown to be optimal in the
class of fixed-priority MC-scheduling algorithms in the speed-up factor, with a speed-up factor of
(
√

5 + 1)/2 for dual-criticality job system. It was shown that if an instance I is OCBP-schedulable,
then it is MC-feasible; thus, correct schedulability by OCBP is sufficient for MC-feasibility, and
the correct MC-scheduling policy is given by the OCBP priorities. Conversely, if I is MC-feasible,
then OCBP might or might not correctly MC-schedule I; however, if I is MC-feasible, then OCBP
can correctly MC-schedule I on a speed (

√
5 + 1)/2 processor, or, in other words, OCBP is capable

of correctly MC-scheduling the (smaller) instance where every given WCET is divided by the
speed-up factor (

√
5 + 1)/2. This quantifies how inexact OCBP is.

The MC-EDF algorithm [37] was shown to dominate OCBP, in the sense that there are
(deterministic) MC-feasible instances that are deemed MC-schedulable by MC-EDF but not by
OCBP.

Guo and Baruah [22] studied the scheduling of MC jobs (with job dropping) on a single
processor with varying speeds. The authors of the latter extended their work to the sporadic task
model with implicit deadlines [9]. Chen et al. [15] devised a deadline-tightening technique for
scheduling MC sporadic task systems on a unit-speed single processor, wherein virtual deadlines
that are shorter than the actual deadlines are assigned to the higher criticality jobs. Again, low(er)
criticality tasks may be rejected in order to satisfy the demands of high(er) criticality tasks. We
refer the reader to the manuscript by Burns and Davis [14] for the most current and comprehensive
overview of MC systems and related problems.

The probabilistic analysis of (non-MC) real-time systems is not new. Díaz et al. [16] analyzed
the behavior of fixed-priority (e.g., RM) and dynamic-priority (e.g., EDF) scheduling algorithms for
recurrent, stochastically independent tasks when execution times are random variables. The goal
of their work is to compute the probability of deadline miss as well as the (random) response-time
of every task. See also [17, 18, 19, 31]. Maxim and Cucu-Grosjean [33] extended the probabilistic
analysis framework of Díaz et al. [16] for fixed-priority scheduling schemes to task systems where
also the minimum inter-arrival times between job invocations as well as task deadlines may be

LITES

01:8 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

random variables. Their focus was to efficiently compute the response time of each task under
the assumption that tasks are stochastically independent. They do so by using convolution of
probability distributions as the key underlying mathematical operation.

To the best of our knowledge, there is no work that aims at identifying feasible scheduling
policies for MC job systems where job execution times are random. Alahmad et al. [2] were the
first to propose the consideration of probabilistic execution times for MC systems. Guo et al. [23]
carried out schedulability analysis of EDF applied to recurrent MC task systems, wherein lower
priority tasks are given guarantees against failure. The latter is the closest work we are aware of
to our efforts in this article. However, our problem is substantially harder, because it is concerned
with synthesizing MC scheduling policies, as opposed to analyzing existing (fixed) scheduling
policies.

2 System Model

We will adopt Vestal’s model described above, but we will frame it in a probabilistic setting. The
system we consider is that of n jobs executing upon a single processor, and all jobs are ready to
execute at time 0. We will make use of the sets N = {1, 2, . . . } ⊂ {0, 1, 2, . . . } = Z+. For ease of
reference, we give in Table 2 a listing of most of the notation used in this article.
Note: The purpose of this section is to present as general a probabilistic framework for MC
systems. As such, the exposition to follow will be in terms of general probability spaces, arbitrary
number of criticality levels, with no assumptions about the random demands except boundedness.
This setting is, however, much more general than the actual problem that we consider, which is a
specialization of the framework to be presented to two criticality levels and discrete demands.

In addition to the parameters (χi, ci, di) described earlier, the execution demand of job Ji is
described by a random variable

ζi : Ωi → (0, ci(1)] ∪ · · · ∪ (ci(χi − 1), ci(χi)] = (0, ci(χi)]

on a probability space (Ωi,Mi,Pi), where Ωi is the scenario space associated with job Ji consisting
of all possible execution scenarios, Mi is the set of possible (observable, measurable) events, and
Pi is a probability measure on Ωi.

We will assume that the jobs are independent; that is, the demand random variables ζ1, . . . , ζn
are independent. The distribution of ζi is the probability measure Pζi

≡ Pi ◦ ζ−1
i on (0, ci(χi)],

and Pζi is known. Accordingly, job Ji is characterized by the tuple
(
(Ωi,Mi,Pi), ζi, χi, ci, di

)
,

i ∈ [n]. The actual execution time that a job consumes at run-time (upon completion) is a job
demand realization. The demand realization of a job is not known prior to its completion. A
job completes execution when it announces, or signals, that it has finished execution; i.e., when
the demand realization has presented itself. The latter happens when the job has been allocated
enough execution time to produce its output entirely.

To this end, let

Ω =
n∏
i=1

Ωi, M =
n⊗
i=1

Mi,

where
⊗n

i=1 Mi is the product σ-algebra; that is, the σ-algebra with respect to which all the
projection (coordinate) maps proji : Ω→ Ωi are measurable. Let P be the product measure on
(Ω,M); i.e., P is such that for every rectangle A ∈M, where A = A1 × · · · ×An and Ai ∈Mi,

P(A) = P(A1 × · · · ×An) =
n∏
i=1

Pi(Ai). (1)

B.N. Alahmad and S. Gopalakrishnan 01:9

Table 2 Notation

Notation Meaning

Z+ : {0, 1, 2, . . . }
N : {1, 2, . . . }
[m], where m ∈ N : {1, . . . ,m}
R : The real numbers
n ∈ N : Number of input jobs
ci(`) > 0 : WCET estimate of job Ji at criticality level `
χi : Criticality level of job Ji
di > 0 : Deadline of job Ji
Ωi : Scenario space of job Ji
Mi : Set of events; subsets of Ωi (σ-algebra)
Pi : Probability measure on the scenario space Ωi of job Ji⊗n

i=1 Mi : n-fold product σ-algebra
P : Probability measure on the product scenario space
ζi, Zi : Demand random variables
GZi : Distribution function of random variable Zi
E : Expectation operator with respect to product scenario space
1E(x) : Indicator function of a set E
δx(E), E is a set, x a point : Dirac measure
proji : Projection (coordinate) map, returns ith component of a given vector
0, 1 : All zeros and all ones vectors
ei : Unit vector whose ith coordinate is 1
A : {e1, . . . , en} ∪ 0, Action space of the MDP
S : State space of the MDP
at : n-component vector, action taken at time t
yt : n-component binary vector of job finish signals at time t
xt : n-component vector, cumulative execution time allocations up to time t
rt : scalar error flag
st = (t, yt, xt, rt) : State of the MDP at time t
A(st) : Admissible actions in state st
π(dst | st−1, at−1) : Markov policy
Q(dst | st−1, at−1) : State transition kernel of MDP
H∞ : Canonical trajectory space of the MDP induced by executing policy π
{At}, {St}, {Yt}, {Rt}, t ∈ Z+ : Action, state, finish signal, and error stochastic processes on H∞
crit : Ω =

∏n

i=1 Ωi → N : Scenario criticality level
critDemand : B ≡

∏n

i=1(0, ci]→ N : Demand realization criticality level
critPath : H∞ → N : System criticality level of trajectory (path)
critState : S→ {Lo,Hi,Unknown} : Operational system criticality level given a state
Pπ : The (unique) probability measure on H∞
Eπ : Expectation with respect to H∞
Fi ≡ Fπi : H∞ → N : (Random) Finish time of job Ji with respect to policy π
TLo ≡ TπLo : H∞ → N : Earliest time at which Lo system criticality level is inferred by policy π
THi ≡ TπHi : H∞ → N : Earliest time at which Hi system criticality level is inferred by policy π
TCI ≡ TπCI : min(TLo, THi), TCI of a trajectory in H∞
w : S× S→ Z+ : Local (immediate, per stage) objective cost function of MDP
W ≡Wπ : H∞ → Z+ : WTF random variable on trajectory space
κ : S→ {0, 1} : Immediate constraint cost function of MDP
C ≡ Cπ : H∞ → Z+ : Constraint cost random variable on trajectory space

LITES

01:10 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

We shall denote vectors ω ∈ Ω as ω1, . . . , ωn, where ωi ∈ Ωi is the ith coordinate of ω. We extend
every ζi to be defined on Ω as follows. Let Zi = ζi ◦ proji. Then Zi : Ω→ (0, ci(L)] depends only
on the ith coordinate of a given ω ∈ Ω; that is,

Zi(ω) = ζi
(
proji(ω)

)
= ζi(ωi) (ω ∈ Ω).

We define the demand vector Z =
(
Z1, . . . , Zn

)
: Ω→

∏n
i=1(0, ci(L)]. Then

Z−1(C1 × · · · × Cn) =
(
Z1, . . . , Zn

)−1(C1 × · · · × Cn)
= {ω ∈ Ω : Zi(ω) ∈ Ci ∀i ∈ [n]} [=

⋂n
i=1 Z

−1
i (Ci)]

= {ω ∈ Ω : proj−1
i (ω) ≡ ωi ∈ ζ−1

i (Ci) ∀i ∈ [n]}

=
n∏
i=1

ζ−1
i (Ci). (2)

Then the definition of P implies that the distribution of Z, PZ , is such that

PZ(C1 · · ·Cn) = P
(
Z−1(C1 · · ·Cn)

)
= P
(⋂n

i=1 Z
−1
i (Ci)

)
= P
(∏n

i=1 ζ
−1
i (Ci)

)
=(∗)

∏n

i=1 Pi
(
ζ−1
i (Ci)

)
=
∏n

i=1 Pζi (Ci),

where equality (∗) follows by (1).
We will let Gζi(t) = Pζi

(
(−∞, t]

)
denote the distribution function of ζi. In the probabilistic

setting, every ω ∈ Ω is a scenario of execution, and Z(ω) is the corresponding system demand
realization (contrast these definitions with their counterparts in the deterministic setting described
above). Every execution scenario maps to a unique system criticality level realization through
the function crit : Ω→ [L], where

crit(ω) = min
{
` ∈ [L] : Zi(ω) ∈ (0, ci(`)] for all i ∈ [n]

}
. (3)

That crit is defined for all scenarios ω ∈ Ω follows by monotonicity of ci(`) with respect to `.
Fix ` ∈ [L]. For a scenario ω ∈ Ω, by (3), crit(ω) = ` if there is at least one job, say Ji, such

that ci(`− 1) < Zi(ω) ≤ ci(`), while the remaining jobs are such that Zj(ω) ≤ cj(`). For ` ∈ [L],
by independence of job demands,

P(crit ≤ `) = P
(⋂n

i=1{Zi ≤ ci(`)}
)

=
∏n
i=1Gζi

(
ci(`)

)
.

Since every scenario has a unique criticality level,

P(crit ≤ `) =
∑̀
k=1

P(crit = k).

Therefore,

P(crit = `) = P(crit ≤ `)− P(crit ≤ `− 1) =
n∏
i=1

Gζi

(
ci(`)

)
−

n∏
i=1

Gζi

(
ci(`− 1)

)
,

with the convention that ci(0) = 0. Specializing to the dual criticality case, where Lo ≡ 1 and
Hi ≡ 2, we have

P(crit = Lo) =
n∏
i=1

Gζi

(
ci(Lo)

)
, P(crit = Hi) = 1−

n∏
i=1

Gζi

(
ci(Lo)

)
. (4)

B.N. Alahmad and S. Gopalakrishnan 01:11

Now we recast the definitions made earlier in terms of scenarios spaces, random variables, and
the functions that we have just defined.

A scheduling policy is a rule that at every time instant decides which job, from the set
of available jobs (those that have not finished execution), is assigned the processor. At every
time instant, a scheduling policy may use the characterizing parameters of all jobs, as well as its
previous decisions, in making its next job allocation decision.

I Definition 2 (Correct MC-Schedulability). A policy π is said to correctly MC-schedule an
instance I = (J1, . . . , Jn;L) if for every scenario ω ∈ Ω, every Ji with χi ≥ crit(ω) receives Zi(ω)
units of execution during [0, di] under π.

We stress again that this definition does not require that jobs whose criticality is less than that of
the realized system criticality level be given any execution; in fact, we will consider doing so as an
undesired allocation scheme that is wasting the processor utilization.

I Definition 3 (MC-Feasibility, Classical). An instance I = (J1, . . . , Jn;L) is MC-feasible if there
is an online (non-clairvoyant) scheduling policy π under which I is correctly MC-schedulable.

Since our setting is probabilistic, we will be concerned with the notions of probabilistic feasibility
and expected WTF-optimality. We defer the formal definitions of these notions until we have
precisely defined the stochastic process induced by a policy, and the underlying probability space
over which the expectation is taken (Definitions 4 and 5 in section 3.4).

3 Problem Definition: Integer Demands and Dual Criticalities

We consider a specialization of the setting discussed in the previous section, in which all demand
random variables are integer-valued2, and the system is dual-criticality. We are given two error
parameters: One is a lower bound on the probability that all n jobs finish at or before their
deadlines if the system criticality level is realized as Lo, and the other is a lower bound on the
probability that Hi-criticality jobs meet their deadlines if the system criticality level is realized
as Hi. We are required to compute a scheduling policy that minimizes, in expectation, the time
wasted scheduling Lo-criticality jobs if the system criticality level turns out to be Hi, while
respecting the deadline miss constraints. That is, we want to compute a policy that minimizes
the WTF for the given instance, while respecting the timeliness constraints given by the error
parameters. We will make the definition of deadline miss probability precise in sections to follow.
Formally, the demand becomes the random variable

ζi : Ωi → {1, 2, . . . , ci(Lo), ci(Lo) + 1, . . . , ci(χi)}.

Accordingly, all demand realizations are integers, and we will therefore consider scheduling at
integer boundaries. We shall assume that a job system is MC if not all the input jobs have the
same criticality.

3.1 MDP Setup
Let Y = {0 : finished, 1 : not finished}n, and let yt ∈ Y be the following variable (n-component
vector): yit = 1 iff job Ji still requires execution at time t, and yit = 0 iff Ji has finished execution.
At time 0, all jobs require execution, so we shall assume that y0 = 1, the vector of all 1s. The

2 One may equally well work with rational times by regarding time as being divided into integer multiples of
some fixed rational quantum q > 0, and using scaling arguments to convert to integers.

LITES

01:12 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

evolution of the system state depends on the policy, so will specify precisely how the system
evolves after formally defining policies.

Let A be the set of control actions (here jobs) available to the scheduler. We will let A =
{e1, . . . , en} ∪ {0}, where 0 is the vector of all 0s, and {e1, . . . , en} is the standard basis for Rn;
ei is the unit vector that is 1 at the ith coordinate and 0 elsewhere. If the action taken at time
t ∈ Z+ is at ∈ A, then at = ei means that job Ji occupies the processor during [t, t+ 1]. If at = 0,
then no job is scheduled and the processor is kept idle. Let xt = (x1

t , . . . , x
n
t) encode the amount

of execution time that every job has been allocated up to the beginning of the tth epoch (before
acting at time t); that is, x0 = 0 and xt =

∑t−1
m=0 am for t ∈ N. Then for every t ∈ Z+ and i ∈ [n],

xit ∈ Xi =
{

0, 1, . . . , ci(χi)
}
. We will let X =

∏n
i=1 Xi. We will utilize a variable rt to “mark” the

state as “error”. An error flag stamped on a state signifies a deadline miss. rt assumes values in

R =
{
not error, potential error, error, error′

}
.

The state of the scheduling system at time t ∈ Z+ is st = (t, yt, xt, rt) ∈ S, where
S ⊂ {0, . . . , N} × Y × X × R. The rationale behind our choice of this particular design of
system state will become clear during the derivation of the state process below. For now, we
mention how each element comprising our state representation achieves a desirable merit we seek
in the system state:

t: The main reason we include time is that we want to encode job finish times in the state,
because we will identify “error” states as those where some job’s finish time exceeds its deadline.
As a byproduct, augmenting the state with time will result in time-homogeneous (stationary)
state transition dynamics (Hernández-Lerma [25], p. 13);
yt: Implements the idea that a job signals that it has finished execution; this is the only state
element that we observe, the others we set according to yt;
xt: Summarizes all we need to know about the decisions we have made (allocations) up to
time t, thus eliminating the need to include all actions up to time t. This is the key to ensure
that the state process, which we derive below, is a Markov chain;
rt: One case where a state st becomes error is if some Hi-criticality job i ∈ IHi has just missed
its deadline, which happens when t = di and Ji still requires execution (yit = 1). In this case,
we will set rt = error. When rt = error, we will set rt′ to error′ for all t′ > t; we do so to avoid
charging the trajectory of execution more than once if more then one job miss their deadlines
(see (17) and the discussion thereafter). Another possible error scenario is that when some
Lo-criticality job i ∈ ILo has just missed its deadline (t = di) and still demands execution
(yit = 1), and the system criticality level realization is inferred as Lo at or before t; that is, all
Hi-criticality jobs have already finished execution with Lo demand realizations (yjt = 0 and
xjt ≤ cj(Lo) for all j ∈ IHi). However, those are not the only cases where the state becomes
error. Consider the more subtle situation where no job has missed its deadline prior to time t,
and st is such that there is i ∈ ILo that just missed its deadline (t = di and yit = 1), but the
scenario’s criticality level realization is not yet determinable; in terms of our control variables,
there is a non-empty F ⊂ IHi, possibly all of IHi, such that every job j in F has executed for
at most cj(Lo)− 1, and none of the jobs in F have finished execution (yjt = 1 and xjt < cj(Lo)
for all j ∈ F), while the other k ∈ IHi \ F , if any, have finished already with Lo demand
realizations (ykt = 0 and xkt ≤ ck(Lo) for all k ∈ IHi \F). In this case, the Lo-criticality job Ji
that just missed its deadline does not drive the system into an error state at time t since, by
our definition of MC feasibility, this cannot be decided until we know the execution scenario’s
criticality level realization with certainty, which here depends on the (yet unknown) demand
realizations of the jobs in F . In such case, we will say that the system is potentially in error
state at time t, and we set rt = potential error to “remember” that a Lo-criticality job has

B.N. Alahmad and S. Gopalakrishnan 01:13

missed its deadline at t. Doing so gives us the facility to decide later whether or not the system
is in error state—as soon as the scenario’s criticality level realization is inferred—and, as a
consequence, deduct the penalties correctly in the MDP.

For t ∈ N, let (S × A)t be the Cartesian product of S × A with itself t times. Define the set of
admissible histories up to time t as H0 = S, and

Ht = (S× A)t × S (t ∈ N).

Every element of Ht is called a t-history, and has the form

ht = (s0, a0, . . . , st−1, at−1, st).

t-histories are the information available to the scheduler before making its job selection decision
at time t.

Let A(st) ⊂ A be the set of actions that the scheduler is allowed to apply at time t when the
scheduling system is in state st. We shall call A(st) the set of admissible actions in state st.
A scheduling policy is a sequence π = {πt : t ∈ Z+}, where πt is a stochastic kernel on A(st)
given Ht. That is, if we denote the power set of a set X as 2X , then πt ≡ πt(dat | ht), where
πt : 2A(st) ×Ht → [0, 1] is such that
(i) for every B ∈ 2A(st), πt(B | ·) is a function from Ht to [0, 1], and
(ii) for every ht ∈ Ht, πt(· | ht) : 2A(st) → [0, 1] is a probability measure on A(st).

The state st summarizes all allocation decisions and remaining demands up to time t. We will
restrict our attention to Markov policies, where πt(at|ht) = πt(at|st) for every ht ([26] Definition
2.3.2 a).

A Note on Terminology: Since our state and action spaces are finite, all the stochastic (trans-
ition) kernels here can be represented by transition matrices. In this article, however, we will not
use any of the matrix algebra machinery used to analyze Markov chains, so we will present our
framework in the language of stochastic kernels.

A work-conserving scheduling policy always schedules a job that still demands execution;
i.e., it never keeps the processor idle whenever there is a job that has not finished execution. Thus
a policy is non-work-conserving iff there is t ∈ Z+ such that at = 0 (no job is selected) and there
is i ∈ [n] such that Ji has not finished execution; i.e., yit = 1. The epoch N =

∑n
i=1 ci(χi) is

an upper bound on our planning horizon. With N fixed, any trajectory induced by executing a
work conserving policy satisfies 1)

∑n
i=1 x

i
t = t for every t ∈ {0, . . . , N} for which yit = 1 for some

i ∈ [n], and 2) xt = xT for all t ∈ {T, . . . , N}, where T is the first time instant at which all jobs
finish execution. A non-work-conserving schedule will only delay job completions and the time at
which the criticality level realization can be inferred, so we restrict ourselves to work-conserving
policies.

We implement the requirement that the scheduling policy be work-conserving by specifying
that A(st) includes only vectors ei for which yit = 1, if any. We will drop Lo-criticality jobs
(temporarily) as soon as the state st indicates that the operational system criticality level is Hi,
and we will enforce this by placing further restrictions on A(st). Namely, given state st, if there is
i ∈ IHi such that both xit ≥ ci(Lo) and yit = 1, then the operational system criticality level at
time t is Hi and there are Hi-criticality jobs still requiring execution, so we exclude from A(st) all
Lo-criticality jobs. Otherwise, we include all Lo-criticality jobs that have not finished yet. If st
does not satisfy the latter condition, then either the system criticality level realization cannot be
inferred at t, or all Hi-criticality jobs finished with Lo demand realizations before or at t, or the

LITES

01:14 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

system criticality level was known before or at t as Hi, but all Hi-criticality jobs have finished
execution at t. In the last case, we might have dropped Lo-criticality jobs earlier, and, since
scheduling Lo-criticality jobs at time t in this case is not considered WTF (and does not affect
feasibility), we may bring back any Lo-criticality jobs that still need to execute. In summary,

A(st) =


{ei : yit = 1, χi = Hi} (∗) if there is i ∈ IHi such that xit ≥ ci(Lo) and yit = 1
{ei : yit = 1} if (∗) not satisfied and there is i ∈ [n] such that yit = 1
{0} otherwise (all jobs finished execution).

Control Model

Scheduling decisions are made at every t ∈ {0, . . . , N − 1} exclusively. If a certain job is chosen
to execute at some t, then this job occupies the processor for the duration [t, t + 1], without
interruption, until the scheduler is invoked again at t+1. We call [t, t+1] the tth control interval.
At any t > 0, if job Ji was chosen to occupy the processor during [t− 1, t] (i.e., at−1 = ei), then
the scheduler knows at time t whether or not job Ji requires more execution by observing the
value of yit, which will be set to finished if job Ji signals that it has finished execution at time t.
The other jobs’ demands are not affected by scheduling job Ji, and whether or not the other jobs
require more execution does not change in [t− 1, t]. The information available to the scheduler at
the beginning of the tth control interval is at−1, yt, xt, and rt.

Let s = (t, y, x, r) and ŝ = (t̂, ŷ, x̂, r̂). It is necessary for transition (s, a, ŝ) to be valid that all
the following be satisfied:

NC : t̂ = t+ 1,
n∑
i=1

xi = t,

a = x̂− x = ei for some i ∈ [n], or a = x̂− x = 0
y − ŷ ∈ {0, ei} for the same i, and
(r, r̂) /∈

{
(error, not error), (error, potential error), (not error, error′),
(potential error, error′), (error′, r) ∀r ∈ R \ {error′}

}
.

However, not all state transitions satisfying NC are valid, as we will describe below. All
invalid state transitions have Q({ŝ} | s, a) = 0, however. To this end, we note that the state
includes all the information necessary to determine whether or not the system criticality level
is inferred, and if so, determine its value. To simplify the exposition, we define a function
critState : S→ {Lo,Hi,Unknown}, where critState(s) is the system criticality level realization,
and is defined as follows: For s = (t, x, y, r),
(1) critState(s) = Lo if all Hi-criticality jobs finished execution with Lo demand realizations;

that is, if yi = 0 and xi ≤ ci(Lo) for all i ∈ IHi;
(2) critState(s) = Hi if either

(i) there is i ∈ IHi such that xi(Lo) = ci(Lo) and yi = 1, or
(ii) there is i ∈ IHi such that xi(Lo) > ci(Lo);

(3) If neither of the above holds, then critState(s) = Unknown.

Now assuming transition (s, a, ŝ) satisfies NC, we will use monotonicity of t 7→ xt and t 7→ yt, and
that s0 is fixed, to list additional conditions regarding the error flags under which (s, a, ŝ) is a
valid transition in an exact sense. In what follows, for a state s = (t, x, y, r) and ` ∈ {Lo,Hi},
the statement “an `-criticality job misses its deadline at time t” is to be understood formally as
“there is i ∈ I` such that di = t and yi = 1 (not finished).”

B.N. Alahmad and S. Gopalakrishnan 01:15

E1. (r = not error, r̂ = potential error): If all of the following conditions hold:
(i) no Hi-criticality job misses its deadline at time t̂ = t+ 1,
(ii) a Lo-criticality job misses its deadline at time t̂, and
(iii) the system criticality level is not yet determinable at t̂; that is, critState(ŝ) = Unknown

(r = no error says that no Hi-criticality jobs missed their deadlines up to time t);
E2. (r = not error, r̂ = error): Either

(i) a Hi-criticality job misses its deadline at time t̂, or
(ii) a Lo-criticality job misses its deadline at time t̂ and critState(ŝ) = Lo;

E3. (r = potential error, r̂ = error): Same as 2, except that we dispense with the condition in 22ii
that a Lo-criticality job misses its deadline at time t̂. r = potential error is saying that no
Hi-criticality job missed its deadline till t, and the criticality level could not be inferred till t,
but a Lo-criticality job has missed its deadline already;

E4. (r = potential error, r̂ = potential error): Same as conditions (i) + (iii) of E1;
E5. (r = potential error, r̂ = not error): If critState(ŝ) = Hi and no Hi-criticality job misses its

deadlines at time t̂ = t+ 1;
E6. (r = not error, r̂ = not error): The combined conditions of (r = not error, r̂ 6= potential error)

and (r = not error, r̂ 6= error);
E7. (r = error, r̂ = error′): always;
E8. (r = error′, r̂ = error′): always.

The following summarizes the control model:
1. At t = 0, all jobs are ready to execute and they all demand execution, and the scheduler needs

to pick a job to schedule for exactly one time unit before it is invoked again at t = 1 (i.e., a0
needs to be set). Then y0 = 1, x0 = 0, and r0 = no error;

2. At the beginning of the tth control interval:
2.1 Update the cumulative system allocation by setting xt ← xt−1 + at−1;
2.2 Observe (acquire) yt;
2.3 Set Error: Set rt given rt−1 according to one of E1–E8;
2.4 Act: Set at to one of the vectors in A(st).

We will say that a state is valid if it can be generated by the control model above. The state
space S contains only the valid states; i.e., S is the subset of {0, . . . , N} × X × Y × R that can
be generated by the control model. For instance, if s = (t, x, y, r) is such that t = di + 1 and
yi = 1 (not finished) for some i ∈ [n], and r = not error, then for no x is s is valid, even if x is
such that

∑n
j=1 x

j = t (necessary for a state to be valid) and xj < cj(χj) for all j.
We point out that the state transition diagram has the simple structure of a directed tree of

depth at most N (the maximum horizon length), with fixed root s0, and each node in level t,
t ∈ {0, . . . , N}, corresponds to a possible state at time t (i.e., st.) Each intermediate node (state)
has at most |A||Y| = 2n children, each corresponding to a unique current action and next finish
signal pair (at, yt+1). Note that the next cumulative allocation vector, xt+1, and the next error
flag, rt+1, are deterministic once we know at and yt+1, so there is only one choice for each given
st and at.

3.2 The Transition Probabilities
We describe the evolution of the system state by a transition kernel (transition matrix) Q(dŝ|s, a) :
2S × (S × A) → [0, 1]. Since our state space S is finite, transition kernel Q should satisfy the
following for fixed action a and previous state s,
Q1. Q(∅|s, a) = 0;
Q2. Q(S|s, a) = 1;

LITES

01:16 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Q3. Q(U |s, a) =
∑
ŝ∈U Q({ŝ}|s, a) for every U ⊂ S;

Q4. 0 ≤ Q(U |s, a) ≤ Q(V |s, a) ≤ 1 for every U ⊂ V ⊂ S.
We shall abuse notation and write Q(ŝ|s, a) for Q({ŝ}|s, a). Let (s, a, ŝ) be a valid transition. If
s = (t, y, x, r), then t̂ = t+ 1, and we shall use the more time-suggestive notation ŝ ≡ st+1, where
ŷ ≡ yt+1, x̂ ≡ xt+1 and r̂ ≡ rt+1, and we similarly denote s as st. If (s, a, ŝ) is not valid, then
Q(ŝ|s, a) = 0. Fix an action at = ei. Then for transition (st, ei, st+1) to be valid, we must have
yit = 1 and xit+1 = xit + 1. Also, scheduling Ji does not affect the execution time demands of the
other jobs, so st+1 must satisfy yjt = yjt+1 for every j 6= i. For our fixed state-action pair (st, ei),
we know at time t that Zi > xit, and for j 6= i, Zj ∈ Cj for some Cj ⊂ [cj(χj)] . The following is a
complete list of all the possible next states st+1 and the corresponding transition probabilities
for the fixed action-state pair (st, at = ei) (it is here where we fully utilize the assumption of
independent job demands):

yit+1 = 1 (not finished): This says that the scenario ω is such that Zi(ω) > xit+1 = xit + 1, and
since Zj(ω) remains in Cj for every j 6= i at time t+ 1, we have

Q(st+1|st, ei) = P(Zi > xit + 1, Zj ∈ Cj ∀j 6= i | Zi > xit, Zj ∈ Cj ∀j 6= i)

= P(Zi > xit + 1, Zj ∈ Cj ∀j 6= i)
P(Zi > xit, Zj ∈ Cj ∀j 6= i)

= P(Zi > xit + 1)P(Zj ∈ Cj ∀j 6= i)
P(Zi > xit)P(Zj ∈ Cj ∀j 6= i)

= P(Zi > xit + 1)
P(Zi ≥ xit + 1)

(5)

if xit < ci(χi) − 1, and Q(st+1|st, ei) = 0 otherwise. The second to last equality follows by
independence of job demands.
yit+1 = 0 (finished): Here the demand of job Ji is realized at time t+ 1; that is, we know that
the scenario ω is such that Zi(ω) = xit+1 = xit + 1. Using the same reasoning as in the previous
case,

Q(st+1|st, ei) =


P(Zi=xi

t+1)
P(Zi≥xi

t+1) if xit < ci(χi)− 1,
1 if xit = ci(χi)− 1
0 otherwise.

(6)

Then for fixed (st, at = ei), summing over all possible next states; i.e., adding (5) and (6), we have

P(Zi > xit + 1) + P(Zi = xit + 1)
P(Zi ≥ xit + 1)

= P(Zi ≥ xit + 1)
P(Zi ≥ xit + 1)

= 1.

That is, our prescribed transition kernel Q satisfies property Q2, and indeed all the others.

3.3 The Underlying Probability Space
In this section we will outline in detail the construction of the probability space that we will be
working with. We will shift our attention from scenario spaces (the Ωis, section 2) to trajectory
spaces, which consist of the sample paths induced by executing policies. We will need this
construction when stating the formal definition of our problem, and we shall make several
references to it. Readers acquainted with the theory of Markov decision processes may only wish
to familiarize themselves with our notation.

B.N. Alahmad and S. Gopalakrishnan 01:17

Consider the product space

(S× A)∞ =
∞∏
t=0

(St × At),

where S0 = {s0}, s0 ≡ (t = 0, x0 = 0, y0 = 1, r0 = not error) is our fixed initial state (all jobs are
allocated 0 execution time and they all require execution,) St ⊂ {t} × Y × X × R, and At is a
copy of A. We will consider the subset of (S× A)∞ where each sequence of state-action pairs can
be generated by our control model, and we will call such sequences the valid trajectories. We
denote the set of valid trajectories as H∞, and we call H∞ the trajectory space induced by all
work-conserving scheduling policies. Every h ∈ H∞ is a trajectory induced by executing some
work-conserving policy, and is of the form

h = (s0, a0, s1, a1, . . .).

That is, every h is a realization of a schedule. We endow H∞ with the product σ-algebra, which we
denote as H∞. Let St : H∞ → S be the projection (coordinate) map on H∞ such that St(h) = st,
h ∈ H∞. Define At : H∞ → A(st) similarly. Given policy π = {πt : t ∈ Z+}, transition kernel Q,
and initial distribution ν on S, the Ionescu-Tulcea extension theorem ([32], Theorem 14.32; [5],
Theorem 2.7.2) asserts that there exists a unique probability measure Pπν on H∞ such that

Pπν
(
St ∈ U | ht−1, at−1

)
= Q

(
U |st−1, at−1

)
(U ⊂ S).

We have ν = δs0 for s0 = (0,0,1, not error), where δs0 is Dirac measure on H∞, so for brevity we
write Pπ ≡ Pπδs0

. We denote expectation with respect to Pπ (on H∞) as Eπ. Moreover, because
every policy is Markov as mentioned above, it follows that the induced state process {St : t ∈ Z+}
is a Markov chain for every policy π. That is, for every U ⊂ S and t ∈ Z+,

Pπ
(
St+1 ∈ U | st, . . . , s0

)
= Pπ

(
St+1 ∈ U | st

)
= Q

(
U |st, πt

)
,

where for fixed st,

Q
(
U |st, πt

)
=
∫

A
Q
(
U |st, at

)
πt(dat|st) =

n∑
i=1

Q
(
U |st, ei

)
πt(ei|st).

From now on, all subsequent random variables will be defined on H∞.
I Remark. For a given st, each action random variable At of the induced action process {At :
t ∈ Z+} is distributed according to πt(· | st); that is, Pπ(At ∈ C | St = st) = πt(C | st) for every
C ⊂ A(st).

3.4 Problem Statement
We start by formally defining the random variables that make up our objective function and
constraints, in terms of the induced MDP. First, we note that to every trajectory corresponds
at least one scenario in Ω, and that all scenarios that correspond to a trajectory have the same
criticality level. Consequently, we define the criticality level of a trajectory as the criticality level
of any scenario corresponding to it3.

3 To ensure that the trajectory criticality level is well-defined, we must assume that every policy assigns every
Hi-criticality job the processor for at least ci(Lo) time units. However, this is readily satisfied by every policy
since, by the way we specified the set of admissible actions A(st), Hi-criticality jobs are never dropped.

LITES

01:18 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

To this end, let I` = {i ∈ [n] : χi ≥ `}. Let h ∈ H∞ be a trajectory of execution. If h’s
criticality level is Hi, then the earliest time at which this can be inferred is the first instant at
which some job Ji with χi = Hi demands more than ci(Lo) units of execution. We denote this
random time as THi : H∞ → N ∪ {∞} and, in accordance with our control model, we define it as

THi = min
{
t ∈ N : Xi

t = ci(Lo) and Y it = 1 (not finished) for some i ∈ IHi
}
, (7)

with the usual convention min ∅ =∞.
If the trajectory’s criticality level is Lo, then this can be inferred with certainty only at the

first instant at which all Hi-criticality jobs finish execution. We denote this random time instant
as TLo : H∞ → N ∪ {∞}, and we define it as

TLo = min
{
t ∈ N : Y it = 0 (finished) and Xi

t ≤ ci(Lo) for all i ∈ IHi
}
. (8)

We note that the events {TLo <∞} and {THi <∞} are mutually exclusive, since a trajectory
of execution cannot be both Lo and Hi criticality. This makes the events {TLo = ∞} and
{THi =∞} mutually exclusive, since every trajectory must have a criticality. There are therefore
exactly two possibilities, and one of them must occur: Either {TLo < ∞} and {THi = ∞}, or
{TLo = ∞} and {THi < ∞}, exclusively. Accordingly, we define the TCI of a trajectory under
policy π as the random (finite) time

TCI = min(THi, TLo).

Recalling the manner in which we specified the set of admissible actions A(st), every policy
drops Lo-criticality jobs as soon as the scenario’s criticality level is realized as Hi; moreover, only
allocations made to Lo-criticality jobs prior to the TCI are considered as WTF, and this allocation
is regarded as WTF only if the system criticality level realization is Hi. Let critPath(h) denote
criticality level realization of trajectory (path) h ∈ H∞; critPath : H∞ → {Lo,Hi}. Then one way
to define the WTF of a trajectory h ∈ H∞ is as the random variable

W (h) = 1{critPath=Hi}(h)
∑

i:χi=Lo
Xi
TCI

(h), (9)

where Xi
TCI

(h) ≡ Xi
TCI(h)(h) is job Ji’s total allocation sampled at TCI. That is, for valid trajectory

h ∈ H∞, W (h) = 0 if critPath(h) = Lo, and W (h) is equal to the total allocation given to the
Lo-criticality jobs up to the TCI if critPath(h) = Hi.

We define the finish time of job Ji with respect to policy π as the stopping time Fi : H∞ → N,
where

Fi = min
{
t ∈ N : Y it = 0 (finished)

}
.

Objective: A dual-criticality probabilistic MC (pMC) instance I is described by the tuple(
{J1, . . . , Jn}, εLo, εHi

)
, where for every i ∈ [n], Ji is specified by the tuple

(
(Ωi,Mi,Pi), ζi, χi, ci, di

)
.

The error parameters εLo and εHi are the desired upper bounds on the deadline miss probabilities,
and both are in the interval [0, 1]. We seek a scheduling policy π such that the expected WTF,
EπW , is minimized, while simultaneously guaranteeing probabilistic MC-feasibility in the following
sense: (1) Conditioned on critPath = Lo, a job, among all n jobs, may miss its deadline with
probability at most εLo, and (2) conditioned on critPath = Hi, a Hi-criticality job may miss its
deadline with probability at most εHi.

We write our problem as the following CMDP:

CMDP :minimize
π∈Π

EπW

subject to Pπ
(⋃

i∈[n]{Fi > di} | critPath = Lo
)
≤ εLo

Pπ
(⋃

i∈IHi
{Fi > di} | critPath = Hi

)
≤ εHi.

(10)

B.N. Alahmad and S. Gopalakrishnan 01:19

We note that for any ` ∈ {Lo,Hi}, {critPath = `} = {TCI = T`} = {T` < ∞} ⊂ H∞, and that
TπCI <∞ Pπ-almost surely for any work conserving policy π.

Having formalized the problem, we are now able to give precise definitions of what its means
for an instance with probabilistic information to be feasible in the MC setting.

I Definition 4 (Probabilistic MC-feasibility). A pMC instance I is probably MC-feasible (pMC-
feasible) if there is a policy π such that the constraints (10) are satisfied.

A scheduling policy under which pMC instance I is pMC-feasible is said to correctly pMC-
schedule I. Let Π(I) denote the set of scheduling policies that correctly pMC-schedule instance
I.

I Definition 5 (Expected WTF-Optimality). A scheduling policy π is said to be WTF-optimal for
pMC instance I in expectation (or expected-WTF-optimal) if π ∈ Π(I) and EπW ≤ Eπ′

W for all
π′ ∈ Π(I).

Accordingly, given pMC instance I, our goal is to compute an expected WTF-optimal scheduling
policy for I.
I Remark. For ` ∈ {Lo,Hi}, Pπ(· | critPath = `) is a probability measure on the restriction of
H∞ to trajectories of criticality `. In the special case where H∞ is finite and Pπ(· | critPath = `)
is uniform measure, the constraint Pπ

(
Fi > di for some i ∈ [n] | critPath = `

)
≤ ε` has the

following simple interpretation: If we let H∞(`) be the subset of H∞ consisting of the trajectories
whose criticality is `, then the number of trajectories in H∞(`) where all n jobs do not miss their
deadlines is required to be at least (1− ε`)|H∞(`)|.

4 Solution Approach: Risk-Constrained MDP

The WTF as defined in (9) depends on the whole trajectory, so in its current form is not suitable
in the MDP framework, where costs are accrued per stage. We wish to define the WTF as a sum,
over the horizon, of functions that depend at each t ∈ Z+ on st−1 and st only. To this end, we
will use the following

I Proposition 6. Let h = (s0, a0, s1, a1) be a valid trajectory (in H∞). Then
(a) If critState(st) = Unknown for some t ∈ N, then critState(sm) = Unknown for every m < t;

and
(b) If critState(st) = ` for some t ∈ N and ` ∈ {Lo,Hi}, then critState(sm′) = ` for every m′ > t.

Proof. Follows readily from monotonicity of t 7→ Xi
t(h) and t 7→ Y it (h) for every i ∈ [n] and

h ∈ H∞, together with the fact that x0 = 0 and y0 = 1, and that we consider only work conserving
policies. J

We define the local (per stage) objective cost function w : S× S→ Z+, where

w(s, ŝ) = 1
{
critState(s) = Unknown

}
1
{
critState(ŝ) = Hi

} ∑
i:χi=Lo

x̂i

for s, ŝ ∈ S. That is, w(s, ŝ) is equal to the total Lo criticality allocation
∑
i:χi=Lo x̂

i only if the
criticality level realization is inferred as a consequence of moving from state s to state ŝ and is Hi
criticality; otherwise, w(s, ŝ) = 0. Since we are working with the set valid trajectories exclusively,
we may use Proposition 6 to write the WTF as

W (h) =
N−1∑
t=0

w
(
St(h), St+1(h)

)
.

LITES

01:20 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

4.1 The Risk Constraints
We will leverage the ideas of Geibel and Wysotzki [21] to carry out the transformation of the
deadline miss probabilities into a single “risk” constraint that takes the form of the expectation of
immediate costs.

We may write the first constraint in CMDP as

Pπ(Fi > di for some i ∈ [n], critPath = Lo) ≤ εLoPπ(critPath = Lo), (11)

where

Pπ(Fi > di for some i ∈ [n], critPath = Lo) = Pπ
(
{h ∈ H∞(Lo) : ∃t ∈ N s.t. rt = error}

)
.

(12)

Following Geibel and Wysotzki [21], constraint (11) defines the risk across the Lo-criticality
trajectories associated with executing policy π. Similarly to the Lo-criticality case, we write the
second constraint in CMDP as

Pπ(Fi > di for some i ∈ IHi, critPath = Hi) ≤ εHiPπ(critPath = Hi), (13)

where

Pπ(Fi > di for some i ∈ IHi, critPath = Hi) = Pπ
(
{h ∈ H∞(Hi) : ∃t ∈ N s.t. rt = error}

)
.

(14)

The trajectories

Her
∞ ≡

{
h = (s0, a1, s1, . . .) ∈ H∞ : ∃t ∈ N s.t. rt = error

}
are the error trajectories that we want to avoid with high probabilities.

H1(Lo)

H1(Hi)

H
er

1
(Lo)

H
er

1
(Hi)

Figure 2 Every policy π induces a probability measure Pπ on the trajectory space H∞, where the latter
consists of two disjoint sets: The Lo and Hi-criticality trajectories H∞(Lo) and H∞(Hi), respectively.
The ovals are graphical representations of the error trajectory sets that we wish to avoid. Given a policy,
say π, the “sizes” of the induced error sets Her

∞(Lo) and Her
∞(Hi) (relative to the entire trajectory space

H∞) are given by the unique probability measure Pπ. The smaller the size a policy assigns to the error
subsets, the better it is at avoiding trajectories in them. Roughly speaking, each `th (criticality-specific)
constraint in ECMDP is a restriction on the “size” of the corresponding error set Her

∞(`) relative to the
trajectories of the same criticality; i.e., relative to the size of H∞(`) (and not to the whole trajectory
space H∞); hence the conditioning in the constraints.

B.N. Alahmad and S. Gopalakrishnan 01:21

We now combine the constraints in CMDP. Put p` = ε` P(crit = `), ` ∈ {Lo,Hi}, and let

∆ = min(pLo, pHi).

Since H∞ is the disjoint union of H∞(Lo) and H∞(Hi), we may combine (12) and (14), and
require the satisfaction of the more conservative risk

Pπ
(
Her
∞
)

= Pπ
(
{h ∈ H∞ : h is error}

)
= Pπ

(
∃t : Rt = error

)
≤ ∆. (15)

For then,

Pπ
(
Hπ,er
∞ (`)

)
≤ Pπ

(
Her
∞
)
≤ ∆ = min(pLo, pHi) ≤ p`, for all ` ∈ {Lo,Hi}. (16)

Next we write the risk constraint (15) as an expectation under Eπ of immediate costs having a
form similar to κ. Inspired by Geibel and Wysotzki [21], we define the per-stage constraint cost
function κ : K→ {0, 1} as

κ(s, a) ≡ κ(s) =
{

1 if r = error,
0 otherwise.

(17)

This way, if a trajectory h = (s0, a0, s1, a1, . . .) is error, then since there is t ∈ N such that rt = error
and rt′ = error′ for all t′ > t, it follows that the sequence of constraint costs corresponding to this
trajectory is such that

κ(s0) = 0, . . . , κ(st−1) = 0, κ(st) = 1︸ ︷︷ ︸, κ(st+1) = 0, . . . , κ(sN) = 0.

If h is not error, then κ(st) = 0 for all t ∈ Z+. If we let C =
∑N
t=0 κ(St), then C ∈ {0, 1}; that is,

C is a Bernoulli random variable with probability of success Pπ(C = 1). Success of this Bernoulli
trial happens if there is t ∈ N such that Rt = error. That is,{

C = 1
}

=
{
∃t : Rt = error

}
,

from which it follows that

Pπ(C = 1) = Pπ
(
∃t : Rt = error

)
.

Since C is Bernoulli, it follows that

EπC = Pπ(C = 1),

from which we may write the risk constraint as

Pπ
(
∃t : Rt = error

)
= Pπ

(
C = 1) = EπC = Eπ

N∑
t=0

κ(St) ≤ ∆.

As a result of this transformation, all costs are now expectations of immediate costs, and
CMDP has the form

ECMDP : minimize
π∈Π

EπW = Eπ
N−1∑
t=0

w(St, St+1)

subject to EπC = Eπ
N∑
t=0

κ(St) ≤ ∆.

(18)

We denote as V ∗ the optimal value of ECMDP, where

V ∗ = inf
π∈Π

V (s0, π), V (s0, π) = EπW,

subject to the constraint EπC ≤ ∆.

LITES

01:22 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

4.2 The Linear Programming Approach
Most of the results that we apply in what follows regarding LP formulations for constrained MDPs
are due to Kallenberg [27] and Altman [3]. These formulations are also discussed in several other
references [4, 28, 29].

We define the immediate objective cost of taking action at in state st as the expected cost
over all possible next states:

w(st, at) = Eπw(st, at, St+1) =
∑
st+1∈S

w(st, at, st+1)Q(st+1 | st, at) =
∑
st+1∈S

w(st, st+1)Q(st+1 | st, at)

(see Puterman [35] equation (2.1.1).) To this end, recall that the schedule concludes when all
jobs finish execution. Moreover, costs (both objective and constraint) is (possibly) incurred only
until all jobs finish execution. That is, from the costs’ perspective, we are concerned with the set
of states

S′ =
{
s = (t, x, y, r) ∈ S : yi = 1 (not finished) for some i ∈ [n]

}
.

Costs keep (possibly) accruing until the state process hits S \ S′. Moreover, the set U ≡ S \ S′

is always reached under any work-conserving policy in finite time that is bounded above by
maxi∈[n]{Fi} ≤ N . Since we are considering work-conserving policies only, S′ also excludes any
states s = (t, x, y, r) for which t = N . Once the state process hits the set U , it never departs
U ; that is; U is absorbing under any work-conserving policy. In this case, our MDP is called
S′-transient (Altman [3]). In fact, our MDP is in a more restricted class that is a subset of
S′-transient MDPs. If we let TU be the hitting time of set U ; i.e.,

TU = inf{t ∈ N : St ∈ U},

then EπTU ≤ Eπ maxi∈[n]{Fi} ≤ N <∞ for any work-conserving policy π, and our MDP is said
to be S′-absorbing, or absorbing to U .

An optimal policy can be derived by solving the following linear program (Altman [4], equa-
tion (8.18)):

LP : minimize
[∑
s∈S

∑
a∈A(s)

w(s, a)ρ(s, a) =
∑
s∈S

∑
a∈A(s)

ρ(s, a)
∑
ŝ∈S

w(s, ŝ)Q(ŝ|s, a)
]

subject to
∑
s∈S

κ(s)
∑
a∈A(s)

ρ(s, a) ≤ ∆

∑
a∈A(s)

ρ(s, a)−
∑
s′∈S′

∑
a∈A(s′)

ρ(s′, a)Q(s|s′, a) = δs0(s) ∀s ∈ S (∗)

ρ(s, a) ≥ 0 ∀s ∈ S, a ∈ A(s).

An equivalent formulation is also given by Kallenberg [27], Theorem 6, and Kallenberg [29],
equation (57) and Theorem 26, where time is explicit. We note that in constraint (∗) of LP, for
every s ∈ S, the second summation is taken only over the states in S′ that are predecessors to
state s; that is, over s′ ∈ S′ for which there is a ∈ A(s′) such that Q(s|s′, a) > 0. For instance, if
the state is s = (t, x, y, r), then s′ = (t′, x′, y′, r′) ∈ S′ is a predecessor of s if t′ = t− 1.

If we let M =
∑
s∈S |A(s)|, then the decision variables involved in LP are

(
ρ(s, a) : s ∈ S, a ∈

A(s)
)
∈ [0,∞)M . If we let K =

{
(s, a) : s ∈ S, a ∈ A(s)

}
be the set of admissible state-action

pairs, then the vectors ρ over which the optimization in LP is carried out are non-negative finite
measures on

(
K, 2K

)
.

B.N. Alahmad and S. Gopalakrishnan 01:23

By Altman [4] Theorem 8.2, an optimal policy is the following: When the state is s, if
ρ
(
s,A(s)

)
> 0, then π chooses action a ∈ A(s) with probability

π(a|s) = ρ(s, a)
ρ
(
s,A(s)

) = ρ(s, a)∑
a′∈A(s) ρ(s, a′) , (19)

and otherwise chooses a arbitrarily from A(s).
I Remark. For (st, at) ∈ K, ρ(st, at) has the interpretation of being the probability that both
state st is occupied and action at ∈ A(st) is taken at time t under policy π defined by (19). In
fact,

ρ(st, at) = Eπ
N∑
q=1

1
{
Sq = st, Aq = at

}
, (20)

where 1{Sq = st, Aq = at} ≡ 1{Sq = st, Aq = at}(h) is the indicator function that evaluates to 1
if the trajectory of execution h is such that both Sq(h) = st and Aq(h) = at, and to 0 otherwise.
The RHS of (20) is the expected number of times that state-action pair (st, at) is visited under
policy π, and is termed the state-action occupation measure (or visitation frequency) associated
with policy π. The summation in (20) reduces to 1{St = st, At = at}, from which it follows that

ρ(st, at) = Pπ(St = st, At = at).

I Remark. Although we embedded time in the state to leverage results for computing stationary
policies, the policy defined by transformation (19) is time-dependent (non-stationary); it is Markov
nonetheless. However, we do not need to include time in the state; this is because all jobs start at
time 0, the schedule concludes when all jobs finish execution, and we consider only work-conserving
policies, so for a valid triple (x, y, r),

∑n
i=1 xi maps to the unique time instant during the schedule

when the state is occupied. All the previous discussion can be modified so that s = (x, y, r), and
implicitly using t =

∑n
i=1 x

i. We chose to include t explicitly in the state to make the exposition
clearer.
Our main result follows from the previous discussion, and is contained in

I Theorem 7. Given a pMC instance I, if LP is feasible, then I is pMC-feasible. Moreover, if I
is pMC-feasible, then the policy given by transformation (19) is expected-WTF-optimal for I.

4.3 A Less Pessimistic Exact Formulation
Recall that we combined the constraints of CMDP into the single risk constraint (15). The
combined constraint is more conservative than the original constraints, and it certainly restricts the
feasible region of CMDP, in the sense that there might be a policy that is feasible for the original
problem but not for the one with combined constraints. We did so to simplify the exposition, so
as to have a CMDP with a single constraint (and a single cost random variable). Now we detail
how to handle the exact case. This will be done at the expense of a constant increase in the size
of the state space, and slightly more complicated transition dynamics.

We distinguish two error types: Lo-errors and Hi-errors. The Lo-error trajectories are
described by the event

Her
∞(Lo) ≡ {h ∈ H∞ : Fi(h) > di for some i ∈ [n]} ∩ {critPath = Lo},

whereas the Hi-error trajectories are precisely

Her
∞(Hi) ≡ {h ∈ H∞ : Fi(h) > di for some i ∈ IHi} ∩ {critPath = Hi}.

LITES

01:24 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Thus, if a Hi-criticality job misses its deadline under a policy but the trajectory is Lo criticality,
then this is a Lo-error. On the other hand, if a Lo-criticality job misses its deadlines but the
trajectory is Hi criticality, then this is not an error.

We enlarge the set of error flags by adding criticality-specific ones:

R =
{
not error, potential error, error, errorLo, errorHi︸ ︷︷ ︸, error′}.

For h = (s0, a0, s1, . . .) ∈ H∞ and ` ∈ {Lo,Hi}, h ∈ Her
∞(`) iff there is t ∈ N such that rt = error`.

Here, the flag error no longer identifies an error trajectory, but r = error means that a Hi-criticality
jobs missed its deadline but the system criticality level realization is not yet determinable. If
rt = error for some t, then an error will happen at some t′ > t when the criticality level of the
trajectory becomes known, at which point the type of the error will be determined; therefore, it
is always the case that rt′ = error` for some ` and all t′ > t. The flags error` communicate the
following information: They indicate the occurrence of an error and the type of the error; that
is, if rt = error` for some t ∈ N and `, then the trajectory is an error and it is a type ` error
(so it is also saying that the system criticality level realization is determined). We will define
criticality-specific constraint cost functions, where the `-error cost function charges a unit cost
whenever the state’s error flag is error`.

The following is the modification of conditions E1–E8 to accommodate the new setup:
E1’. (r = not error, r̂ = potential error): If a Lo-criticality job misses its deadline at time t̂ = t+ 1

and no Hi-criticality job misses its deadline at time t̂, but critState(ŝ) = Unknown;
E2’. (r = not error, r̂ = error): If a Hi-criticality job misses its deadline at time t̂ = t + 1, but

critState(ŝ) = Unknown;
E3’. (r = not error, r̂ = errorLo), (r = potential error, r̂ = errorLo): If critState(ŝ) = Lo and either

1. a Lo-criticality job misses its deadline at time t̂ but no Hi-criticality jobs miss their deadlines
at t̂, or

2. a Hi-criticality job misses its deadline at time t̂;
E4’. (r = not error, r̂ = errorHi), (r = potential error, r̂ = errorHi): If a Hi-criticality job misses its

deadline at time t̂ and critState(ŝ) = Hi;
E5’. (r = potential error, r̂ = error): Same as E2’;
E6’. (r = error, r̂ = error`) for any `: If critState(ŝ) = `;
E7’. (r = potential error, r̂ = potential error): Same as before;
E8’. (r = potential error, r̂ = not error): Same as before;
E9’. (r = not error, r̂ = not error): Same as before;
E10’. (r = error`, r̂ = error′) for any `: always;
E11’. (r = error′, r̂ = error′): always.
The control model is modified so that the step 2.3 that sets the error flags uses rules E1’–E11’
instead.

Now we define two immediate constraint-cost functions κLo, κHi : S→ {0, 1}, where κ`(s) =
1{r = error`}, ` ∈ {Lo,Hi}. If h = (s0, a0, s1, . . .) is `-error, then there is exactly one t ∈ N such
that rt = error`, and rt′ = error′ for all t′ > t. For this trajectory and the t in the preceding sentence,
κ`(st) = 1, and κ`(st′) = 0 for all t′ 6= t. Therefore,

∑
m=0 κ`(sm) = 1, and

∑
m=0 κ`′(sm) = 0 for

`′ 6= `. If h is not error, then
∑
m=0 κLo(sm) =

∑
m=0 κHi(sm) = 0. If we define the constraint-cost

random variables CLo, CHi : H∞ → R+ such that C` =
∑N
t=0 κ`(St), ` ∈ {Lo,Hi}, then every C` is

a Bernoulli random variable, with probability of success Pπ(C` = 1) = Pπ(∃t ∈ N such that Rt =
error`) = Pπ

(
Her
∞(`)

)
, where Pπ(C` = 1) = EπC`.

B.N. Alahmad and S. Gopalakrishnan 01:25

Then, we have the following optimization problem:

ECMDP′ : minimize
π∈Π

EπW = Eπ
N−1∑
t=0

w(St, St+1)

subject to EπC` = Eπ
N∑
t=0

κ(St) ≤ p`, ` ∈ {Lo,Hi}.

(21)

Finally, an exact WTF-optimal policy may be derived by solving a modification of LP, where the
constraint

∑
s∈S κ(s)

∑
a∈A(s) ρ(s, a) ≤ ∆ is replaced by the criticality-specific cost constraints∑

s∈S
κLo(s)

∑
a∈A(s)

ρ(s, a) ≤ pLo,
∑
s∈S

κHi(s)
∑
a∈A(s)

ρ(s, a) ≤ pHi.

Computational Complexity

An optimal satisfying assignment for the variables
{
ρ(s, a) : s ∈ S, a ∈ A(s)

}
can be found using

any variant of the simplex algorithm, which, in practice, is efficient in the number of decision
variables and the number of constraints. However, linear program LP can have as many as n|S|
decision variables and |S| constraints, so it requires explicit enumeration of the state space S, and
therein lies the trouble. If we let c = maxi∈[n]{ci(χi)}, then a “very” crude estimate of the size of
S is 2n4(c+ 1)n (since we do not need to include time in the state as mentioned earlier).

An MC instance might look like the following: n = 10 jobs and c = 100; for this instance, |S|
might be as large as 210 × 4 × 10110 ≈ 1023, which is astronomical. In a typical MC instance,
c� n, so our estimate of |S| indicates that the main cause of this “state space explosion” is the
state variable x that records the cumulative execution time allocations, and which introduces the
factor (c+ 1)n into our estimate of |S|.

A Note on Approximation. We point out that despite the high computational complexity, the
problem can be approximated efficiently and accurately using the factored MDP representation
framework [13]. In it, instead of explicitly enumerating the states, the transition kernel is stored
compactly by considering only the variables on which each state variable depends. To make
use of the compact state space representation, we may utilize the symmetric primal-dual LP
approximation techniques by Dolgov and Durfee [20], in which the variables of both LP and its
dual are replaced with linear combinations of basis functions that are defined only on subsets
of the state space—the so called features. Because jobs are independent, each variable (feature)
comprising the state space depends only on a small number of variables, and our MDP falls in a
special category of MDPs that are amenable to approximation, namely loosely (weakly) coupled
MDPs [34]. The basic idea is to decompose the MDP into smaller MDPs—which is possible by
the independence assumption—whose exact solutions can be obtained in manageable time, and
then combine the solutions for the subMDPs in a proper way to construct a solution for the
global MDP. This, together with the simple additive form of our cost functions, results in a linear
program that contains substantially less decision variables and constraints, which can then be
solved efficiently to get an approximate policy that is close to optimal.

5 Quantitative Evaluations

The purpose of this section is to provide intuition on how worst-case based approaches may
underperform when worst-case demands are not realized, or when errors may be allowed. Despite
the sizeable state space, we were able to compare the performance of our approach to the OCBP
algorithm [10] on small instances.

LITES

01:26 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

OCBP builds offline a fixed priority table, and then schedules jobs according to their computed
priorities. At every iteration of the priority computation procedure, OCBP finds the lowest priority
job as follows: Job Ji has the lowest priority among the set of jobs that have not been assigned a
priority yet if there is ci(χi) time in [0, di] when the other jobs j have executed for their demand
at Ji’s criticality; that is, for cj(χi) each. If a lowest priority job is found at a certain iteration,
then it is removed from the set of jobs that have not yet been assigned a priority, and the priority
computation procedure is applied to the remaining set. If a total ordering is found on the whole
input job set, then the instance is said to be OCBP-schedulable.

In our evaluation, we consider 14 pMC instances, each comprised of 3 or 4 jobs. The instances
are handcrafted to showcase different aspects of our approach. For each instance, we generate
job Ji’s probability mass functions (pmf) over {1, 2, . . . , ci(χi)}, i ∈ [n], as a uniform vector in
the standard (ci(χi)− 1)-simplex. For this purpose, we use the UUniFast Algorithm [12], which
generates uniformly distributed task utilization vectors. By setting the target system utilization
of UUniFast to unity, we get the desired pmfs. We generate the state space using a recursive
procedure, and we use Gurobi optimization software [24] to solve LP. The simulation is written
in C, and is publicly available at https://github.com/RADICAL-UBC/mc-simulation.git.

For each instance, we simulate job execution on 100, 000 demand vectors (behaviors) that are
randomly drawn from the job pmfs. Table 3 lists the input job parameters for each instance and
the results of job executions. The entry “# Errors” is the number of simulation samples—out
of 100, 000—where an execution error occurred under the policy derived by solving the more
conservative formulation LP. An error occurs for a sample if either some job misses its deadline
and the sample is Lo-criticality, or a Hi-criticality job misses its deadline and the sample is Hi
criticality (the definition of error according to the classical job dropping model.) An error is
counted only once for a sample if it happens, even if multiple jobs miss their deadlines. The entry
“# Deadline misses” in Table 3 is the number of samples per job for which the job missed its
deadline. Note that, by definition of error, if a job misses its deadline for some sample, then this
does not necessarily mean that an error occurred for that sample.

Putting ε` = 0 for any criticality ` results in ∆ = 0, which means that not a single error is
permitted. We observed that if an instance is OCBP-schedulable, then it is pMC-feasible with
ε` = 0 for any `. Instances I1, I2 and I3 are examples of this situation, in which no error happens
in any of the simulated demand samples under the policy derived from a solution to LP. This is
not surprising, however, because worst-case OCBP-schedulability implies worst-case MC-feasibility,
so our approach would not make sense if it cannot correctly schedule, with zero errors, pMC
instances that are OCBP-schedulable. We note that for I3, even though J3 misses its deadline in
some samples, none of those deadline misses are errors.

The remaining instances are all not OCBP-schedulable. The job sets comprising instances I4
and I5 are identical, and all jobs in both instances have the same execution time pmfs. Moreover,
both instances were simulated over the same execution time samples. These instances show how
one can control the desired error by supplying different error parameters. Instance I4 results in
10, 874 error executions (i.e., 10.87% of the samples) when εLo = εHi = 1.0 (100% allowed error;
we do not care about errors,) whereas in instance I5, where εLo = 0.2 (20%) and εHi = 0.4 (40%),
only 7, 921 samples (i.e., 7.92% of the samples) were erroneously scheduled. For the results to
make sense, we simulated both I4 and I5 on the same demand samples.

Instance I6 is not even (deterministically) MC-schedulable by the clairvoyant algorithm, so
one would not expect this instance to be pMC-feasible for vanishing error parameters. This is
indeed the case, and our algorithm reported that I6 is not pMC-feasible when ε` = 0 for any `.
However, when allowing for some (controlled) error, I6 might become pMC-feasible, and this is
the case for I7, which is identical to I6 (including its job execution time distribution,) except that

https://github.com/RADICAL-UBC/mc-simulation.git

B.N. Alahmad and S. Gopalakrishnan 01:27

some error is permitted. Instance I8 has the same jobs and error parameters as I7, except that
the job demand distributions are different. Also here we simulated both I7 and I8 on the same
demand samples.

Instance I9 is identical to I8 (including their job demand distributions,) but instance I9’s error
parameters are an order of magnitude less that those of I8. The number of errors dropped from
1, 862 for I8 with εLo = 0.4 and εHi = 0.5 to 890 for the same simulation samples in I9 with
εLo = εHi = 0.05. We observe that the reduction in the number of error executions is not linear
with respect to the error parameters.

Instance I11 is not OCBP-schedulable but it schedulable by the clairvoyant algorithm, and it
turns out that this instance is pMC-feasible when the error parameters are vanishing. There are
no error executions out of all the simulated samples. This is one of many MC instances where
OCBP overestimates the resources required for correct (deterministic) MC-feasibility, a problem
that our approach tackles effectively. Whereas OCBP requires an s-speed processor to schedule
this instance for some s > 1 (the speed-up factor,) our approach is capable of scheduling this
instance on a unit-speed processor without incurring any errors, thus maximizing the processor
utilization.

Instance I12 and I13 are identical (including job demand distributions,) and they are another
example where the resulting error executions can be controlled by controlling the error parameters,
but for 3 job instances. Finally, instance I14 is a pMC-feasible instance whose job execution times
are significantly larger than all of the other instances.

In all of the simulated instances, we observed that our algorithm favors Hi criticality jobs;
in every simulated instance, the number of Hi-criticality deadline misses is much less than Lo-
criticality deadline misses. This can be attributed to the way the set of admissible actions A(s) is
prescribed, where Lo-criticality jobs are always dropped whenever the scenario’s criticality level
is inferred as Hi.

6 Concluding Remarks

We developed a probabilistic framework for reasoning about dual-criticality MC jobs systems
when job demand distributions are available. We transformed the problem of constructing optimal
scheduling policies into a risk-constrained MDP, where risk is the probability of missing deadlines
at the two criticalities, taken over the relevant trajectories induced by the MDP. We solved the
constrained MDP using a Linear Programming formulation, and showed how to construct optimal
randomized Markov policies from the solution of the Linear Program. We also provided simulation
results of our approach on some representative MC instances to verify and sharpen intuition.

We assumed complete knowledge of job demand distributions, and we did not consider the
problem of obtaining and estimating those distributions. The latter is an important problem
of investigation, and complements the probabilistic framework that we have developed. In the
same vein, it is natural to consider variants of our problem where only samples of the demand
distributions are available instead of full fledged distributions. This entails that the state transition
probabilities are not known a priori, and the problem becomes that of adaptive control. If a
sampler that can be queried is available, then sample average approximation (SAA) techniques
can be utilized to approximate the expectation-based objectives through suitably defined empirical
measures. Moreover, learning techniques, such as unsupervised learning (Q-Learning), can be
used to estimate the transition probabilities and construct reasonable heuristics efficiently.

Although our approach is optimal in expectation, it is nevertheless computationally expensive,
and its practicality is limited to small instances. This is due to the large state space that grows
exponentially in the number of input jobs. Our next-step is to investigate provable approximation
schemes that trade optimality for efficiency.

LITES

01:28 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Table 3 Simulation instances and job execution results. The execution of each instance is simulated,
using the policy generated by solving LP, over 100, 000 demand samples (vectors)

Instance OCBP Schedulability # Deadline Misses # Errors (Lo + Hi)

Instance εLo εHi Job χ c(Lo) c(Hi) d

I1 0.0 0.5

J1 Hi 70 75 160

YES

0

0J2 Lo 50 50 50 0
J3 Hi 8 20 85 0
J4 Hi 1 15 65 0

I2 0.0 0.5

J1 Lo 100 100 218

YES

0

0J2 Lo 50 50 50 0
J3 Lo 8 8 58 0
J4 Hi 60 61 119 0

I3 0.0 0.0

J1 Lo 60 60 161

YES

0

0J2 Lo 50 50 50 0
J3 Lo 20 20 70 1,447
J4 Hi 30 31 101 0

I4 1.0 1.0

J1 Lo 10 10 140

NO

0

10,874J2 Lo 75 75 75 20,251
J3 Lo 50 50 100 29,931
J4 Hi 5 15 120 0

I5 0.2 0.4

J1 Lo 10 10 140

NO

0

7,921J2 Lo 75 75 75 43,781
J3 Lo 50 50 100 7,109
J4 Hi 5 15 120 0

I6 0.0 0.0

J1 Lo 20 20 70

NO

–

not pMC feasibleJ2 Lo 30 30 80 –
J3 Hi 27 30 50 –
J4 Hi 8 25 70 –

I7 0.4 0.5

J1 Lo 20 20 70

NO

240

192J2 Lo 30 30 80 1,669
J3 Hi 27 30 50 0
J4 Hi 8 25 70 183

I8 0.4 0.5

J1 Lo 20 20 70

NO

4,640

1,862J2 Lo 30 30 80 10,667
J3 Hi 27 30 50 0
J4 Hi 8 25 70 1,845

I9 0.05 0.05

J1 Lo 20 20 70

NO

5,504

890J2 Lo 30 30 80 9,982
J3 Hi 27 30 50 0
J4 Hi 8 25 70 883

I10 0.07 0.07

J1 Hi 20 49 50

NO

0

18J2 Lo 30 30 80 14,822
J3 Hi 1 12 50 0
J4 Hi 5 23 110 13

I11 0.0 0.0
J1 Hi 3 10 27

NO
0

0J2 Lo 15 15 17 39, 561
J3 Hi 2 5 7 0

I12 0.05 0.09
J1 Lo 50 50 90

NO
3,726

2,239J2 Lo 30 30 50 50, 563
J3 Hi 19 30 35 0

I13 0.4 0.5
J1 Lo 50 50 90

NO
4,493

2,342J2 Lo 30 30 50 33, 981
J3 Hi 19 30 35 0

I14 0.03 0.03
J1 Hi 49 75 100

NO
0

685J2 Lo 120 120 210 31, 883
J3 Hi 125 275 400 588

B.N. Alahmad and S. Gopalakrishnan 01:29

We assumed that the given job demands are independent; however, we can drop the independ-
ence assumption as long as we are given the joint distribution of job demands. Our framework can
handle this with minimal modifications; in particular, the product space construction (that we
carried out in section 2) is no longer needed, but one needs to be able to compute the marginal
demand distributions in order to compute the MDP’s transition probabilities. This, however,
places a greater burden on the system designer, because the joint distribution of job demands
might be harder to obtain compared to individual job demand distributions. Nevertheless, our
framework, as presented, offers great flexibility, because it allows the individual job distributions
to be defined on different probability spaces (the Ωis) that might correspond to different operating
environments and settings.

Finally, two important extensions to our model deserve special mention and are due future
studies. The first is the case of arbitrary number of criticality levels, and the second is the sporadic
task model.

References
1 AdaCore. What is do-178b?, 2014. URL:

http://www.adacore.com/gnatpro-safety-
critical/avionics/do178b/.

2 Bader Alahmad, Sathish Gopalakrishnan, Luca
Santinelli, and Liliana Cucu-Grosjean. Probabil-
ities for Mixed-Criticality Problems: Bridging the
Uncertainty Gap. In The Work in Progress session
of the 32nd IEEE Real-time Systems Symposium -
RTSS 2011, Wien, Austria, November 2011. URL:
https://hal.inria.fr/hal-00646586.

3 Eitan Altman. Constrained markov decision pro-
cesses with total cost criteria: Lagrangian ap-
proach and dual linear program. Math. Meth.
of OR, 48(3):387–417, 1998. doi:10.1007/
s001860050035.

4 Eitan Altman. Constrained Markov Decision Pro-
cesses. Chapman and Hall/CRC, 1999.

5 Robert B. Ash. Real Analysis and Probability. Aca-
demic Press, 1972.

6 Neil C. Audsley, Alan Burns, Mike M. Richard-
son, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. doi:10.1049/sej.1993.0034.

7 Sanjoy Baruah. Mixed criticality schedulab-
ility analysis is highly intractable. to ap-
pear. URL: http://www.cs.unc.edu/~baruah/
Submitted/02cxty.pdf.

8 Sanjoy K. Baruah, Vincenzo Bonifaci, Gian-
lorenzo D’Angelo, Haohan Li, Alberto Marchetti-
Spaccamela, Nicole Megow, and Leen Stougie.
Scheduling real-time mixed-criticality jobs. In
Petr Hlinený and Antonín Kucera, editors, Math-
ematical Foundations of Computer Science 2010,
35th International Symposium, MFCS 2010, Brno,
Czech Republic, August 23-27, 2010. Proceedings,
volume 6281 of Lecture Notes in Computer Sci-
ence, pages 90–101. Springer, 2010. doi:10.1007/
978-3-642-15155-2_10.

9 Sanjoy K. Baruah and Zhishan Guo. Scheduling
mixed-criticality implicit-deadline sporadic task
systems upon a varying-speed processor. In
Proceedings of the IEEE 35th IEEE Real-Time
Systems Symposium, RTSS 2014, Rome, Italy,

December 2-5, 2014, pages 31–40. IEEE Computer
Society, 2014. doi:10.1109/RTSS.2014.15.

10 Sanjoy K. Baruah, Haohan Li, and Leen Stougie.
Towards the design of certifiable mixed-criticality
systems. In Marco Caccamo, editor, 16th IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS 2010, Stockholm, Sweden,
April 12-15, 2010, pages 13–22. IEEE Computer
Society, 2010. doi:10.1109/RTAS.2010.10.

11 Sanjoy K. Baruah and Steve Vestal. Schedulab-
ility analysis of sporadic tasks with multiple crit-
icality specifications. In 20th Euromicro Confer-
ence on Real-Time Systems, ECRTS 2008, 2-4
July 2008, Prague, Czech Republic, Proceedings,
pages 147–155. IEEE Computer Society, 2008. doi:
10.1109/ECRTS.2008.26.

12 Enrico Bini and Giorgio C. Buttazzo. Measur-
ing the performance of schedulability tests. Real-
Time Systems, 30(1-2):129–154, 2005. doi:10.
1007/s11241-005-0507-9.

13 Craig Boutilier, Richard Dearden, and Moisés
Goldszmidt. Stochastic dynamic programming
with factored representations. Artif. Intell., 121(1-
2):49–107, 2000. doi:10.1016/S0004-3702(00)
00033-3.

14 Alan Burns and Robert I. Davis. Mixed criticality
systems - a review. Preprint, 2015. URL: http:
//www-users.cs.york.ac.uk/burns/review.pdf.

15 Yao Chen, Qiao Li, Zheng Li, and Huagang
Xiong. Efficient schedulability analysis for mixed-
criticality systems under deadline-based schedul-
ing. Chinese Journal of Aeronautics, 27(4):856
– 866, 2014. doi:http://dx.doi.org/10.1016/j.
cja.2014.05.003.

16 José Luis Díaz, Daniel F. García, Kanghee Kim,
Chang-Gun Lee, Lucia Lo Bello, José María López,
Sang Lyul Min, and Orazio Mirabella. Stochastic
analysis of periodic real-time systems. In Proceed-
ings of the 23rd IEEE Real-Time Systems Sym-
posium (RTSS’02), Austin, Texas, USA, Decem-
ber 3-5, 2002, pages 289–300. IEEE Computer So-
ciety, 2002. doi:10.1109/REAL.2002.1181583.

17 José Luis Díaz and José María López. Probabilistic
analysis of the response time in a real-time system.
Technical Report, 2001.

LITES

http://www.adacore.com/gnatpro-safety-critical/avionics/do178b/
http://www.adacore.com/gnatpro-safety-critical/avionics/do178b/
https://hal.inria.fr/hal-00646586
http://dx.doi.org/10.1007/s001860050035
http://dx.doi.org/10.1007/s001860050035
http://dx.doi.org/10.1049/sej.1993.0034
http://www.cs.unc.edu/~baruah/Submitted/02cxty.pdf
http://www.cs.unc.edu/~baruah/Submitted/02cxty.pdf
http://dx.doi.org/10.1007/978-3-642-15155-2_10
http://dx.doi.org/10.1007/978-3-642-15155-2_10
http://dx.doi.org/10.1109/RTSS.2014.15
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/10.1109/ECRTS.2008.26
http://dx.doi.org/10.1109/ECRTS.2008.26
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1016/S0004-3702(00)00033-3
http://dx.doi.org/10.1016/S0004-3702(00)00033-3
http://www-users.cs.york.ac.uk/burns/review.pdf
http://www-users.cs.york.ac.uk/burns/review.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.cja.2014.05.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.cja.2014.05.003
http://dx.doi.org/10.1109/REAL.2002.1181583

01:30 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

18 José Luis Díaz and José María López. Safe exten-
sions to the stochastic analysis of real-time systems.
Technical Report, 2004.

19 José Luis Díaz, José María López, Manuel Gar-
cía Vazquez, Antonio M. Campos, Kanghee Kim,
and Lucia Lo Bello. Pessimism in the stochastic
analysis of real-time systems: Concept and applic-
ations. In Proceedings of the 25th IEEE Real-Time
Systems Symposium (RTSS 2004), 5-8 December
2004, Lisbon, Portugal, pages 197–207. IEEE Com-
puter Society, 2004. doi:10.1109/REAL.2004.41.

20 Dmitri A. Dolgov and Edmund H. Durfee. Symmet-
ric approximate linear programming for factored
mdps with application to constrained problems.
Ann. Math. Artif. Intell., 47(3-4):273–293, 2006.
doi:10.1007/s10472-006-9038-x.

21 Peter Geibel and Fritz Wysotzki. Risk-sensitive re-
inforcement learning applied to control under con-
straints. J. Artif. Intell. Res., 24:81–108, 2005.
doi:10.1613/jair.1666.

22 Zhishan Guo and Sanjoy K. Baruah. Implement-
ing mixed-criticality systems upon a preemptive
varying-speed processor. LITES, 1(2):03:1–03:19,
2014. doi:10.4230/LITES-v001-i002-a003.

23 Zhishan Guo, Luca Santinelli, and Kecheng Yang.
EDF schedulability analysis on mixed-criticality
systems with permitted failure probability. In
21st IEEE International Conference on Embedded
and Real-Time Computing Systems and Applica-
tions, RTCSA 2015, Hong Kong, China, August
19-21, 2015, pages 187–196. IEEE Computer Soci-
ety, 2015. doi:10.1109/RTCSA.2015.8.

24 Inc. Gurobi Optimization. Gurobi optimizer refer-
ence manual, 2015. URL: http://www.gurobi.com.

25 Onésimo Hernández-Lerma. Adaptive Markov con-
trol processes. Applied mathematical sciences.
Springer, New York, 1989.

26 Onésimo Hernández-Lerma and Jean B Lasserre.
Discrete-Time Markov Control Processes: Basic
Optimality Criteria. Stochastic Modelling and
Applied Probability. Springer-Verlag, New York,
1996.

27 L. C. M. Kallenberg. Unconstrained and con-
strained dynamic programming over a finite hori-
zon. Technical Report, 1981.

28 L. C. M. Kallenberg. Linear Programming and Fi-
nite Markovian Control Problems. Amsterdam :
Mathematisch Centrum, 1983.

29 Lodewijk C. M. Kallenberg. Survey of lin-
ear programming for standard and nonstandard
markovian control problems. part I: theory. Math.
Meth. of OR, 40(1):1–42, 1994. doi:10.1007/
BF01414028.

30 Bala Kalyanasundaram and Kirk Pruhs. Speed is
as powerful as clairvoyance. J. ACM, 47(4):617–
643, 2000. doi:10.1145/347476.347479.

31 Kanghee Kim, José Luis Díaz, Lucia Lo Bello,
José María López, Chang-Gun Lee, and Sang Lyul
Min. An exact stochastic analysis of priority-driven
periodic real-time systems and its approximations.
IEEE Trans. Computers, 54(11):1460–1466, 2005.
doi:10.1109/TC.2005.174.

32 Achim Klenke. Probability Theory: A Compre-
hensive Course. Universitext. Springer, 2 edition,
2014.

33 Dorin Maxim and Liliana Cucu-Grosjean. Re-
sponse time analysis for fixed-priority tasks with
multiple probabilistic parameters. In Proceedings
of the IEEE 34th Real-Time Systems Symposium,
RTSS 2013, Vancouver, BC, Canada, December
3-6, 2013, pages 224–235. IEEE Computer Society,
2013. doi:10.1109/RTSS.2013.30.

34 Pascal Poupart, Craig Boutilier, Relu Patrascu,
and Dale Schuurmans. Piecewise linear value func-
tion approximation for factored mdps. In Rina
Dechter, Michael J. Kearns, and Richard S. Sut-
ton, editors, Proceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence and
Fourteenth Conference on Innovative Applica-
tions of Artificial Intelligence, July 28 - Au-
gust 1, 2002, Edmonton, Alberta, Canada., pages
292–299. AAAI Press / The MIT Press, 2002.
URL: http://www.aaai.org/Library/AAAI/2002/
aaai02-045.php.

35 M. L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. John
Wiley and Sons, New York, 5 edition, 2005.

36 Martin L. Shooman. Avionics software problem
occurrence rates. In Seventh International Sym-
posium on Software Reliability Engineering, IS-
SRE 1996, White Plains, NY, USA, October 30,
1996-Nov. 2, 1996, pages 55–64. IEEE Computer
Society, 1996. doi:10.1109/ISSRE.1996.558695.

37 Dario Socci, Peter Poplavko, Saddek Bensalem,
and Marius Bozga. Mixed critical earliest deadline
first. In 25th Euromicro Conference on Real-Time
Systems, ECRTS 2013, Paris, France, July 9-12,
2013, pages 93–102. IEEE Computer Society, 2013.
doi:10.1109/ECRTS.2013.20.

38 Steve Vestal. Preemptive scheduling of multi-
criticality systems with varying degrees of exe-
cution time assurance. In Proceedings of the
28th IEEE Real-Time Systems Symposium (RTSS
2007), 3-6 December 2007, Tucson, Arizona, USA,
pages 239–243. IEEE Computer Society, 2007. doi:
10.1109/RTSS.2007.47.

http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1007/s10472-006-9038-x
http://dx.doi.org/10.1613/jair.1666
http://dx.doi.org/10.4230/LITES-v001-i002-a003
http://dx.doi.org/10.1109/RTCSA.2015.8
http://www.gurobi.com
http://dx.doi.org/10.1007/BF01414028
http://dx.doi.org/10.1007/BF01414028
http://dx.doi.org/10.1145/347476.347479
http://dx.doi.org/10.1109/TC.2005.174
http://dx.doi.org/10.1109/RTSS.2013.30
http://www.aaai.org/Library/AAAI/2002/aaai02-045.php
http://www.aaai.org/Library/AAAI/2002/aaai02-045.php
http://dx.doi.org/10.1109/ISSRE.1996.558695
http://dx.doi.org/10.1109/ECRTS.2013.20
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/RTSS.2007.47

Errata for Three Papers (2004-05) on Fixed-Priority
Scheduling with Self-Suspensions∗

Konstantinos Bletsas
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto
Porto, Portugal
ksbs@isep.ipp.pt

https://orcid.org/0000-0002-3640-0239

Neil C. Audsley
University of York
York, United Kingdom
neil.audsley@york.ac.uk

https://orcid.org/0000-0003-3739-6590

Wen-Hung Huang
TU Dortmund
Dortmund, Germany
wen-hung.huang@tu-dortmund.de

https://orcid.org/0000-0001-9446-4719

Jian-Jia Chen
TU Dortmund
Dortmund, Germany
jian-jia.chen@tu-dortmund.de

https://orcid.org/0000-0001-8114-9760

Geoffrey Nelissen
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto
Porto, Portugal
grrpn@isep.ipp.pt

https://orcid.org/0000-0003-4141-6718

Abstract
The purpose of this article is to (i) highlight the
flaws in three previously published works [3, 2, 7]
on the worst-case response time analysis for tasks

with self-suspensions and (ii) provide straightfor-
ward fixes for those flaws, hence rendering the ana-
lysis safe.

2012 ACM Subject Classification Computer systems organization → Embedded systems, Computer
systems organization → Real-time systems, Software and its engineering → Real-time schedulability
Keywords and Phrases real-time; scheduling; self-suspension; worst-case response time analysis
Digital Object Identifier 10.4230/LITES-v005-i001-a002
Received 2015-07-17 Accepted 2018-02-12 Published 2018-05-30

∗ This paper is supported by DFG, as part of the Collaborative Research Center SFB876 (http://sfb876.tu-
dortmund.de/) project B2.

© Konstantinos Bletsas, Wen-Hung Huang, Jian-Jia Chen, Neil Audsley, and Geoffrey Nelissen;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 5, Issue 1, Article No. 2, pp. 02:1–02:20
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ksbs@isep.ipp.pt
https://orcid.org/0000-0002-3640-0239
mailto:neil.audsley@york.ac.uk
https://orcid.org/0000-0003-3739-6590
mailto:wen-hung.huang@tu-dortmund.de
https://orcid.org/0000-0001-9446-4719
mailto:jian-jia.chen@tu-dortmund.de
https://orcid.org/0000-0001-8114-9760
mailto:grrpn@isep.ipp.pt
https://orcid.org/0000-0003-4141-6718
http://dx.doi.org/10.4230/LITES-v005-i001-a002
http://sfb876.tu-dortmund.de/
http://sfb876.tu-dortmund.de/
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 Errata for Three Papers on FP Scheduling with Self-Suspensions

1 Introduction

Often, in embedded systems, a computational task running on a processor must suspend its
execution to, typically, access a peripheral or launch computation on a remote co-processor. Those
tasks are commonly referred to as self-suspending. During the duration of the self-suspension, the
processor is free to be used by any other tasks that are ready to execute. This seemingly simple
model is non-trivial to analyse from a worst-case response time (WCRT) perspective since the
classical “critical instant” of Liu and Layland [13] (i.e., simultaneous release of all tasks) no longer
necessarily provides the worst-case scenario when tasks may self-suspend. A simple solution
consists in modelling the duration of the self-suspension as part of the self-suspending task’s
execution time. This so-called “self-suspension oblivious” approach allows to use the “critical
instant” of Liu and Layland but often at the cost of too much pessimism. Therefore, various
efforts have been made to derive less pessimistic, but still safe, analyses.

The results published in [3, 2, 7, 6] propose solutions for computing upper bounds on the
response times of self-suspending tasks. However, we have now come to understand that they
were flawed, i.e., they do not always output safe upper bounds on the task WCRTs. Through this
paper, we therefore seek to highlight the respective flaws and propose appropriate fixes, rendering
the two analysis techniques previously proposed in [3][2][7] safe.

2 Process model and notation

We assume a single processor and n independent sporadic1 computational tasks scheduled under a
fixed-priority policy. Each task τi has a distinct priority pi, an inter-arrival time Ti and a relative
deadline Di, with Di ≤ Ti (constrained deadline model). Each job released by τi may execute
for at most Xi time units on the processor (its worst-case execution time in software – S/W
WCET) and spend at most Gi time units in self-suspension (its “H/W WCET”). What in the
works [3, 2, 7, 6] is referred to as (simply) “the worst-case execution time” of τi, denoted by Ci, is
the time needed for the task to complete, in the worst-case, in the absence of any interference from
other tasks on the processor. Hence Ci also accounts for the latencies of any self-suspensions in
the task’s critical path2. This terminology differs somewhat from that used in other works, which
call WCET what we call the S/W WCET. This is mainly because it echoes a view inherited
from hardware/software co-design that the task is executing even when self-suspended on the
processor, albeit remotely (i.e., on a co-processor).

As illustrated on Figure 1, in the general case, Ci ≥ Xi, Ci > Gi but Ci ≤ Xi +Gi, because
Xi and Gi are not necessarily observable for the same control flow, unless it is explicitly specified
or inferable from information about the task structure that Ci = Xi +Gi.

Additionally, lower bounds on the S/W and the “H/W” best-case execution times are denoted
by X̂i and Ĝi, respectively.

Our past work considered two submodels (referred to as “simple” and “linear”), depending on
the degree of knowledge that one has regarding the location of the self-suspending regions inside
the process activation and whether or not Ci = Xi +Gi.

1 The original papers, assumed periodic tasks with unknown offsets. It was in the subsequent PhD thesis [6]
that the observation was made that the results apply equally to the sporadic model, which is more general
in terms of the possible legal schedules that may arise.

2 We assume, as in [3, 2, 7, 6], that there is no contention over the co-processors or peripherals accessed during
a self-suspension.

K. Bletsas et. al. 02:3

Figure 1 Examples of task graphs for task with self-suspensions. White nodes represent sections of
code with single-entry/single-exit semantics. Grey nodes represent remote operations, i.e., self-suspending
regions. The nodes are annotated with execution times, which in this example are deterministic for
simplicity. The directed edges denote the transition of control flow. Any task execution corresponds to a
path from source to sink. For task graph (a), two different control flows exist (shown with dashed lines).
In this case, the software execution and the time spent in self-suspension are maximal for different control
flows. As a result of this, C < X +G; specifically, C = X = 25 and G = 10. However, task graph (b) is
linear, so it holds that C = X +G for that task.

2.1 The simple model
The simple model, assumed in [2, 3], is also called “floating” or “dynamic self-suspension model”
in many later works of the state-of-the-art. This model is entirely agnostic about the location
of self-suspending regions in the task code. Hence, there is no information on the number of
self-suspending regions, on the instants at which they may be activated and for how long each
of them may last at run-time. Moreover, the self-suspension pattern may additionally differ for
subsequent jobs released by the same task τi. The sums of the lengths of the “S/W” and “H/W”
execution regions are however subject to the constraints imposed by the attributes Ci, Xi and
Gi. Figure 2 illustrates this concept.

2.2 The linear model
The linear model, which was presented in [7], is also known as the “multi-segment self-suspension
model” in many later works. It assumes that each task is structured as a “pipeline” of interleaved
software and self-suspending regions, or “segments”. Each of these segments has known upper
and lower bounds on its execution time. This means that, in all cases, Ci = Xi + Gi and the
task-level upper and lower bounds on its software (respectively, hardware) execution time, Xi

and X̂i (respectively, Gi and Ĝi) are obtained as the sum of the respective estimates of all the
software (respectively, hardware) segments.

3 The analysis in [2, 3], its flaws and how to fix it.

The two works [2, 3] that targeted the simple model, sought to derive the task WCRTs by shifting
the distribution of software execution and self-suspension intervals within the activation of each
higher-priority task in order to create the most unfavorable pattern, across job boundaries. This
also involved aligning the task releases accordingly, in order to obtain (what we thought to be)
the worst case. In order to facilitate the explanation of the specifics, it is perhaps best to first

LITES

02:4 Errata for Three Papers on FP Scheduling with Self-Suspensions

Figure 2 Under the simple model any job by a given task τi can execute for at mostXi units in software,
at most Gi time units in hardware and at most Ci time units overall. The locations and number of the
hardware operations (self-suspensions, from the perspective of software execution) may vary arbitrarily
for different jobs by the same task, subject to the previous constraints. This is depicted here for a task
τi, with the parameters shown, which (for simplicity) is the only task in its system. Upward-pointing
arrows denote task arrivals (and deadlines, since the task set happens to be implicit-deadline). Shaded
rectangles denote remote execution (i.e., self-suspension).

present the corresponding equation for computing the WCRT of a task τi derived in [3]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Cj −Xj)

Tj

⌉
Xj (1)

where the term hp(i) is the set of tasks with higher-priority than τi. For the special case
where Ci = Xi +Gi ,∀i, the above equation can be rewritten as [2]

Ri = Ci +
∑

j∈hp(i)

⌈
Ri +Gj
Tj

⌉
Xj (2)

Intuitively, τi is pessimistically treated as preemptible at any instant, even those at which it
is self-suspended. Each interfering job released by a higher-priority task τj contributes up to Xj

time units of interference to the response time of τi. However, the variability in the location of
self-suspending regions creates a jitter in the software execution of each interfering task. The
term (Cj − Xj), for each τj ∈ hp(i), in the numerator, which is akin to a jitter in Equation 1,
attempted to account for this variability. Intuitively, it represents the potential internal jitter,
within an activation of τj , i.e., when its net execution time (in software or in hardware) is
considered, and disregarding any time intervals when τj is preempted. Figure 3 illustrates this
concept for some task τk.

However, as we will show in Example 1, in the general case the jitter can be larger than
(Cj −Xj). This is because the software execution of τj can be pushed further to the right along
the axis of time, due to the interference that τj suffers from even higher-priority tasks.

It is worth noting that the authors of [2] were fully aware at the time that the term⌈
Ri+(Cj−Xj)

Tj

⌉
Xj is not an upper bound on the worst-case interference exerted upon τi from

any individual task τj ∈ hp(i). However, it was considered (and erroneously claimed, with faulty

proof) that
∑

j∈hp(i)

⌈
Ri + (Cj −Xj)

Tj

⌉
Xj was nevertheless an upper bound for the total interfer-

ence jointly caused by all tasks in hp(i), in the worst case. The flaw in that reasoning came
from assuming that the effect of any additional jitter of interfering task τj , caused by interference
exerted upon it by even higher-priority tasks would already be “captured” by the corresponding
terms modelling the interference upon τi by hp(j) ⊂ hp(i). This would then suppress the need to
include it twice.

K. Bletsas et. al. 02:5

Figure 3 For a job by some task τk that executes in software for Xk time units and Ck time units
overall (i.e., in software and in hardware), the latest that it can start executing in software, in terms
of net execution time (i.e., excluding preemptions) is after having executed for Ck − Xk time units in
hardware. Differences in the placement of software and hardware execution across different jobs of τk

manifest themselves as jitter for its sofware execution.

Accordingly, then, the worst-case scenario for the purposes of maximisation of the response
time of a task τi, released without loss of generality at time t = 0 would happen when each
higher-priority task

is released at time t = −(Cj − Xj) and then releases its subsequent jobs with its minimum
inter-arrival time (i.e., at instants t = Tj − (Cj −Xj), 2Tj − (Cj −Xj), . . .;
switches for the first time to execution in software (for a full Xj time units) at t = 0, for its
first interfering job, i.e., after a self-suspension of Cj −Xj time units;
executes in software for Xj time units as soon as possible for its subsequent jobs.

Figure 4(a) plots the schedule that reproduces this alleged worst-case scenario, for the lowest-
priority task in the example task set of Table 1. In this case, the top-priority task τ1 happens
to be a regular non-self-suspending task, so its worst-case release pattern reduces to that of Liu
and Layland. However, for the middle-priority task τ2 which self-suspends, its execution pattern
matches that described above.

However, this schedule does not constitute the worst-case, as evidenced by the following
counter-example:

I Example 1. Consider the task set of Table 1. Assume that the execution times of software
segments and the durations of self-suspending regions are deterministic. As shown below using a
fixed point iteration over Equation 1, the analysis in [2, 3] would yield R3 = 12:

R3 = C3 +
⌈
R3 + C1 −X1

T1

⌉
X1 +

⌈
R3 + C2 −X2

T2

⌉
X2 ⇒ R3 = 1 +

⌈
R3

2

⌉
1 +

⌈
R3 + 5

20

⌉
5

R
(0)
3 =1

R
(1)
3 =1 +

⌈
1
2

⌉
1 +

⌈
1 + 5

20

⌉
5 = 7

R
(2)
3 =1 +

⌈
7
2

⌉
1 +

⌈
7 + 5

20

⌉
5 = 10

R
(3)
3 =1 +

⌈
10
2

⌉
1 +

⌈
10 + 5

20

⌉
5 = 12

R
(4)
3 =1 +

⌈
12
2

⌉
1 +

⌈
12 + 5

20

⌉
5 = 12

The corresponding schedule is shown in Figure 4(a). However, the schedule of Figure 4(b), which
is perfectly legal, disproves the claim that R3 = 12, because τ3 in that case has a response time

LITES

02:6 Errata for Three Papers on FP Scheduling with Self-Suspensions

Table 1 A set of tasks with self-suspensions. The lower the task index, the higher its priority.

τi Ci Xi Gi Ti

τ1 1 1 0 2
τ2 10 5 5 20
τ3 1 1 0 ∞

of 22− 5ε, where ε is an arbitrarily small quantity. It therefore proves that the analysis initially
presented in [2] and [3] is unsafe.

Let us now inspect what makes the scenario depicted in the schedule of Figure 4 so unfavour-
able that the analysis in [2, 3] fails, and at the same time let us understand how the analysis
could be fixed.

Looking at the first interfering job released by τ2 in Figure 4, one can see that almost all its
software execution is still distributed to the very right (which was supposed to be the worst-case
in [3]). However, by “strategically” breaking up what would have otherwise been a contiguous
self-suspending region of length G2 in the left, with arbitrarily short software regions of length ε
beginning at the same instants that the even higher-priority task τ1 is released, a particularly un-
favourable effect is achieved. Namely, the execution of τ1 on the processor and the self-suspending
regions of τ2, “sandwiched” in between are effectively serialised. In practical terms, it is the equi-
valent of the execution of τ1 on the processor preempting the execution of τ2 on the co-processor!
This means that, when finally τ2 is done with its self-suspensions, its remaining execution in
software is almost its entire X2, but occurs with a jitter far worse than that modelled by Equa-
tion 1. And, when analysing τ3, this effect was not captured indirectly, via the term modelling
the interference exerted by τ1 onto τ3.

So in retrospect, although each job by each τj ∈ hp(i) can contribute at most Xj time units
of interference to τi, the terms (Cj −Xj) in Equation 1, that are analogous to jitters, are unsafe.
The obvious fix is thus to replace those with the true jitter terms for software execution. As
proven in Lemma 2 below, safe upper bounds for these are Rj − Cj , ∀ τj ∈ hp(i).

Reconsidering the analysis presented in [2, 3] in light of this counter-example, one can draw
the following conclusions:
1. the terms Xj , one for every higher-priority task, in Equation 1, which model the fact that

each job released by a task τj ∈ hp(i) can contribute at most Xj time units of interference,
do not introduce optimism;

2. the terms (Cj −Xj), one for every higher-priority task, in Equation 1, that are analogous to
jitters, are unsafe.

Formally, these conclusions can be summarised by the following Lemma 2, that serves as a
sufficient schedulability test:

I Lemma 2 (Corresponding to Corollary 1 in [9]). Consider a uniprocessor system of constrained-
deadline self-suspending tasks and one task τi among those, in particular. If every task τj ∈
hp(i) is schedulable (i.e., if an upper bound Rj on the worst-case response time of τj exists with
Rj ≤ Dj ≤ Tj) and, additionally, the smallest solution to the following recursive equation is
upper-bounded by Di,

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Rj −Xj)

Tj

⌉
Xj (3)

then τi is also schedulable and its worst-case response time is upper-bounded by Ri, as computed
by Equation 3.

K. Bletsas et. al. 02:7

Figure 4 Subfigure (a) depicts the schedule, for the task set of Table 1 that was supposed to result
in the WCRT for τ3 according to the analysis presented in [2, 3]. Subfigure (b) depicts a different legal
schedule that results in a higher response time for τ3.

3.1 Proof of Lemma 2

Consider a schedule Ψ of the self-suspending task system in consideration whereby some job of
task τi is released at time ri and completed at time fi.

We define a transformed scheduled Ψ′ as the schedule in which (i) the jobs of every higher-
priority task τj ∈ hp(i) are released at the exact same instants as in Ψ; (ii) only one job by τi
is released, at time ri; (iii) no jobs by lower-priority tasks are released and (iv) the suspensions
by all higher-priority jobs take place during the exact same intervals as in Ψ; additionally (v) we
modify the job of τi (which in Ψ executed on the processor for xi time units and was suspended
for gi time units) such that it executes on the processor for Ci ≥ xi+gi time units. Recall that Ci
is defined as the worst-case combined execution in software and hardware, i.e., sum of processor-
based execution and self-suspension. After this last conversion (a safe, widely used transformation
known in the literature as “conversion of suspension to processor-based computation”, followed
by a potential increase of that processor-based execution time), we can verify (see also Lemma 3
just below) that: (i) Over the interval [ri, fi), for every instant that the job by τi in Ψ is executing

LITES

02:8 Errata for Three Papers on FP Scheduling with Self-Suspensions

or suspended or suspended and no higher-priority task is executing on the processor, the job by
τi in Ψ′ is executing on the processor, at the same instant. And (ii) for the completion time f ′i
of τ ′i in Ψ′, it holds that f ′i ≥ fi; in other words the response time of the job in consideration in
Ψ′ does not decrease over that in Ψ.

For notational brevity, we denote the (only) job of τi in Ψ′ as originating from a task τ ′i with
C ′i = X ′i = Ci, G′i = 0, D′i = Di, T ′i = Ti. Note that Ψ′ remains a fixed-priority schedule.

I Lemma 3 (Corresponding to Lemma 2 in [9] with minor variations). Assuming that the worst-case
response time of τi is upper bounded by Ti and given the definition of schedule Ψ′, the response time
of the job of τ ′i in consideration in Ψ′ is not smaller than the response time of the corresponding
job of τi in Ψ, for any possible xi, gi such that xi ≤ Xi and gi ≤ Gi and xi + gi ≤ Ci.

Proof. We know, by definition of fixed-priority schedules, that jobs by lower-priority tasks do not
impact the response time of the jobs by τi. Therefore, their elimination in Ψ′ has no impact on
the response time of the jobs of τi. Moreover, since from the assumption in the claim, the worst-
case response time of τi is upper-bounded by Ti, no other job by τi in Ψ impacts the schedule of
the job by τi released at ri. Since all other parameters (i.e., releases and suspensions of higher-
priority tasks) that may influence the scheduling decisions are kept identical between Ψ and Ψ′,
the response time (R̄) of the job by τi released at time ri would have been identical in Ψ′ to the
one in Ψ if we had not converted that job’s suspension time to processor-based computation.

Let xi and gi respectively denote the total duration of processor-based execution and self-
suspension characterising the job of τi in consideration. Given that xi + gi ≤ Ci for any job by τi
means that additionally substituting in Ψ′ the particular job τi by a job by τ ′i as defined above
cannot result in the response time being lower than R̄, which in turn was shown to be no less
than the response time of the job in Ψ. J

We now analyse the properties of the fixed-priority schedule Ψ′. For any interval [ri, t), with
t ≤ fi, we are going to prove an upper bound (denoted as exec(ri, t)) on the amount of time
during which the processor is executing tasks.

Because in Ψ′ there exist no jobs of lower priority than that of τ ′i , we only focus on the
execution of the tasks in hp(i)∪ τ ′i . (Recall that we use the notation τ ′i here instead of simply τi,
because when constructing Ψ′ from Ψ, we replaced the self-suspending job of τi released at ri by
a job of the same priority that executes entirely in software for X ′i

def= Ci ≤ Xi +Gi time units.)

I Lemma 4. For any t such that ri ≤ t < f ′i , the cumulative amount of time that τ ′i executes on
the processor over the interval [ri, t), denoted by execi(ri, t) is strictly smaller than Ci.

Proof. Since the finishing time of the transformed job by τi is f ′i > t, it means that it has executed
for strictly less than its total execution time of Ci. J

I Lemma 5 (Corresponding to Lemma 8 in [9]). Assume that Rj ≤ Tj for all jobs by τj in Ψ′. Let
Jj be the last job of τj released before ri in Ψ′ and let x∗j be the remaining processor execution
time of Jj at time ri. For any task τj ∈ hp(i) and any ∆ ≥ 0, it holds that

execj(ri, ri + ∆) ≤ Ŵ 0
j (∆, x∗j)

where

Ŵ 0
j (∆, x∗j)

def=


W 1
j (∆) if x∗j = 0

∆ if x∗j > 0 and ∆ ≤ x∗j
x∗j if x∗j > 0 and x∗j < ∆ ≤ ρj
x∗j +W 1

j (∆− ρj) if x∗j > 0 and ρj < ∆

(4)

K. Bletsas et. al. 02:9

with

W 1
j (∆) def=

⌊
∆
Tj

⌋
+ min

{
∆−

⌊
∆
Tj

⌋
Tj , Xj

}
(5)

and ρj
def= Tj −Rj + x∗j

Proof. We explore two complementary cases:
Case x∗

j = 0: In this case, there is no residual (sometimes called carry-in) workload of τj
at time ri. Furthermore, execj(ri, ri + ∆) is maximised when every job of τj released after
ri executes on the processor for its full processor execution time Xj , with any self-suspension
strictly occurring (if at all) after it completes its Xj time units of execution on the processor.
(Remember that there is no carry-in workload and hence pushing the execution of a job
later by means of self-suspension will not increase the amount of computation within the
window [ri, t)). This is analogous, in terms of processor-based workload pattern, to τj being
a sporadic, non-self-suspending task with a worst-case execution time of Xj time units on
the processor. Since, as already shown in the literature [5], W 1

j (∆), which is usually called
workload function, is an upper bound on the cumulative amount of time that a sporadic task
with a worst-case execution time Xj and inter-arrival time Tj can execute on the processor
without self-suspension, we know that execj(ri, ri + ∆) ≤W 1

j (∆). This proves case 1 of (4).
Case x∗

j > 0: By assumption, there is Rj ≤ Tj . Additionally, the earliest completion time for
the job Jj of τj with residual workload x∗j at time ri must be ri+x∗j (from the definition of x∗j).
Therefore, the earliest arrival time of a job of τj strictly after ri is at least ri +x∗j + (Tj −Rj),
which is equal to ri + ρj . Since no other job of τj is released in [ri, ri + ρj), this means that
execj(ri, ri + ∆) is upper-bounded by min{∆, x∗j} for ∆ ≤ ρj , thereby proving cases 2 and
3 of (4). Furthermore, by assumption, the job of τj with residual workload x∗j at time ri
completes no earlier than time ri + ρj . Therefore, following the same reasoning as for the
case that x∗j = 0, it holds that execj(ri + ρj , ri + ∆) is upper bounded by W 1

j (∆− ρj) when
∆ > ρj . This proves the fourth case of (4). J

I Lemma 6 (Lemma 9 in [9]). ∀∆ > 0, it holds that Ŵ 0
j (∆, Xj) ≥ Ŵ 0

j (∆, x∗j).

Proof. See proof in [9]. J

I Lemma 7. For any ∆ > 0, it holds that

Ŵ 0
j (∆, Xj) ≤

⌈
∆ +Rj −Xj

Tj

⌉
Xj (6)

Proof. From the definition of W 1
j (∆) in (5), we have

W 1
j (∆) =

⌊
∆
Tj

⌋
Xj + min

{
∆−

⌊
∆
Tj

⌋
Tj , Xj

}
≤
⌈

∆
Tj

⌉
Xj (7)

If 0 < ∆ ≤ Xj , then by (4), it holds that Ŵ 0
j (∆, Xj) = ∆. Moreover, because the worst-case

response time Rj of a task cannot be smaller than its worst-case execution time Cj ≥ Xj , we
have that ∆+Rj−Xj

Tj
> 0. Hence, Ŵ 0

j (∆, Xj) = ∆ ≤ Xj ≤
⌈

∆+Rj−Xj
Tj

⌉
Xj

If ∆ > Xj , then by the third and fourth cases of (4) and using (7) that we just proved,
it holds that Ŵ 0

j (∆, Xj) ≤ Xj + W 1
j (∆ − (Tj − Rj + Xj)) ≤ Xj +

⌈
∆−Tj+(Rj−Xj)

Tj

⌉
Xj ≤⌈

∆+Rj−Xj
Tj

⌉
Xj . J

LITES

02:10 Errata for Three Papers on FP Scheduling with Self-Suspensions

Now that we have derived an upper bound on the cumulative execution time execj(ri, ri + ∆)
by each task τj in Ψ′, we can use these upper bounds in order to derive properties for the schedule
over any interval [ri, t).

Recall that, for the schedule Ψ′, the finishing time of the job of τ ′i in consideration is f ′i ≥ fi
(where fi is its corresponding finishing time in Ψ).

I Lemma 8. Assuming that the worst-case response time of τi is upper bounded by Ti, and
assuming that Rj ≤ Tj for all jobs by τj in Ψ′. ∀t | ri ≤ t < f ′i it holds that:

Ci +
i−1∑
j=1

⌈
t− ri +Rj −Xj

Tj

⌉
Xj > t− ri (8)

Proof. When we constructed Ψ′, we transformed any suspension time of τi into processor execu-
tion time. Hence, it must hold that there is no idle time within [ri, f ′i), i.e., between the release
and completion time of the transformed job of τi. Indeed, if there was an idle time within [ri, f ′i),
it would mean that either τi completed its job before f ′i or the scheduler would not be work
conserving. A contradiction with the assumptions of this problem in both cases.

Therefore, for every t such that ri ≤ t < f ′i , it holds that
∑i
j=1 execj(ri, t) = t − ri. By

application of Lemmas 5 and 6 to the LHS, we get

execi(ri, t) +
i−1∑
j=1

Ŵ 0
j (t− ri, Xj) ≥ t− ri

Further, applying Lemma 7,

execi(ri, t) +
i−1∑
j=1

⌈
t− ri +Rj −Xj

Tj

⌉
Xj ≥ t− ri

The fact that the (transformed) job by τi has not yet completed at t < f ′i in Ψ′ also means
(see Lemma 4) that execi(ri, t) < Ci. Substituting to the LHS of the above equation yields
Ci +

∑i−1
j=1

⌈
t−ri+Rj−Xj

Tj

⌉
Xj > t− ri. J

I Corollary 9. Consider a uniprocessor system of constrained-deadline self-suspending tasks and
one task τi among those, in particular. Assume that the worst-case response time of τi does not
exceed Ti and also that Rj ≤ Tj ,∀τj ∈ hp(i), where Rj denotes an upper bound on the worst-case
response time of the respective task τj. Then, the worst-case response time of τi is upper-bounded
by the minimum t greater than 0 for which the following inequality holds.

Ci +
∑

j∈hp(i)

⌈
t+ (Rj −Xj)

Tj

⌉
Xj ≤ t (9)

Proof. Direct consequence of Lemma 8. J

Having proven Corollary 9, what remains to show is the following:

I Lemma 10. Consider a uniprocessor system of constrained-deadline self-suspending tasks and
one task τi among those, in particular. Assume that Rj ≤ Tj ,∀τj ∈ hp(i), where Rj denotes an
upper bound on the worst-case response time of the respective task τj. If the worst-case response
time of τi is greater than Ti or unbounded (which implies that τi is unschedulable), it holds that

Ci +
∑

j∈hp(i)

⌈
t+ (Rj −Xj)

Tj

⌉
Xj > t, ∀t|0 < t ≤ Ti (10)

K. Bletsas et. al. 02:11

Proof. By the assumption that Ri > Ti for some task τi, there exists a schedule Ψ such that the
response time of at least one job of τi is strictly larger than Ti. Consider the first such job in
the schedule, and suppose that it arrives at time ri. At that instant, there is no other unfinished
job by τi in the system (or else, this would contradict the assumption that the job arriving at ri
is the first job of τi whose response time exceeds Ti). So by Lemma 7 we can safely remove all
other jobs by task τi that arrived before or at time ri, without affecting the response time of the
job that arrived at time ri. Nor is its response time affected, if we additionally remove all other
jobs of τi that arrived after time ri. Let fi be the finishing time of the job by τi that arrived
at ri in the above schedule, after removing all other jobs of that task. We therefore know that
fi − ri > Ti.

Then, we can follow all the procedures and steps in the proof of Corollary 9, to eventually
reach Equation 10. J

The joint consideration of Corollary 9 and Lemma 10, which we have now proven, serves as
proof of Lemma 2.

3.2 Discussion
We had already publicised the flaws in [2, 3] and the proposed fix, immediately upon realising
the problem, in a technical report [8]. However, this article addresses the issue more rigorously,
in terms of proofs.

Note also that Huang et al. already proposed a correct variation of Equation 3 in [12], using
the deadline Dj of each higher priority task as the equivalent jitter term in the numerator of
Equation 1 (see Theorem 2 in [12]). Although slightly more pessimistic, this solution has the
advantage of remaining compatible with Audsley’s Optimal Priority Assignment algorithm [1].

The fix proposed in Lemma 2, in this article, mirrors the approach taken by Nelissen et al.
in [15], for which a proof sketch had already been provided (see Theorem 2 in [15]). Later, that
approach was also extended for a more general result [9]. Compared to [9], the corrected analysis
in the present article has the following differences:
1. In [9], the authors combine a second, newer technique for upper-bounding task response times,

that had not been invented at the time that the papers under correction [2, 3] were published.
That aspect of their analysis makes it more general.

2. In [9], the authors assume a model whereby Ci = Xi + Gi, ∀i. Instead, in this article, as in
[3], we assume a slightly more general model whereby Ci ≤ Xi +Gi. This makes the present
analysis more general, in that regard, although there is no fundamental reason why the result
in [9] cannot be similarly extended.

Other than the above observations, one “side-effect” of the proposed fix is that the WCRT
estimate output by Equation 3 is no longer guaranteed to always dominate the estimate de-
rived under the pessimistic but jitterless “suspension-oblivious” approach. In the “suspension-
oblivious” approach, self-suspensions are treated as regular S/W executions on the processor.
That is, every task τi ∈ τ is modelled as a sporadic non-self-suspending task with a WCET equal
to Ci ≥ Xi. Using our notation described above, the corresponding WCRT equation for the
suspension-oblivious approach is given by:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (11)

A simple way for obtaining a WCRT upper bound that dominates the suspension-oblivious
one is to always pick the smallest of the two WCRT estimates, output by Equations 3 and 11.

LITES

02:12 Errata for Three Papers on FP Scheduling with Self-Suspensions

4 The analysis in [7], its flaws and how to fix it.

For the “linear model” described earlier, a different analysis was proposed in [7]. It uses the ad-
ditional information available on the execution behaviour of each task, to provide tighter bounds
on the task WCRTs. That analysis was called synthetic because it attempts to derive the WCRT
estimate by synthesising (from the task attributes) task execution distributions that might not
necessarily be observable in practice but (were supposed to) dominate the real worst-case exe-
cution scenario. Unfortunately, that analysis too, was flawed – and as we will see, the flaw was
somehow inherited from the “simple” analysis already discussed in Section 3.

The linear model permits breaking up, for modelling purposes, the interference from each task
τj upon a task τi into distinct terms Xjk , each corresponding to one of the software segments of
τj . These software segments are spaced apart by the corresponding self-suspending regions of τj ,
which, for analysis purposes, translates to a worst-case offset (see below) for every such term Xjk .
This allows in principle, for more granular and hence less pessimistic modelling of the interference.
However, one problem that such an approach entails is that different arrival phasings between τi
and every interfering task τj would need to be considered to find the worst-case scenario. This is
yet undesirable from the perspective of computational complexity.

The main idea behind the synthetic analysis was to calculate the interference from a higher-
priority task τj exerted upon the task τi under analysis assuming that the software segments
and the self-suspending regions of τj appear in a potentially different rearranged order from the
actual one. This so-called synthetic execution distribution would represent an interference pattern
that dominates all possible interference patterns caused by τj on τi, without having to consider
every possible phasing in the release of τj relative to τi. This approach is conceptually analogous
to converting a task conforming to the generalised multiframe model [4] into an accumulatively
monotonic execution pattern [14] - with the added complexity that the spacing among software
segments is asymmetric and also variable at run-time (since the self-suspension intervals vary in
duration within known bounds).

In terms of equations, the upper bound on the WCRT of a task τi claimed in [7] is given by:

Ri = Ci +
∑

j∈hp(i)

n(τj)∑
k=1

Ri>ξOjk

⌈
Ri − ξOjk +Aj

Tj

⌉
ξXjk (12)

where n(τj) is the number of software segments of the linear task τj and the terms ξXjk (a
per-software-segment interference term), ξOjk (a per-software-segment offset term) and Aj (a
per-task term analogous to a jitter) are defined in terms of the worst-case synthetic execution
distribution for τj .

For a rigorous definition, we refer the reader to [6]. However, for all practical purposes, one can
intuitively define ξXj1 as the WCET of the longest software segment of τj ; ξXj2 as the WCET of
the second longest software segment; and so on. Analogously, ξGj1 is the best-case length of the
shortest hardware segment (i.e., self-suspending region) of τj (in terms of their BCETs); ξGj2

is that of the second shortest one; and so on. However, in addition to the actual self-suspending
regions of τj , when creating this sorted sequence ξGj1 ,

ξGj2 , . . . a so-called “notional gap” Nj of
length Tj −Rj is considered3. For tasks that both start and end with a software segment, this is
the minimum spacing between the completion of a job by τj (i.e. its last software segment) and

3 In [7], the length of the notional gap was incorrectly given as Tj −Cj . In this paper, we consider the correct
length of Tj −Rj , as in the thesis [6].

K. Bletsas et. al. 02:13

the time that the next job by τj arrives4 . This is so that the interference pattern considered
dominates all possible arrival phasings between τj and τi.

As for ξOjk , it was defined5 as

ξOjk =
{

0, if k = 1∑k−1
`=1 (ξXj` + ξGj`), otherwise

(13)

Finally, Aj is given by

Aj = Gj − Ĝj (14)

As we will now demonstrate with the following counter-example, it is in the quantification of
this final term Aj , that the analytical flaw lies.

I Example 11. Consider a task set with the parameters shown in Table 2. Each task is described
as a vector consisting of the execution time ranges of its segments in the order of their activation;
self-suspending regions are enclosed in parentheses. In this example, the execution times of the
various software segments and self-suspending regions are deterministic. The analysis in [7],
as sanitised in [6] with respect to the issue of Footnote 3, would be reduced to the familiar
uniprocessor analysis of Liu and Layland [13] for the first few tasks, since τ1 and τ2 lack self-
suspending regions. So we would get R1 = 2 and R2 = 4.

Using Equation 12 for τ3 would yield R3 = 19. Note that since the software segments and
the intermediate self-suspending region of τ3 execute with strict precedence constraints, it is also
possible to derive another estimate for R3 by calculating upper bounds on the WCRTs of the
software/hardware segments and adding them together6. Doing this, and taking into account
that the hardware operation suffers no interference, yields R3 = 5 +G3 + 5 = 15. This is in fact
the exact WCRT, as evidenced in the schedule of Figure 5, for the job released by τ3 at t = 0.

Next, to obtain R4 we need to generate the worst-case execution distribution of τ3. Since, in
the worst-case, τ3 completes just before its next job arrives (see time 15 in Figure 5) its “notional
gap” N3 = (T3 −R3) is 0. Then, the synthetic worst-case execution distribution for τ3 is

[1, (0), 1, (5)]

which is equivalent to a non-self-suspending task with a WCET C3 = 2.
From the fact that software and self-suspending region lengths are deterministic, we also have

A3 = 0 (using Equation 14). In other words, to compute R4 according to this analysis is akin
to replacing τ3 with a (jitterless) sporadic task without any self-suspension, with C3 = 2 and
D3 = T3 = 15. Then, the corresponding upper bound computed with Equation 12 for the WCRT
of τ4 is R4 = 15.

4 For tasks that start and/or end with a self-suspending region, the Ĝ of the corresponding self-suspending
region(s) is also incorporated to the notional gap. But that is part of a normalisation stage that precedes
the formation of the worst-case synthetic execution distribution, so the reader may assume, without loss of
generality, that the task both starts and ends with a software segment. For details, see page 115 in [6].

5 It is an opportunity to mention that in the corresponding equation (Eq. 12) of that thesis [6], there existed
two typos: (i) the condition for the first case has “k = 0” instead of “k = 1” and (ii) the right-hand side for
the second case does not have parentheses as should. We have rectified both typos in Equation 13 presented
here.

6 In [6], the definition of WCRT is extended from tasks to software or hardware segments: The WCRT Rij of a
segment τij is the maximum possible interval from the time that τij is eligible for execution until it completes.
This approach of computing the WCRT of a self-suspending task by decomposing it in subsequences of one
or more segments and adding up the WCRTS of those subsequences is also described there.

LITES

02:14 Errata for Three Papers on FP Scheduling with Self-Suspensions

Table 2 A set of linear tasks where the numbers within parentheses represent the lengths of the
self-suspending regions and the other numbers represent the lengths of the S/W execution regions.

τi execution distribution Di Ti

τ1 [2] 5 5
τ2 [2] 10 10
τ3 [1, (5), 1] 15 15
τ4 [3] 20 ∞

Figure 5 A schedule, for the task set of Table 2, that highlights the flawedness of the synthetic
analysis [7]. The job released by τ4 at time 40 has a response time of 18 time units, which is more than
the estimate for R4 (i.e., 15) output by the analysis presented in [7].

However, the schedule of Figure 5, which is perfectly legal, disproves this. In that schedule,
τ1, τ2, and τ3 arrive at t = 0 and a job by τ4 arrives at t = 40 and has a response time of 18 time
units, which is larger than the value obtained for R4 with Equation 12. Therefore, the analysis
in [7] is also flawed.

For the purposes of fixing the analysis, we note that the characterisation of the interference
by τj upon τi is correct for any schedule where no software segment by τj interferes more than
once with τj . This holds by design, because the longest software segments and the shortest
interleaved self-suspending regions are selected in turn (according to the property of accumulative
monotonicity). Moreover, even in the case that there is interference multiple times by one or more
software segments of the synthetic τj , i.e., when some γ segments interfere β > 1 times with τi and
the remaining segments interfere β − 1 times with it, by the design of the equation it is ensured
that these are its γ longest segments and that they are clustered together in time as closely as
possible. Therefore, the problem lies in the quantification of the per-task term Aj , that acts as
jitter for the task execution. Given that, for the simpler dynamic model, it was shown before
that a value of Rj − Xj for this jitter was safe, one may conjecture that using Aj = Rj − Xj

would also make the synthetic analysis for the segmented linear self-suspension model safe. After
all, in the latter model, there is a smaller degree of freedom, in the execution and self-suspending
behaviour of the tasks.

Indeed, not only is the above conjecture true, but below we are going to show that a smaller
jitter term of Aj = Rj −Xj − Ĝ also works and makes the analysis safe.

I Lemma 12. Consider a uniprocessor system of constrained-deadline linear (i.e., segmented)
self-suspending tasks and one task τi among those, in particular. If for every task τj ∈ hp(i) an
upper bound Rj ≤ Tj on its WCRT exists, and, additionally, the smallest positive solution Ri to

K. Bletsas et. al. 02:15

the following recursion is upper-bounded by Ti, then the WCRT of is τi is upper-bounded by Ri,
as defined below.

Ri = Ci +
∑

j∈hp(i)

n(τj)∑
k=1

Ri>ξOjk

⌈
Ri − ξOjk +Aj

Tj

⌉
ξXjk (15)

where

ξOjk =
{

0, if k = 1∑k−1
`=1 (ξXj` + ξGj`), otherwise

and

Aj = Rj −Xj − Ĝk

Proof. Let us convert the self-suspension of τi to computation. Then, whenever τi is present in
the system and a higher-priority task is executing τi is preempted. Then the response time of a
job of τi is maximised if the total execution time by higher-priority tasks, between its release and
its completion, is maximised. Therefore we can upper-bound the WCRT of τi by upper-bounding
the total execution time of higher-priority tasks during its activation. We are, pessimistically,
going to do that by upper-bounding the execution time of every τj ∈ hp(i) and then taking the
sum.

Consider some τj ∈ hp(i). Without loss of generality we will consider the canonical form
where it both starts and ends with a software segment. Then, it has the form

[xj1 , gj1 , xj2 , . . . , gjn(τj)−1 , xjn(τj)]

Let us consider one software segment xjk . As shown in Figure 6, from the moment that this
segment completes, until another instance of the same segment (belonging to the next job of τj)
executes for one time unit, there is a minimum time separation. Indeed:

All subsequent self-suspensions and software segments of the original job (if any) must execute,
i.e., gjk , xjk+1 , . . . , gjn(τj)−1 , xjn(τj) .
Then, there is at least Nj = Tj −Rj time units until the next job of τj arrives (i.e., what we
earlier called the notional gap).
Then all preceding software segments and self-suspensions (if any) of the next job of τj must
complete, i.e., [xj1 , gj1 , xj2 , . . . , gjk−1]

The workload generated by τj in any window of a given length is maximised when its execution
segments execute for their respective WCETs and those belonging to jobs released after τi are
released as early as possible whereas those belonging to a carry-in job by τj (if any) are released
as late as possible. This implies that self-suspending regions of τj overlapping with that time
window execute for their respective minimum suspension time. Under this scenario, it follows
that the minimum time separation between time instants where two different instances of segment
xjk execute is∑

k≤`≤n(τj)−1

Ĝj` +
∑

k<`≤n(τj)

Xj` + Tj −Rj︸ ︷︷ ︸
notional gap

+
∑

1≤`≤k−1
Xj` +

∑
1≤`≤k−1

Ĝj`

= Tj −Rj +Xj + Ĝj −Xjk (16)

This is also illustrated in Figure 6. Note that for successive instances of xjk released no earlier
than τi, under this worst-case scenario, the corresponding minimum time separation is Tj −Xjk .

LITES

02:16 Errata for Three Papers on FP Scheduling with Self-Suspensions

Figure 6 Illustration of the minimum time separation between two different instances of a segment of
the same task τj .

This means that, in the above scenario, within any time interval of length ∆t ≤ Tj − Rj +
Xj + Ĝj − Xjk , the execution by segment xjk is at most Xjk time units. And within any time
interval of length ∆t = (Tj − Rj + Xj + Ĝj) + M , with M > 0, the total execution time by
segment xjk is no more than Xjk + bMTj cXjk + min(Xjk ,M − bMTj cTj).

This means that, over a time interval of length ∆t, the worst-case amount of execution by
segment xjk is the same as the corresponding worst-case amount of execution, over an interval of
length ∆t, of an independent periodic non-suspending task with a WCET equal to Xjk , a period
of Tj and a release jitter equal to (Rj −Xj − Ĝj).

Then, for any particular given phasing of the interfering tasks, the response time of a job of
τi is upper-bounded by the smallest solution to

R∗i = Ci +
∑

j∈hp(i)

∑
xjk∈τj

⌈
R∗i + (Rj −Xj − Ĝj)−Ojk

Tj

⌉
0

Xjk (17)

where Ojk is an offset that describes the phasings of the different segments and d·e0
def=

(maxd·e, 0).
Now, observe that the leftmost interfering segment of τj , within the interval under consider-

ation, will not necessarily be τj1 . It could be any other segment, depending on the release offset.
So, it will not hold in the general case that Ojk < Ojk+1 , k ∈ {0, 1, n(τj)}. Let us use introduce
some notation to refer to the segments of τj by the order that they first appear in the time interval
under consideration. So, if the βth segment of τj is the one to appear first (i.e., leftmost), then
let

x′j1

def= xjβ

and

x′jk
def= xjβ+k−1 , ∀k ∈ {1, 2, . . . , n(τj)}

Accordingly Equation 17 can be rewritten as

R∗i = Ci +
∑

j∈hp(i)

∑
x′
jk
∈τj

⌈
R∗i +A′j −O′jk

Tj

⌉
0
X ′jk (18)

where A′j = Rj − Xj − Ĝj and it will hold that O′jk < O′jk+1
, k ∈ {0, 1, n(τj)}. Intuitively,

the RHS is maximised when the O′jk positive offsets are minimised. And a lower-bound on each

K. Bletsas et. al. 02:17

of those is

O′j1
= 0

O′j2
= X ′j1

+ Ĝ′j1

. . .

O′jk =
(
k−1∑
`=1

X ′j`

)
+
(
k−1∑
`=1

Ĝ′j`

)
, k ∈ {1, . . . , n(τj)} (19)

where g′jk is defined as the self-suspension interval immediately after segment x′jk (or, the
notional gap, in the special case that x′jk is xjn(τj) .)

Now compare Equation 19 with Equation 15, from the claim of this lemma. By the design of
the latter equation, it holds that

k∑
`=1

ξXj` ≥
k∑
`=1

X ′j` ,∀j, k ∈ {1, 2, . . . , n(τj)}

ξOjk ≤ O′jk ,∀j, k ∈ {1, 2, . . . , n(τj)}

Aj = A′j

This means that the RHS of Equation 15 dominates the RHS of Equation 18, so the respective
solution to the former upper-bounds the response time of τi under any possible combination of
release phasings of higher-priority tasks. This proves the claim. J

5 Additional discussion

Priority assignment. In [2], it was claimed that the bottom-up Optimal Priority Assignment
(OPA) [1] algorithm could be used in conjunction with the simple analysis. However, once the
proposed fix is applied, it becomes evident that this is not the case. Namely, we now need
knowledge of Rj , ∀j ∈ hp(i) in order to compute Ri. In turn, these values depend on the relative
priority ordering of tasks in hp(i). This contravenes the basic principle upon which OPA relies [1].

Resource sharing. In [3], WCRT equations are augmented with blocking terms, for resource
sharing under the Priority Ceiling Protocol. However, there was an omission of a term in those
formulas (since those blocking terms have to be multiplied with the number of software segments
of the task – or, equivalently, the number of interleaved self-suspensions plus one). This has
already been acknowledged and rectified in [6], p. 101, but we repeat it here too, since this is the
erratum for that paper.

Multiprocessor extension of the synthetic analysis. In Section 4 of [7], a multiprocessor ex-
tension of the synthetic analysis is sketched, assuming multiple software processors and a global
fixed-priority scheduling policy. Showing whether or not this would work for the corrected analysis
is a conjecture that we would like to tackle in future work.

6 Some experiments

Finally, we provide some small-scale experiments, with synthetic randomly-generated tasks in
order to have some indication about:

The performance of the corrected analysis techniques, as compared to the baseline suspension-
oblivious approach.

LITES

02:18 Errata for Three Papers on FP Scheduling with Self-Suspensions

The extent by which the original flawed techniques were potentially optimistic.

The metric by which we compare the approaches is the scheduling success ratio. We gen-
erated7 hundreds of implicit-deadline task sets with n = 6 tasks each. The total processor
utilisation (

∑n
i=1

Xi
Ti

) of each task set did not exceed 1, in order to avoid generating task sets
that would be a priori unschedulable. Additionally, the suspension-oblivious task set utilisation
(
∑n
i=1

Ci
Ti
) of each task set ranged between 0.6 and 1.2, with a step of 0.05. Each generated task

consisted of 3 software segments and 2 interleaved self-suspending regions. For simplicity, the
best-case execution time of each software segment and self-suspending region matched its worst-
case execution time. Task inter-arrival times were uniformly chosen in the range 105 to 106. For
each suspension-oblivious task set utilisation (i.e., 0.6, 0.65, . . ., 1.2) we generated 100 such task
sets. For each target suspension-oblivious utilisation we used the randfixedsum function [11] to
randomly generate the suspension-oblivious utilisations of the individual tasks, which could not
exceed 1. Then, the suspension-oblivious execution time Ci of each task was derived by multiply-
ing with the task inter-arrival time Ti. Subsequently, for each task, we randomly generated its
Xi and Gi parameters: Gi was randomly chosen between 5% and 50% of Ci and Xi was set to
Ci−Gi. The function randfixedsum was again invoked to randomly generate the execution times
of the individual software segments and self-suspending regions from Xi and Gi, respectively.

Figure 7 plots the results from applying the following schedulability tests.
obl The baseline suspension-oblivious approach (Equation 11).
simple The simple approach from [2, 3] as corrected in Section 3 (namely Equation 3).
simple∪obl Applying both “simple” and “obl” and picking the smallest WCRT.
synth The “synthetic” approach from [7], already partially corrected8 in the Thesis [6] and
as further corrected in Section 4 (namely Equation 15, that uses for Aj the value perscribed
by Lemma 12).
synth∪obl Applying both “synth” and “obl” and picking the smallest WCRT of the two.
simple-bad The original, flawed technique from [2, 3], which was proven to be unsafe in
Section 3.
synth-bad The “synthetic” analysis technique from [7], as partially corrected in [6], which
was proven unsafe in Section 4.

The main findings from this experiment are as follows:
1. The suspension-oblivious analysis trails all other approaches in performance.
2. The benefits of the synthetic approach over the simple approach when used as a schedulability

test are limited but non-negligible.
3. Combining either of the suspension-aware tests with the suspension-oblivious test offers a slight

improvement in the middle region of the plot. This means that a small but not negligible
number of task sets is found schedulable by the suspension-oblivious test but not by the
suspension-aware tests.

4. The original flawed formulations of the simple and the synthetic analysis “perform” identic-
ally. The region of the plot enclosed between these curves and synth∪obl upper-bounds the
potential incidence of task sets that are in fact unschedulable but would have been erroneously
deemed schedulable by those flawed tests.

7 We are grateful to José Fonseca, for having granted us use of his Matlab-based task generator and schedulab-
ility testing tool, which he has been developing in the context of his ongoing PhD.

8 With respect to the length of the “notional gap”.

K. Bletsas et. al. 02:19

Figure 7 A comparison of the performance of different schedulability tests. The y-axis is the fraction
of task sets deemed schedulable. The x-axis is the suspension-oblivious task set utilisation, defined as∑n

i=1
Ci
Ti
. The original flawed variants of the analysis techniques corrected by this paper are also included

in the plot.

7 Conclusions

It is very unfortunate that the above flaws found their way to publication undetected. However,
as obvious as they may seem in retrospect, they were not at the time, to the authors and reviewers
alike. At least, this errata paper comes at a time when the topic of scheduling with self-suspensions
is attracting more attention by the real-time community. Therefore we hope that it will serve as
a stimulus for researchers in the area to revisit past results and scrutinise them for correctness.
For more details regarding the state of the art, Chen et al [10] have recently provided high-level
summaries of the general analytical methods for self-suspending tasks, the existing flaws in the
literature, and potential fixes.

References
1 Neil C. Audsley. On priority assignment in fixed

priority scheduling. Inf. Process. Lett., 79(1):39–
44, 2001. doi:10.1016/S0020-0190(00)00165-4.

2 Neil C. Audsley and Konstantinos Bletsas. Fixed
priority timing analysis of real-time systems with
limited parallelism. In 16th Euromicro Conference
on Real-Time Systems (ECRTS 2004), 30 June
- 2 July 1004, Catania, Italy, Proceedings, pages
231–238. IEEE Computer Society, 2004. doi:
10.1109/ECRTS.2004.12.

3 Neil C. Audsley and Konstantinos Bletsas. Real-
istic analysis of limited parallel software / hard-
ware implementations. In 10th IEEE Real-Time

and Embedded Technology and Applications Sym-
posium (RTAS 2004), 25-28 May 2004, Toronto,
Canada, pages 388–395. IEEE Computer Society,
2004. doi:10.1109/RTTAS.2004.1317285.

4 Sanjoy K. Baruah, Deji Chen, Sergey Gorinsky,
and Aloysius K. Mok. Generalized multiframe
tasks. Real-Time Systems, 17(1):5–22, 1999. doi:
10.1023/A:1008030427220.

5 Marko Bertogna, Michele Cirinei, and Giuseppe
Lipari. New schedulability tests for real-time task
sets scheduled by deadline monotonic on multipro-
cessors. In James H. Anderson, Giuseppe Pren-
cipe, and Roger Wattenhofer, editors, Principles

LITES

http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1109/ECRTS.2004.12
http://dx.doi.org/10.1109/ECRTS.2004.12
http://dx.doi.org/10.1109/RTTAS.2004.1317285
http://dx.doi.org/10.1023/A:1008030427220
http://dx.doi.org/10.1023/A:1008030427220

02:20 Errata for Three Papers on FP Scheduling with Self-Suspensions

of Distributed Systems, 9th International Confer-
ence, OPODIS 2005, Pisa, Italy, December 12-14,
2005, Revised Selected Papers, volume 3974 of Lec-
ture Notes in Computer Science, pages 306–321.
Springer, 2005. doi:10.1007/11795490_24.

6 Konstantinos Bletsas. Worst-case and Best-case
Timing Analysis for Real-time Embedded Systems
with Limited Parallelism. PhD thesis, Dept of
Compputer Science, University of York, UK, 2007.

7 Konstantinos Bletsas and Neil C. Audsley. Ex-
tended analysis with reduced pessimism for sys-
tems with limited parallelism. In 11th IEEE Inter-
national Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA
2005), 17-19 August 2005, Hong Kong, China,
pages 525–531. IEEE Computer Society, 2005.
doi:10.1109/RTCSA.2005.48.

8 Konstantinos Bletsas, Neil C. Audsley, Wen-Hung
Huang, Jian-Jia Chen, and Geoffrey Nelissen. Er-
rata for three papers (2004-05) on fixed-priority
scheduling with self-suspensions. Technical report,
CISTER Research Centre, ISEP, Porto, Portugal,
2015.

9 Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung
Huang. A unifying response time analysis frame-
work for dynamic self-suspending tasks. In 28th
Euromicro Conference on Real-Time Systems,
ECRTS 2016, Toulouse, France, July 5-8, 2016,
pages 61–71. IEEE Computer Society, 2016. doi:
10.1109/ECRTS.2016.31.

10 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung
Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard,
Frédéric Ridouard, Neil, Audsley, Raj Rajkumar,
Dionisio de Niz, and Georg von der Brüggen.
Many suspensions, many problems: A review

of self-suspending tasks in real-time systems.
Technical Report 854, 2nd version, Faculty
of Informatik, TU Dortmund, 2017. URL:
http://ls12-www.cs.tu-dortmund.de/daes/
media/documents/publications/downloads/
2017-chen-techreport-854-v2.pdf.

11 P. Emberson, R. Stafford, and R. I. Davis. Tech-
niques for the synthesis of multiprocessor tasksets.
In Proc. 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-
time Systems (WATERS 2010), pages 6–11, 2010.

12 Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou,
and Cong Liu. PASS: priority assignment of real-
time tasks with dynamic suspending behavior un-
der fixed-priority scheduling. In Proceedings of
the 52nd Annual Design Automation Conference,
San Francisco, CA, USA, June 7-11, 2015, pages
154:1–154:6. ACM, 2015. doi:10.1145/2744769.
2744891.

13 C. L. Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, 1973.
doi:10.1145/321738.321743.

14 Aloysius K. Mok and Deji Chen. A multiframe
model for real-time tasks. In Proceedings of the
17th IEEE Real-Time Systems Symposium (RTSS
’96), December 4-6, 1996, Washington, DC, USA,
pages 22–29. IEEE Computer Society, 1996. doi:
10.1109/REAL.1996.563696.

15 Geoffrey Nelissen, José Carlos Fonseca,
Gurulingesh Raravi, and Vincent Nélis. Timing
analysis of fixed priority self-suspending sporadic
tasks. In 27th Euromicro Conference on Real-
Time Systems, ECRTS 2015, Lund, Sweden, July
8-10, 2015, pages 80–89. IEEE Computer Society,
2015. doi:10.1109/ECRTS.2015.15.

http://dx.doi.org/10.1007/11795490_24
http://dx.doi.org/10.1109/RTCSA.2005.48
http://dx.doi.org/10.1109/ECRTS.2016.31
http://dx.doi.org/10.1109/ECRTS.2016.31
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-chen-techreport-854-v2.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-chen-techreport-854-v2.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-chen-techreport-854-v2.pdf
http://dx.doi.org/10.1145/2744769.2744891
http://dx.doi.org/10.1145/2744769.2744891
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/REAL.1996.563696
http://dx.doi.org/10.1109/REAL.1996.563696
http://dx.doi.org/10.1109/ECRTS.2015.15

The Semantic Foundations and a Landscape of
Cache-Persistence Analyses∗

Jan Reineke
Saarland University
Saarland Informatics Campus
Saarbrücken, Germany
reineke@cs.uni-saarland.de

http://orcid.org/0000-0002-3459-2214

Abstract
We clarify the notion of cache persistence and con-
tribute to the understanding of persistence analysis
for caches with least-recently-used replacement.

To this end, we provide the first formal defini-
tion of persistence as a property of a trace seman-
tics. Based on this trace semantics we introduce a
semantics-based, i.e., abstract-interpretation-based
persistence analysis framework.

We identify four basic persistence analyses and
prove their correctness as instances of this analysis

framework.
Combining these basic persistence analyses via

two generic cooperation mechanisms yields a lattice
of ten persistence analyses.

Notably, this lattice contains all persistence
analyses previously described in the literature. As
a consequence, we obtain uniform correctness proofs
for all prior analyses and a precise understanding
of how and why these analyses work, as well as how
they relate to each other in terms of precision.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture,
Theory of computation → Caching and paging algorithms, Hardware → Safety critical systems
Keywords and Phrases caches, persistence analysis, WCET analysis
Digital Object Identifier 10.4230/LITES-v005-i001-a003
Received 2017-10-23 Accepted 2018-05-15 Published 2018-08-02

1 Introduction

Due to the large processor-memory gap, essentially all modern processors employ some form of
memory hierarchy, consisting of smaller but faster memories, such as caches, on the one hand,
and larger but slower memories, such as DRAM-based main memory, on the other hand. Memory
hierarchies of general-purpose processors usually contain one or multiple levels of caches. Caches
are small but fast hardware-managed memories that store a subset of the contents of main memory.
Memory accesses that “hit” the cache may be served at a much lower latency than those accesses
that “miss” the cache and as a consequence have to be served from slow main memory. The
execution time of a program thus heavily depends on how effective the processor’s caches are.

For safety-critical systems, it is imperative to demonstrate before deployment that the system
will always behave as intended. Many safety-critical systems are real-time systems, i.e., in order
to function correctly, they have to perform their actions within limited amounts of wall-clock time.
A major task in verifying a system’s real-time behavior is to analyze each software component’s
worst-case execution time (WCET). Due to the large influence of caches on execution times,
WCET analyses have to soundly and precisely characterize a software component’s cache behavior.
To this end, various static cache analyses have been developed. Simply assuming each memory
access to yield a cache miss would result in extremely pessimistic execution-time bounds.

∗ This work was supported by the Deutsche Forschungsgemeinschaft as part of the project PEP.

© Jan Reineke;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 5, Issue 1, Article No. 3, pp. 03:1–03:52
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reineke@cs.uni-saarland.de
http://orcid.org/0000-0002-3459-2214
http://dx.doi.org/10.4230/LITES-v005-i001-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

03:2 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

Listing 1 Example program motivating persistence analysis.
for (int i=0; i < N; i++) {

if (read_sensor ())
a++;

else
b++;

}

Static cache analysis comes in two flavours [19]: 1. Classifying Cache Analysis aims to classify
individual memory accesses as cache hits or misses. 2. Quantitative Cache Analysis aims to
determine bounds on the number of misses resulting from a set of memory accesses in a program.

Classifying cache analysis for caches with least-recently-used (LRU) replacement has been
well-understood since the introduction of may and must analysis by Ferdinand et al. [11, 12] in the
late 1990s. May and must analysis are formalized and proven correct in the framework of abstract
interpretation [3]. Both may and must analysis answer questions about the set of reachable cache
states. For example, must analysis determines whether a memory block is guaranteed to be cached
in all cache states that may be reached at a given program point. If that is the case, an access to
such a block must result in a cache hit.

One instance of quantitative cache analysis is persistence analysis. Persistence analysis
collectively considers all memory accesses in a program, or a fragment of a program such as a loop,
that access the same memory block. Various slightly different interpretations of cache persistence
exist in the literature [1, 12], which we discuss later in this article. Intuitively, a memory block is
persistent if, during any possible program execution, all memory accesses referring to this block
may cumulatively result in at most one cache miss.

Consider the program in Listing 1 for a motivating example. Assume that variables a and b
are kept in two distinct memory blocks. Further, assume that in each loop iteration it is equally
possible for the program to take the then- and the else-branch of the conditional, as the outcome of
read_sensor() depends on external inputs. Then it is impossible to classify the memory accesses
to a or b in any loop iteration as guaranteed cache hits and a WCET analysis would have to
pessimistically account for misses upon all memory accesses. However, provided the cache is large
enough to hold a and b simultaneously, among all memory accesses to a (and similarly to b) only
the very first may result in a cache miss1. Both a and b are persistent, and WCET analysis can
safely account for at most two misses.

Various persistence analyses have been proposed in the literature starting from Mueller’s [20,
1, 31, 21] and Ferdinand’s [11, 12] work in the 1990s up until today [2, 6, 17, 23, 22, 8, 7, 32]. In
our opinion, however, persistence analysis is so far not as well-understood as classifying cache
analysis. In particular, even though persistence analysis clearly determines semantic properties
of programs, it has never been formalized and proven correct as a semantics-based program
analysis, i.e., as an abstract interpretation of an appropriate semantics in which persistence is
expressible. Instead, persistence analyses have so far been described and argued correct in rather
ad hoc manners. Possibly as a consequence of this lack of foundations, a flaw in one of the early
persistence analyses [12] was long overlooked.

In this article we seek to fill this gap by providing a solid semantic underpinning for persistence
analysis. We observe that persistence is a property of traces rather than states. Thus, semantics
that capture sets of reachable states – such as those used as a basis for may and must analysis,

1 Assuming that neither a nor b are evicted by read_sensor().

J. Reineke 03:3

and in fact most other static program analyses – are not appropriate to understand and prove
correct persistence analyses. In Section 2, we define a trace collecting semantics, which captures
all possible cache traces of a program, i.e., alternating sequences of cache states and memory
accesses. On this basis, we are then able to provide the first formal definition of the various cache
persistence notions found in the literature.

After discussing standard abstractions and simplifications in Section 3, we introduce a generic
abstract-interpretation-based persistence analysis framework in Section 4. This framework defines
the components of a persistence analysis and provides conditions on these components that
are sufficient to guarantee the correctness of the persistence classifications of the analysis. As
is usual in abstract interpretation, the framework uses concretization functions to capture the
relation between concrete and abstract semantics. The key difference to prior work on abstract-
interpretation-based cache analysis is that concretization functions map to sets of cache traces
rather than sets of cache states, as persistence is a property of traces rather than states. To
analyze the relative precision of two different persistence analyses, we also provide conditions on
the components of two arbitrary analyses A and B that are sufficient to show that A is more
precise than B, i.e., if B classifies a memory block as persistent then so does A.

A generic analysis framework is only useful if it has interesting instantiations. In Section 5, we
identify four basic persistence analyses. Using the framework introduced in Section 4 we prove
their correctness and determine their relative precision. Then we introduce two generic cooperation
mechanisms that enable the exchange of analysis information between different persistence analyses
in order to obtain more precise combined analyses. Combining the four basic persistence analyses
using these two cooperation mechanisms yields a lattice of ten persistence analyses of varying
precision. These ten analyses include, to the best of our knowledge, all persistence analyses
previously described in the literature. Thus we obtain uniform correctness proofs for all these
analyses and a precise understanding of how and why these analyses work, as well as how they
relate to each other in terms of precision. In Section 6, we discuss how the persistence analyses
from the literature map to the lattice of persistence analyses developed in Section 5.

Due to uncertainty about the memory accesses induced by loads and stores in a program,
persistence analysis is more challenging for data caches than for instruction caches. We briefly
describe a generic approach to data-cache persistence analysis in Section 7. Finally, we conclude
the article by summarizing our results and discussing future work in Section 8.

This article may be read in different ways depending on a reader’s intent:
Readers primarily interested in understanding the intuition of the various persistence analyses
may focus their attention on Section 5. To enable readers to quickly obtain a basic understanding
of the state of the art, many of the correctness proofs have been moved to the appendix.
Readers who would like to understand the semantic foundations of persistence analysis in
detail, will have to study Sections 2 to 4 more carefully. Further, they may selectively read
the detailed correctness proofs in the appendix. These proofs are linked from the respective
theorems and lemmas of Section 5.
Readers interested in a historical perspective may focus on Sections 5.3 and 6.

2 A Formal Definition of Cache Persistence

In this section, we provide a formal definition of cache persistence. As persistence is a semantic
property of a program’s execution traces, we first introduce a generic trace collecting semantics in
Section 2.1. As persistence involves cache behavior, we require a semantics taking into account
caches. We show how to instantiate the generic trace collecting semantics accordingly in Section 2.2.
Finally, in Section 2.3 we formally capture the various notions of persistence found in the literature
as properties of the semantics introduced in the two preceding sections.

LITES

03:4 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

2.1 Programs, Computations, Trace Collecting Semantics
A program P = 〈Σ, I, E , T 〉 consists of the following components:

Σ - a set of program states
I ⊆ Σ - a set of initial states
E - a set of events
T ⊆ Σ× E × Σ - a transition relation, which captures how a computation of the program may
step through its state space.

An execution trace t of P is an alternating sequence of states and events t = σ0e0σ1e1 . . . σn
such that σ0 ∈ I and for all i ∈ {0, . . . , n − 1}, 〈σi, ei, σi+1〉 ∈ T . The set of all execution
traces of P is its trace collecting semantics Col(P) ⊆ Traces, where Traces denotes the set of
all alternating sequences of states and events. When considering terminating programs, the
trace collecting semantics can be formally defined as the least fixpoint2 of the next operator
containing I:

Col(P) = lfp⊆I next

where next describes the effect of one computation step:

next(S) = {t.σnenσn+1 | t.σn ∈ S ∧ 〈σn, en, σn+1〉 ∈ T }

In the definition of next above, t.σn denotes a trace that ends in state σn following its prefix t.
Similarly, t.σnenσn+1 is a trace obtained by extending t.σn by enσn+1.

In other words, Col(P) is the least solution, i.e., the smallest set of traces X that satisfies the
equation X = I ∪ next(X).

Cousot and Cousot [5] give a detailed proof of why the set of all finite execution traces of a
program is indeed captured by the least fixpoint of a next operator as in our definition above.

2.2 Taking Caches Into Account
For reasoning about caches, we need to consider a semantics in which the state of the cache is
part of the program state. To this end, the state will consist of two components: (1) the logical
memory state in M (representing the values of memory locations and CPU registers) and (2)
the cache state in C. So Σ =M×C. The set of initial states is the product of the set of initial
memory states and the set of initial cache states, i.e., I = IM × IC .

We define the transition relation on this domain based on four functions that model the
evolution of the logical memory and the cache as well as their interaction:
1. The memory update is a function updateM : M→M that captures the logical memory state

the system transitions into from a given logical memory state.
2. The memory effect is a function effM : M→EM that determines the memory block, if any,

that is accessed when transitioning from a given logical memory state. We denote the set of
memory blocks by B. Thus, the set of memory events is defined as EM = B ∪ {⊥}, where ⊥
denotes that no memory block is accessed.

3. The cache update is a function updateC : C ×EM → C that determines the successor cache state
given a memory effect.

2 Here, and later, we denote by lfp⊆I next, the least fixpoint of the function next that is greater than or equal
to I. This is the same as the least fixpoint of the function nextI(X) := I ∪ next(X).

J. Reineke 03:5

4. The cache effect is a function effC : C × EM → EC that determines whether or not the memory
access results in a cache hit or a cache miss. Thus, the set of cache events is defined as
EC = {hit,miss,⊥}, where ⊥ is used when the memory effect is ⊥, and so no memory block is
actually accessed.

Events are pairs of memory events and cache events, i.e., E = EM × EC .
The definition of persistence as a property of traces in Section 2.3, as well as the persistence

analysis framework developed in Sections 3 and 4 applies to arbitrary replacement policies.
Particular replacement policies can be captured by appropriately defining updateC and effC . Below,
we provide definitions of these two functions for the LRU strategy, denoted as updateLRU

C and
effLRU
C . This is because all the persistence analysis instances that we will introduce in Section 5

apply to caches with LRU replacement. In the following, whenever we make statements that hold
for arbitrary caches, we use updateC and effC. Whenever our statements refer to LRU, we use
updateLRU

C and effLRU
C .

Upon a cache miss, LRU replaces the least-recently-used memory block. To this end, it tracks
the ages of memory blocks within each cache set, where the youngest block has age 0 and the
oldest cached block has age k − 1, where k is the associativity of the cache. Thus, the state of the
cache can be modeled as a function that assigns an age to each memory block, where non-cached
blocks are assigned age k. For simplicity of exposition, we consider a fully-associative cache3, in
other words, all blocks map to the same cache set.

C := {c ∈ B → A | ∀a, b ∈ B : a 6= b ⇒ (c(a) 6= c(b) ∨ c(a) = c(b) = k)},

where A := {0, ..., k − 1, k} is the set of ages. The constraint encodes that no two cached blocks
can have the same age. For readability we omit the additional constraint that blocks of non-zero
age are preceded by other blocks, i.e. that cache sets do not contain “holes”.

Below, we define the cache update and the cache effect for the cases where a memory access
occurs, i.e., for the subset B of their domain EM = B ∪ {⊥}. Both cache update and cache effect
are naturally extended to the case where no memory access occurs.

The cache update for LRU is given by

updateLRU
C (c, b) := λb′ ∈ B.


0 : b′ = b,

c(b′) + 1 : c(b′) < c(b),
c(b′) : c(b′) ≥ c(b).

The accessed block attains age 0 (case 1), blocks younger than the accessed block age by 1 (case 2),
and the ages of other blocks are not affected (case 3).

The cache effect captures that a hit occurs whenever the age of the accessed block is less than
the cache’s associativity:

effLRU
C (c, b) :=

{
hit : c(b) < k,

miss : else.

Both updateLRU
C and effLRU

C are naturally extended to the case where no memory access occurs.
Then, the cache state remains unchanged and the cache effect is ⊥.

3 Set-associative caches as they are typically found in actual caches can be considered as arrays of fully-associative
caches. Thus, analyses that apply to fully-associative caches can be lifted to set-associative caches in a rather
straightforward manner.

LITES

03:6 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

With this, we can now connect the components and obtain the global transition relation
T ⊆ Σ× E × Σ by

T = {〈〈m, c〉, 〈em, ec〉, 〈m′, c′〉〉 | m′ = updateM(m) ∧ em = effM(m)
∧ c′ = updateC(c, em) ∧ ec = effC(c, em)},

which formally captures the asymmetric relationship between caches, logical memories, and events:
The memory update determines the next memory states: m′ = updateM(m), and the memory
effect determines the memory block, if any, that is accessed on the transition: em = effM(m).
Based on the memory effect, the cache update determines the next cache state: c′ =
updateC(c, em), and the cache effect determines whether or not the current memory access
results in a hit or a miss: ec = effC(c, em).

2.3 Persistence as a Property of Traces
Given a trace collecting semantics that takes caches into account as defined in the previous
two sections, we are now ready to formally capture multiple notions of persistence found in the
literature. Persistence is a property of traces, and thus, the following predicates determine for a
given trace τ and a memory block b, whether b is persistent in τ according to a particular notion
of persistence.

The most liberal notion of persistence is that a persistent block may cause at most one miss:

AtMostOneMiss(σ0e0σ1e1 . . . en−1σn, b) := |{i | ei = 〈b,miss〉}| ≤ 1 (1)

A stronger notion of persistence is that only the very first access to a persistent block may
result in a miss [1]:

FirstAccessIsAMiss(σ0e0σ1e1 . . . en−1σn, b) :=
∀i : (ei = 〈b,miss〉) ⇒ ∀j < i : (ej 6= 〈b, hit〉 ∧ ej 6= 〈b,miss〉). (2)

This condition is stronger, i.e., FirstAccessIsAMiss(τ, b) implies AtMostOneMiss(τ, b) but not vice
versa, as AtMostOneMiss(τ, b) is equivalent to ∀i : (ei = 〈b,miss〉)⇒ ∀j < i : (ej 6= 〈b,miss〉).

Another stronger notion of persistence is that, after a block has been brought into the cache
via a miss, it is not evicted from the cache anymore [12]:

NoEviction(σ0e0σ1e1 . . . en−1σn, b) := ∀i : (ei = 〈b,miss〉)⇒ ∀j > i : b ∈ σj , (3)

where b ∈ σl means that b is cached in state σl, i.e., it is an abbreviation for σl = 〈ml, cl〉 ∧
effC(cl, b) = hit. Clearly, persistence according to (3) also implies persistence according to (1).

The above definitions refer to individual traces. We say that a memory block b is persistent in
program P , if it is persistent in all traces of P ’s trace collecting semantics:

I Definition 1 (Persistence in a Program). Memory block b is persistent in program P , if

∀τ ∈ Col(P) : AtMostOneMiss(τ, b).

We choose to use the most liberal notion of persistence in Definition 1, because it corresponds
to the property that is being exploited in the later phases of WCET analysis. As we will see, all
persistence analyses introduced in Section 5 are in fact based on the stronger NoEviction notion
expressed by (3). It is conceivable though that future persistence analyses will take advantage of
the more liberal AtMostOneMiss notion to classify more memory blocks as persistent.

J. Reineke 03:7

3 Preliminaries: Standard Abstractions and Simplifications

The trace collecting semantics as defined above is not practically computable. In this section,
we discuss two very common abstractions that lead to an abstract semantics that is closer to
being computable. Based on the resulting sticky-collecting semantics, we then develop further
abstractions in Sections 4 and 5 that allow to prove the persistence of memory blocks in practice.

3.1 Control Flow Graph Abstraction
In contrast to data accesses, instruction accesses depend solely on the flow of control through the
program and are thus much easier to predict. As the focus of this article is on the analysis of
the cache behavior rather than the analysis of the memory accesses generated by a program, we
initially limit ourselves to the analysis of instruction caches. Later, in Section 7 we discuss how to
lift this restriction. Thus we abstract the state of the memory, inM, to the program location,
in L, that the program is currently at.

A common abstraction of a program P is its control flow graph GP = 〈L, E, i〉, where
the nodes in L represent program locations,
the edges in E ⊆ L× L represent possible control flow, and
i ∈ L represents the start node, which has no incoming edges.

The set of edges E can be seen as an abstraction of the memory update updateM. While
updateM is a function, E is a relation, because the successor location may depend on values
of registers that have been abstracted away. Similarly, let effL : E → B capture the memory
block holding the instruction that needs to be fetched when moving from one program location
to another. This corresponds to the memory effect effM. As we limit ourselves to instruction
accesses, which are precisely determined by control flow, there is no loss in precision moving from
effM to effL. Also, each edge corresponds to exactly one memory access, and so we do not need
to consider the trivial case that no memory access is performed upon a transition. With this
abstraction, the set of states is Σins = L × C, and the set of initial states is Iins = {i} × IC .

Based on these notions, we obtain the following global transition relation Tins:

Tins = {〈〈l, c〉, 〈b, h〉, 〈l′, c′〉〉 | 〈l, l′〉 ∈ E∧b = effL(l, l′)∧c′ = updateC(c, b)∧h = effC(c, b)},

which yields the abstraction Pins of P : Pins = 〈Σins, Iins, E , Tins〉.
One could formally relate Col(Pins) and Col(P) by concretization and abstraction functions

and derive correctness conditions on E and effL, but we omit this here4 and assume that the
control flow graph is the starting point of the analyses presented below, as is common in the
literature [1, 20, 31, 11, 12, 21, 2, 6, 17, 8, 7, 32].

We note, however, that more precise results can be obtained if persistence analysis is carried
out on more precise abstractions of the program’s memory access behavior, which can be obtained
by e.g. trace partitioning [28].

3.2 Abstraction from Locations in Traces
As we can see from Definition 1, to determine whether a block is persistent it suffices to inspect
the cache and memory effects of the trace collecting semantics. We thus further abstract the
trace collecting semantics to a semantics that only maintains traces of cache and memory effects,
forgetting about the intermediate locations. We denote the set of such traces by CacheTraces.

4 We consider the problem of soundly abstracting a program’s memory access behavior to be distinct from the
problem of cache persistence analysis based on such an abstraction, which is the topic of this article. See
Section 4.2 in [10] for a concretization function relating Col(Pins) and Col(P).

LITES

03:8 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

This sticky cache trace collecting semantics5 , StickyCol(Pins) : L → 2CacheTraces, captures
the set of traces of cache states and cache and memory effects that may reach a given program
location. It is defined as the least fixpoint of nextins, defined below, including Init:

StickyCol(Pins) := lfp≤Init nextins,

where Init = λl.(l = i ? IC : ∅), the partial order ≤ denotes the point-wise comparison, i.e,
S ≤ T := ∀l ∈ L : S(l) ⊆ T (l), which induces the join S ∨ T := λl ∈ L.S(l) ∪ T (l), and nextins is
defined as follows:

nextins(S) = λl′ ∈ L.
⋃
〈l,l′〉∈E{t.cec′ | t.c ∈ S(l) ∧ 〈〈l, c〉, e, 〈l′, c′〉〉 ∈ Tins}

Def. of Tins= λl′ ∈ L.
⋃
〈l,l′〉∈E{t.c〈b, h〉c′ | t.c ∈ S(l) ∧ b = effL(l, l′)

∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

The function nextins defined above captures how the set of cache traces reaching location l′ is
recursively determined by the set of cache traces reaching predecessor locations of l′ and the
memory accesses on the edges from the predecessors to l′.

We can relate the sticky cache trace collecting semantics to the corresponding trace collecting
semantics by the concretization function γins:

γins(S) = {〈l0, c0〉e0〈l1, c1〉 . . . en−1〈ln, cn〉 ∈ Traces | ∀i ≤ n : c0e0 . . . ci ∈ S(li)} (4)

It can be shown that Col(Pins) ⊆ γins(StickyCol(Pins)).

4 A Generic Persistence Analysis Framework

The sticky cache trace collecting semantics defined above associates sets of cache traces with
each program point. These traces may be arbitrarily long and there may be infinitely many
associated with a single program point. Thus, an effective analysis needs to further abstract from
this semantics, by representing potentially infinite sets of cache traces in a finite fashion. Before
discussing particular abstractions of cache traces in Section 5, we show in this section how to lift
any such abstraction to a sound persistence analysis in Sections 4.1 and 4.2, and in Section 4.3 we
show how to characterize the relative precision of different persistence analyses.

4.1 Sound Cache Trace Abstractions
Before formally defining cache trace abstractions, let us informally state their components. First,
we need a set of abstract traces, which will be used by the analysis in place of sets of concrete
cache traces. To enable a proof of correctness, these abstract traces need to be related to sets of
concrete traces by a concretization function, which specifies the set of concrete traces represented
by each abstract trace. Usually no information is available about the initial state of the cache.
Thus, the abstract traces need to contain an initial abstract trace that represents all possible
initial cache states. To combine analysis information at control flow joins, a join operator on
abstract traces is required. The core of a cache trace abstraction is the abstract update function,
which captures the effect of a memory access on abstract cache traces. Finally, a persistence
classification function is required to determine whether a memory block is persistent in all concrete
cache traces represented by an abstract trace. These components yield the following definition of
a cache trace abstraction.

5 We call this semantics “sticky” because it sticks sets of traces to each program location.

J. Reineke 03:9

I Definition 2 (Cache Trace Abstraction). A cache trace abstraction is a tuple

A =
〈
C#

A , γA, ÎA,vA,tA, update#
A , classify

#
A

〉
,

consisting of the following components:
1. C#

A , a set of abstract traces,
2. γA : C#

A → 2CacheTraces, a concretization function, which specifies the set of concrete cache
traces represented by each abstract trace,

3. ÎA ∈ C#
A , an abstract initial trace that represents all possible initial cache states,

4. vA, a partial order on C#
A , such that 〈C#

A ,vA〉 is a complete lattice [9],
5. tA, a join operator on abstract traces6,
6. update#

A : C#
A × B → C#

A , an abstract update function,
7. classify#

A : C#
A × B → B, a persistence classification function.

We will introduce requirements on the components of a cache trace abstraction in Theorems 3
and 4 that together imply correct analysis results.

Given a cache trace abstraction A we can define the abstract next operator as follows:

next#
ins,A(Ŝ) = λl′ ∈ L.

⊔
〈l,l′〉∈E

{update#
A(Ŝ(l), b) | b = effL(l, l′)}

Intuitively, the abstract next operator captures how the analysis state at location l′ depends on
the analysis state at predecessor locations and the abstract update function of the cache trace
abstraction.

Based on the abstract initial trace ÎA, we can define the initial analysis state ÎnitA := λl ∈
L.(l = i ? ÎA : ⊥A) analogously to the definition of Init earlier. The abstract sticky trace collecting
semantics ̂StickyColA is then defined as the least fixpoint of next#

ins,A greater than ÎnitA:

̂StickyColA(Pins) = lfpvA

ÎnitA

next#
ins,A, (5)

where vA is lifted to functions as follows: Ŝ vA T̂ := ∀l ∈ L : Ŝ(l) vA T̂ (l).
In order for the abstract sticky trace collecting semantics to be well-defined, we require

the abstract update function to be monotone in the first parameter. This guarantees that the
abstract next#

ins,A operator is monotone. Then, the Knaster-Tarski fixpoint theorem [9], which is
reproduced in Theorem 30 in the appendix, guarantees the existence of a unique least fixpoint.
Note that requiring the abstract update function to be monotone is not a restriction: the best
abstract update function [4] for a given abstraction is always monotone.

If the partial order vA on abstract traces satisfies the ascending chain condition [18], i.e., if
there are no infinite ascending chains of abstract traces, then ̂StickyColA(Pins) can effectively
be computed by fixpoint iteration [3]. In Section 4.2 we recapitulate a variant of the worklist
algorithm [24, 29] to more efficiently compute ̂StickyColA(Pins).

For the analysis results to be correct, the abstract semantics should soundly approximate its
concrete counterpart. This is the case if the cache trace abstraction satisfies these three conditions,
which are formalized in the following theorem: 1. The abstract initial trace needs to represent all
possible concrete initial cache states. 2. The concretization function needs to be monotone in vA.
3. The abstract update function needs to overapproximate the concrete update of cache states.

6 Note that in a complete lattice 〈L,v〉 the partial order v uniquely defines the join operator t. Vice versa, a
given join operator uniquely defines a corresponding partial order. Nevertheless, we explicitly provide both
partial order and join operator here and in the following.

LITES

03:10 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

I Theorem 3 (Soundness of Persistence Analysis?). If the cache trace abstraction A satisfies the
following conditions:

IC ⊆ γA(ÎA), (6)

∀Ŝ, T̂ ∈ C#
A : Ŝ vA T̂ ⇒ γA(Ŝ) ⊆ γA(T̂), (7)

∀Ŝ ∈ C#
A , b ∈ B : {t.c〈b, h〉c′ | t.c ∈ γA(Ŝ) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(update#
A(Ŝ, b)). (8)

Then, its abstract semantics soundly approximates its concrete counterpart:

StickyCol(Pins) ≤ γA(̂StickyColA(Pins)), (9)

where γA is lifted to functions as follows: γA(Ŝ) = λl ∈ L.γA(Ŝ(l)).
The proof to this theorem, and all other proofs that are not provided in the main part of the

article, can be found in the appendix. Whenever a lemma or theorem is not immediately followed
by its proof, the theorem’s name is marked with a ? and serves as a link to the corresponding
proof in the appendix. Similarly, theorems reproduced without proof in the appendix link back to
their proofs in the main part.

As a consequence, the abstract sticky trace collecting semantics also soundly approximates the
trace collecting semantics:

Col(Pins) ⊆ γins(StickyCol(Pins)) ⊆ γins(γA(̂StickyColA(Pins))).

The following theorem gives a condition on the persistence classification function that implies
correct persistence classifications of memory blocks:

I Theorem 4 (Soundness of Persistence Classification?). If the cache trace abstraction A satisfies
conditions (6), (7), (8) from Theorem 3, and classify#

A satisfies

∀Ŝ ∈ C#
A , b ∈ B : classify#

A(Ŝ, b)⇒

∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA(Ŝ) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b), (10)

then classify#
A(Pins, b) := ∀l ∈ L : classify#

A(̂StickyColA(Pins)(l), b) implies the persistence of
memory block b in program Pins.

The condition on classify#
A in the theorem above is based on the NoEviction persistence

notion from (3). It could be replaced by weaker conditions corresponding to the FirstMiss or the
AtMostOneMiss persistence notions from (1) and (2). However, all persistence analyses we are
aware of can be shown correct using the NoEviction notion.

4.2 Computing the Abstract Sticky Trace Collecting Semantics
Algorithm 1 shows how to compute the abstract sticky trace collecting semantics of a program
for a given cache trace abstraction by Kleene iteration. The algorithm computes an increasing
sequence of analysis states Ŝ0 vA Ŝ1 vA . . . starting from the initial analysis state Ŝ0 = ÎnitA,
until a fixpoint is reached. This process is guaranteed to terminate if the complete lattice of
abstract traces satisfies the ascending chain condition [18].

Algorithm 2 shows a worklist algorithm [24, 29]. The goal of worklist algorithms is to be more
efficient than the Kleene iteration by avoiding redundant recomputations of parts of the abstract
next operator next#

ins,A. Specifically, next
#
ins,A involves the application of the abstract update

function to each edge in the control flow graph. However, update#
A(Ŝ(l), b) in (5) will only deliver

a different value than in the previous iteration if Ŝ(l) has changed in the meantime.

J. Reineke 03:11

Algorithm 1: Kleene Iteration
Input :Control Flow Graph GP = 〈L, E, i〉 and Cache Trace Abstraction A
Output :Abstract Sticky Trace Collecting Semantics ̂StickyColA(Pins)

1 Ŝ0 := ÎnitA
2 i := 0
3 repeat
4 Ŝi+1 := ÎnitA tA next#

ins,A(Ŝi)
5 i := i + 1
6 until Ŝi = Ŝi−1

7 return Ŝi

Algorithm 2: Worklist Algorithm
Input :Control flow Graph GP = 〈L, E, i〉 and Cache Trace Abstraction A
Output :Abstract Sticky Trace Collecting Semantics ̂StickyColA(Pins)

1 Ŝ := ÎnitA
2 worklist := {〈i, l〉 ∈ E}
3 while exists 〈l, l′〉 ∈ worklist do
4 remove 〈l, l′〉 from worklist
5 t := update#

A(Ŝ(l), effL(l, l′))
6 if t 6vA Ŝ(l′) then
7 Ŝ(l′) := t tA Ŝ(l′)
8 worklist := worklist ∪ {〈l′, l′′〉 ∈ E}
9 end

10 end
11 return Ŝ

Worklist algorithms maintain a set of edges, stored in the variable worklist algorithm, whose
source locations have been modified, and which thus have to be (re-)evaluated. Initially, only
those edges emanating from the start node i of the control flow graph need to be evaluated. Thus
worklist is initialized to edges emanating from i in line 2 of the algorithm. While there are edges to
(re-)evaluate, the algorithm picks one of these edges, and removes it from worklist (lines 3 and 4).
If the value update#

A(Ŝ(l), effL(l, l′)) computed (line 5) for an edge is not covered (line 6) by the
abstract trace Ŝ(l′) stored for its target location, then Ŝ(l′) is updated (line 7), and all edges
emanating from l′ need to be recomputed, and are thus added to worklist (line 8).

The performance of worklist algorithms depends on the iteration strategy. If the worklist
contains multiple edges, the iteration strategy determines which edge to pick next. Nielson et
al. [24, Chapter 6.1] discuss various iteration strategies and their performance characteristics.

4.3 On the Relative Precision of Different Cache Trace Abstractions
In Section 5 we introduce various basic approaches to persistence analysis as well as ways of
combining basic approaches to obtain more precise combined analyses. In addition to proving
these approaches correct, we also characterize their relative precision, based on the following
notion of precision:

LITES

03:12 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

I Definition 5 (Precision). Given two cache trace abstractions A and B, we say that A is at least
as precise as B, denoted by A � B, if A classifies each block as persistent that B classifies as
persistent:

∀Pins,∀b : classify#
B (Pins, b)⇒ classify#

A(Pins, b).

We say that A is more precise than B, denoted by A � B, if A � B, but B 6� A. If neither A � B
nor vice versa, we say that A and B are incomparable.

Note that � is a non-strict partial order, i.e., it is reflexive, antisymmetric, and transitive. Its
strict counterpart � is a strict partial order, i.e., it is irreflexive, asymmetric, and transitive.

One way of showing A � B is to show that B is a sound approximation of A, just like we
show that individual domains soundly approximate the concrete trace collecting semantics. This
approach yields the following two theorems, which mirror Theorems 3 and 4:

I Theorem 6 (Approximation of Abstract Semantics?). Given two cache trace abstractions A
and B, and a function γB→A : C#

B → C#
A that satisfies the following conditions:

ÎA ⊆ γB→A(ÎB), (11)

∀Ŝ, T̂ ∈ C#
B : Ŝ vB T̂ ⇒ γB→A(Ŝ) vA γB→A(T̂), (12)

∀Ŝ ∈ C#
B , b ∈ B : update#

A(γB→A(Ŝ), b) vA γB→A(update#
B (Ŝ, b)). (13)

Then, B’s abstract semantics soundly approximates its more concrete counterpart:

̂StickyColA(Pins) vA γB→A(̂StickyColB(Pins)), (14)

where γB→A is lifted to the abstract sticky trace collecting semantics as follows:
γB→A(Ŝ) = λl ∈ L.γB→A(Ŝ(l)).

I Theorem 7 (Precision). Given cache trace abstractions A,B and a function γB→A that satisfies
conditions (11), (12), and (13) from Theorem 6, and further

∀Ŝ ∈ C#
B , b ∈ B : classify#

B (Ŝ, b)⇒ classify#
A(γB→A(Ŝ), b), (15)

∀Ŝ, T̂ ∈ C#
A , b ∈ B : Ŝ vA T̂ ⇒

(
classify#

A(T̂ , b)⇒ classify#
A(Ŝ, b)

)
. (16)

Then, A is at least as precise as B, i.e., A � B.

Proof. From Theorem 6 we have that ̂StickyColA(Pins) vA γB→A(̂StickyColB(Pins)), which by
definition is equivalent to ∀l ∈ L : ̂StickyColA(Pins)(l) vA γB→A(̂StickyColB(Pins)(l)).

Assume classify#
B (Pins, b) for an arbitrary b:

classify#
B (Pins, b) ⇔ ∀l ∈ L : classify#

B (̂StickyColB(Pins)(l), b)
(15)⇒ ∀l ∈ L : classify#

A(γB→A(̂StickyColB(Pins)(l)), b)
(∗)⇒ ∀l ∈ L : classify#

A(̂StickyColA(Pins)(l), b)
⇔ classify#

A(Pins, b)

(∗) follows from (16) and the fact that ∀l ∈ L : ̂StickyColA(Pins)(l) vA γB→A(̂StickyColB(Pins)(l)).
J

Proving that a sound cache trace abstraction A is at least as precise as cache trace abstraction B
also proves B’s soundness:

J. Reineke 03:13

I Theorem 8 (Soundness of Persistence Classification). Given two cache trace abstractions A
and B. If A is sound, and A is at least as precise as B, then B is also sound.

Proof. We need to show that classify#
B (Pins, b) := ∀l ∈ L : classify#

B (̂StickyColB(Pins)(l), b)
implies the persistence of memory block b in program Pins.

Assume classify#
B (Pins, b). Because A is at least as precise as B this implies classify#

A(Pins, b).
As A is sound, this implies the persistence of memory block b in program Pins. J

While we give independent soundness proofs for all persistence analyses introduced in Section 5,
in some cases the relative precision results constitute alternative soundness proofs based on the
above theorem.

5 Instantiations of the Analysis Framework: Abstractions of Cache Traces

In this section, we explain and prove correct existing and new abstractions of cache traces for
cache-persistence analysis.

Paraphrasing the soundness condition from Theorem 4, a memory block is persistent, if it is
guaranteed to remain in the cache in case it has been accessed. This suggests that persistence
analyses should maintain information about memory blocks under the condition that the memory
blocks have been accessed. All sound persistence analyses can be seen as maintaining such
information as we will see below.

Before describing particular analysis domains let us characterize under which conditions a
memory block is guaranteed to be cached under LRU replacement. To this end, we first define
the set LRUCacheTraces, which consists of all cache traces that are possible under LRU
replacement, assuming an arbitrary initial cache state and an arbitrary sequence of memory access:

LRUCacheTraces := {c0〈b0, h0〉c1 . . . cn | c0 ∈ C ∧ ∀i, 0 ≤ i < n : bi ∈ B ∧ (17)
ci+1 = updateLRU

C (ci, bi) ∧ hi = effLRU
C (ci, bi)}

The following lemma precisely captures when a memory block is guaranteed to be cached under
LRU replacement:

I Lemma 9 (Persistence under LRU?). Consider an arbitrary cache trace c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈
LRUCacheTraces. Then cn(b0) < k, if |{bi | 0 ≤ i < n}| ≤ k.

In other words, after a block b is accessed, this block is guaranteed to be cached as long as less
than k distinct conflicting blocks have been accessed.

In Section 5.1, we discuss basic abstractions for persistence analysis. These abstractions either
bound the number of conflicting blocks or overapproximate the set of conflicting blocks for each
memory block. As we will see, these two approaches are incomparable, i.e., neither of the two
dominates the other in terms of precision.

In Section 5.2, we then discuss how to combine these basic abstractions in order to obtain more
precise analyses. By exchanging information during analysis time, such combinations go beyond
simply running two incomparable analyses in parallel. As a consequence they may classify memory
blocks as persistent that none of the basic abstractions would be able to classify as persistent on
its own.

5.1 Basic Abstractions
5.1.1 Global-CS: Global May-Conflict Set
If at most k distinct memory blocks may be accessed in a given cache set, then, following Lemma 9,
none of these blocks may be evicted after entering the cache. Thus, the global may-conflict set

LITES

03:14 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

analysis, abbreviated to Global-CS, overapproximates the set of memory blocks that may have
been accessed, and so its abstract traces are sets of memory blocks:

C#
Global-CS := 2B (18)

An abstract trace Ŝ represents all concrete cache traces that may be formed by accessing blocks
from the set Ŝ:7

γGlobal-CS

(
Ŝ
)

:= LRUCacheTraces ∩ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ} (19)

At program start, no accesses have yet been performed, and so the initial abstract trace is the
empty set, which by γGlobal-CS represents exactly cache traces of length 0, in other words, all
initial cache states:

̂IGlobal-CS := ∅ (20)

In order to soundly approximate all memory blocks that may have been accessed, abstract traces
are joined by taking their union:

Ŝ vGlobal-CS T̂ :⇔ Ŝ ⊆ T̂ Ŝ tGlobal-CS T̂ := Ŝ ∪ T̂ (21)

Upon a memory access, the accessed block is simply added to the abstract trace:

update#
Global-CS

(
Ŝ, b
)

:= Ŝ ∪ {b} (22)

Following Lemma 9, as long as at most k memory blocks have been accessed, any block must still
be cached if it has been accessed:

classify#
Global-CS

(
Ŝ, b
)

:= b ∈ Ŝ ⇒ |Ŝ| ≤ k (23)

See Figure 1 for a small example of the Global-CS analysis. The figure shows the fixpoint of the
set of equations determined by the update and join functions of the analysis on the given control
flow graph. At any point in the loop, each of the blocks v, w, and x may have been accessed. In a
cache of associativity 3 or higher these blocks would all be declared as persistent by Global-CS.
On the other hand, while w and x are persistent even in a cache of associativity 2, the analysis is
unable to detect this.

I Theorem 10 (Soundness of Global May-Conflict Set?). Global-CS is a sound persistence analysis.

If the set of memory blocks B is finite, then C#
Global-CS = 2B is also finite, and thus it satisfies

the ascending chain condition [18, 9], which guarantees termination of the fixpoint iteration to
compute the abstract semantics. Following Davey and Priestley [9], we define the length of an
ascending chain as the number of elements of the chain minus one. The length of a chain thus
corresponds to the number of steps a fixpoint iteration takes to traverse it. The longest ascending
chains in C#

Global-CS are of length |B|, starting from ∅ and ending in B.
For readability we limit our exposition to the analysis of fully-associative caches throughout

the article. The extension to set-associative caches is straightforward: Either, a separate set of
blocks should be maintained for each cache set, or the classification function classify#

Global-CS

(
Ŝ, b
)

should count only those blocks mapping to the same cache set as b.

7 We have found two alternative approaches to formalize the cache trace abstractions discussed in this article:
(1) by constraints on the memory access trace, and (2) by constraints on the resulting final cache states of the
traces. The advantage of approach (1) is that, except for the persistence classification function, it can be
proved correct independently of the employed cache replacement policy.

In approach (1) the final cache states are constrained implicitly by considering only cache traces that are
compatible with the cache replacement policy. Proving correct the persistence classification function then
requires invoking a property of LRU, which is condensed in Lemma 9.

J. Reineke 03:15

v

w x

Global-CS : ∅

Global-CS : {v, w, x}

Global-CS : {v, w, x}

Figure 1 Example illustrating Global-CS.

5.1.2 Block-CS: Block-wise May-Conflict Set
As soon as more than k memory blocks are accessed by a program, no block can be classified
persistent by Global-CS. In such cases, many memory blocks may actually still be persistent:
Following Lemma 9, a block is persistent if at most k−1 distinct other blocks are accessed between
any two accesses to the block itself.

The block-wise may-conflict set analysis, abbreviated to Block-CS, maintains a separate conflict
set for each memory block, rather than a single global conflict set:

C#
Block-CS := B → 2B (24)

Then, an abstract trace Ŝ represents all concrete cache traces in which, following the final access
to a block, only blocks from its conflict set may have been accessed:

γBlock-CS

(
Ŝ
)

:= LRUCacheTraces ∩ (25)

{s = c0〈b0, h0〉 . . . cn | ∀i, 0 ≤ i < n : bi ∈ CSi+1(s) ∨ CSi(s) ⊆ Ŝ(bi)},

where CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.
Similarly to the global conflict-set case, the initial abstract trace assigns the empty conflict set to

each block, which by the concretization function above exactly represents all cache traces of length 0.
At joins, the union of the conflict sets is taken in order to overapproximate the conflicting blocks:

̂IBlock-CS := λb ∈ B.∅ (26)

Ŝ vBlock-CS T̂ :⇔ ∀b ∈ B : Ŝ(b) ⊆ T̂ (b) Ŝ tBlock-CS T̂ := λb ∈ B.Ŝ(b) ∪ T̂ (b) (27)

Upon a memory access, the accessed block b is added to the conflict sets of all memory blocks that
may have been accessed, i.e. blocks for which Ŝ(b′) 6= ∅, and crucially b’s conflict set is reset to con-
tain only b. This is where the analysis profits from maintaining separate conflict sets for each block.

update#
Block-CS

(
Ŝ, b
)

:= λb′.


∅ : b′ 6= b ∧ Ŝ(b′) = ∅
{b} : b′ = b

Ŝ(b′) ∪ {b} : b′ 6= b ∧ Ŝ(b′) 6= ∅
(28)

Finally, a block is locally classified as persistent, if its conflict set, which includes the block itself
if it may have been accessed, is guaranteed to contain at most k blocks:

classify#
Block-CS

(
Ŝ, b
)

:= |Ŝ(b)| ≤ k (29)

LITES

03:16 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

v

w x

Block-CS : v, w, x 7→ ∅

Block-CS : v 7→ {v, w, x}, w 7→ {w, x}, x 7→ {w, x}

Block-CS : v 7→ {v, w, x}, w 7→ {w, x}, x 7→ {w, x}

Figure 2 Example illustrating Block-CS.

Figure 2 shows the result of running Block-CS on the same example program as Global-CS in
the previous section. By tracking each block’s conflict set separately – in contrast to Global-CS–
the analysis is able to determine that w and x are persistent in a cache of associativity 2 as their
conflict sets both only contain w and x.

I Theorem 11 (Soundness of Block-wise May-Conflict Set?). Block-CS is a sound persistence
analysis.

If the set of memory blocks B is finite, then C#
Block-CS = B → 2B is also finite, and thus

it satisfies the ascending chain condition [18, 9], which guarantees termination of the fixpoint
iteration to compute the abstract semantics. More precisely, the longest ascending chains are of
length |B|2: Each of the longest ascending chains begins with the bottom element, i.e., the least
element of the complete lattice, λb ∈ B.∅, mapping each block to an empty conflict set, and ends
in the top element of the complete lattice, λb ∈ B.B, mapping each block to the greatest possible
conflict set, consisting of all |B| memory blocks. In each step of any strictly ascending chain, the
conflict set of at least one of the memory blocks needs to grow by at least one block, while none of
the conflict sets may shrink. Thus, any ascending chain may contain at most |B|2 that are greater
than the bottom element.

We note that due to the classification condition in (29), it is not necessary to distinguish
conflict sets that have more than k elements. Thus, for efficiency, implementations of Block-CS
should represent all conflict sets with more than k elements by a single unique representative. This
has no effect on analysis correctness or precision but reduces the maximum length of ascending
chains to (k + 1) · |B|.

I Theorem 12 (Block-CS vs. Global-CS). Block-CS is more precise than Global-CS.

Proof. In Section 5.1.4 we introduce the conditional may analysis, abbreviated to C-May. In the
same section, in Theorems 16 and 17 we show that Block-CS is more precise than C-May, and
that C-May is more precise than Global-CS. As the more-precise relation is transitive these two
statements imply the theorem. J

We note that by Theorem 8 the above two theorems also imply the correctness of Global-CS.

5.1.3 C-Must: Conditional Must Analysis
The block-wise may-conflict set approach may lose precision at joins, as the union of the conflict
sets needs to be taken. Instead of overapproximating the set of conflicting blocks, the conditional

J. Reineke 03:17

must analysis, abbreviated to C-Must, bounds the number of conflicting blocks. Then it is safe to
take the maximum rather than the sum of the bounds at joins.

The conditional must analysis thus maintains a bound on the size of the conflict sets of each
memory block. A bound of 0 is used to encode that a block is guaranteed not to have been
accessed so far, in which case 0 correctly bounds the size of its conflict set. Further, for the
purpose of classifying a memory block as persistent, it is not useful to track the size of a block’s
conflict set beyond k. Therefore, all bounds greater than k are collapsed to ∞:

C#
C-Must := B → {0, 1, . . . , k,∞} (30)

Its concretization is very similar to that of the block-wise may-conflict set analysis. Instead of
overapproximating a block’s conflict set, the size of its conflict set is bounded:

γC-Must

(
Ŝ
)

:= LRUCacheTraces ∩ (31)

{s = c0〈b0, h0〉 . . . cn | ∀i, 0 ≤ i < n : bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi)},

where, as before, CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.
In the initial abstract cache trace, each block is assigned a bound of 0. By the concretization

function this represents all cache traces of length 0, i.e., traces consisting of an arbitrary initial
cache state but no memory accesses.

̂IC-Must := λb ∈ B.0 (32)

The advantage of the conditional must analysis over the block-wise may-conflict set analysis is
that the maximum of the bounds can be taken at joins, rather than their sum:

Ŝ vC-Must T̂ :⇔ ∀b ∈ B : Ŝ(b) ≤ T̂ (b) Ŝ tC-Must T̂ := λb ∈ B.max{Ŝ(b), T̂ (b)} (33)

Upon a memory access, the sizes of the conflict sets of all memory blocks that may have been
accessed, i.e. for which Ŝ(b′) > 0 holds, may increase by 1, while the accessed block’s conflict set
includes only itself, and so its size bound may be reset to 1.

update#
C-Must

(
Ŝ, b
)

:= λb′.


0 : b′ 6= b ∧ Ŝ(b′) = 0
1 : b′ = b

Ŝ(b′) + 1 : b′ 6= b ∧ 0 < Ŝ(b′) < k

∞ : b′ 6= b ∧ k ≤ Ŝ(b′)

(34)

Because the conflict sets are not tracked explicitly, a single memory block may increase the bound
of another block multiple times. In such scenarios the block-wise may-conflict set analysis may be
more precise.

A memory block is locally classified as persistent, if its conflict set is guaranteed to contain
less than k blocks:

classify#
C-Must

(
Ŝ, b
)

:= Ŝ(b) ≤ k (35)

I Theorem 13 (Soundness of Conditional Must?). C-Must is a sound persistence analysis.

If the set of memory blocks B is finite, then C#
C-Must = B → {0, 1, . . . , k,∞} is also finite, and

thus termination of the fixpoint iteration to compute the abstract semantics is guaranteed. The
longest ascending chains are of length (k + 1) · |B|: Each of the longest ascending chains begins
with the bottom element, i.e., the least element of the complete lattice, λb.0. In each step of any
strictly ascending chain, the bound for at least one block needs to grow, while none of the bounds
may shrink. As the bound of each block may grow at most k+ 1 times, no strictly ascending chain
may be of length greater than (k + 1) · |B|.

LITES

03:18 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

x y

Global-CS : {x, y}
Block-CS : x 7→ {x, y}, y 7→ {x, y}
C-Must: x 7→ ∞, y 7→ ∞

(a) C-Must 6� Global-CS and C-Must 6� Block-CS.

v

w x

Global-CS : {v, w, x}
Block-CS : v 7→ {v, w, x}, ...
C-Must: v 7→ 2, ...

Global-CS : {v, w, x}
Block-CS : v 7→ {v}, ...
C-Must: v 7→ 1, ...

(b) Global-CS 6� C-Must and Block-CS 6� C-Must.

Figure 3 Examples illustrating the incomparability of C-Must with Global-CS and Block-CS.

I Theorem 14 (Global-CS vs. Block-CS). C-Must is incomparable to Global-CS and Block-CS.

Proof. Consider the examples in Figures 3a and 3b. Assume a cache with associativity 2. In the
first example, both x and y are classified as persistent by Global-CS and Block-CS, in constrast
to C-Must. This is because C-Must may account for the same conflicting block multiple times.
On the other hand, in the second example, C-Must classifies v as persistent, while Block-CS and
Global-CS do not. Here, unlike Global-CS and Block-CS, C-Must is able to capture that in any
trace either w or x conflicts with v, but never both. J

From the description of the C-Must analysis it may not be obvious why we choose to call it
the conditional must analysis. The reason is that it strongly resembles the original must analysis
by Ferdinand and Wilhelm [12]. The bound on the size of the conflict set of each memory block
corresponds to a bound on a memory block’s age in the final state of a cache trace under the
condition that the block has been accessed at least once.

5.1.4 C-May: Conditional May Analysis
Somewhat surprisingly it is also possible to classify memory blocks as persistent with an analysis
that determines lower rather than upper bounds on the sizes of memory blocks’ conflict sets.
The conditional may analysis, abbreviated to C-May, maintains a lower bound on the size of the
conflict set of each memory block. These lower bounds need to hold only for blocks that have
been accessed at least once during program execution. In this sense the bounds are conditional.
For the purpose of classifying memory blocks as persistent, it is not useful to track the size of a
block’s conflict set beyond k. Therefore, all lower bounds greater than k are collapsed to k+ 1. In
addition, ∞ is used to indicate that a block has never been accessed: in such cases, ∞ is a correct
lower bound on the block’s conflict set on the set of traces on which it has been accessed, which is
empty.

C#
C-May := B → {1, . . . , k, k + 1,∞} (36)

Its concretization is very similar to that of the conditional must analysis. Instead of bounding the
size of a block’s conflict set from above, it is bounded from below:

γC-May

(
Ŝ
)

:= LRUCacheTraces ∩ (37)

{s = c0〈b0, h0〉 . . . cn | ∀i : 0 ≤ i < n : bi ∈ CSi+1(s) ∨ |CSi(s)| ≥ Ŝ(bi)},

where, as before, CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.

J. Reineke 03:19

In the initial abstract cache trace, each block is assigned a bound of ∞. By the concretization
function this represents all cache traces of length 0, i.e., traces consisting of an arbitrary initial
cache state but no memory accesses.

ÎC-May := λb ∈ B.∞ (38)

At joins the minimum of the lower bounds needs to be taken for each memory block:

Ŝ vC-May T̂ :⇔ ∀b ∈ B : Ŝ(b) ≥ T̂ (b) Ŝ tC-May T̂ := λb ∈ B.min{Ŝ(b), T̂ (b)} (39)

Upon an access, the accessed block’s conflict set shrinks to size 1 (case 1 in (40)). Other block’s
conflict sets may or may not grow (cases 2 and 3 in (40)). It is safe to increase the lower bound
for memory block b′, if the previous lower bound for the accessed block b was at least as high (case
3 below) as its own lower bound, which can be understood by the following case distinction:
1. Either b was actually contained in b′’s conflict set before the access. Then b’s conflict set is a

strict subset of b′’s conflict set, and so Ŝ(b) + 1 ≥ Ŝ(b′) + 1 is a lower bound on the size of b′’s
conflict set.

2. Or b was not contained in b′’s conflict set before the access. Then b′’s conflict set grows by 1
due to the access to b and thus Ŝ(b′) + 1 is a correct lower bound following the access.

Lower bounds beyond k + 1 are not distinguished (case 4 in (40)), and finally, blocks that are
guaranteed not to have been accessed yet retain a lower bound of ∞:

update#
C-May

(
Ŝ, b
)

:= λb′.



1 : b′ = b

Ŝ(b′) : b′ 6= b ∧ Ŝ(b) < Ŝ(b′)
Ŝ(b′) + 1 : b′ 6= b ∧ Ŝ(b) ≥ Ŝ(b′) ∧ Ŝ(b′) ≤ k
k + 1 : b′ 6= b ∧ Ŝ(b) ≥ Ŝ(b′) ∧ Ŝ(b′) = k + 1
∞ : b′ 6= b ∧ Ŝ(b′) =∞

(40)

Maybe surprisingly8, it is possible to classify memory blocks as persistent using the lower bounds
derived by the conditional may analysis. The intuition behind the classification function is the
following: In any concrete cache trace, the conflict sets of the i most-recently-used memory blocks
have sizes 1 to i. So only blocks with a lower bound less than or equal to i may be among these i
most-recently-used blocks. If there are at most i ≤ k memory blocks with a lower bound less than
or equal to i, then at most i blocks compete for the first i locations in the cache. So all of these
blocks must be cached if they have previously been accessed:

classify#
C-May

(
Ŝ, b
)

:= (Ŝ(b) =∞) ∨ (∃i ≤ k : |Ci(Ŝ, b)| < i), (41)

where Ci(Ŝ, b) := {b′ ∈ B | b′ 6= b ∧ Ŝ(b′) ≤ i} is the set of memory blocks with a lower bound less
than or equal to i other than block b. A detailed proof of correctness is given in the proof of the
following theorem:

I Theorem 15 (Soundness of Conditional May?). C-May is a sound persistence analysis.

If the set of memory blocks B is finite, then C#
C-May = B → {1, . . . , k, k + 1,∞} is also finite,

and thus termination of the fixpoint iteration to compute the abstract semantics is guaranteed.
The longest ascending chains are of length (k+ 1) · |B|, which can be seen following the same train
of thought as in the case of C-Must.

8 Classifying a memory block as persistent following Lemma 9 requires deriving an upper bound on the size of a
block’s conflict set. Thus it may be surprising that the lower bounds on blocks’ conflict sets determined by
C-May can be used for this purpose.

LITES

03:20 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

v

w

x

w

C-May: v 7→ ∞, w 7→ ∞, x 7→ ∞
Global-CS : ∅

C-May: v 7→ 1, w 7→ ∞, x 7→ ∞
Global-CS : {v}

C-May: v 7→ 2, w 7→ 1, x 7→ ∞
Global-CS : {v, w}

C-May: v 7→ 3, w 7→ 1, x 7→ 1
Global-CS : {v, w, x}

C-May: v 7→ 3, w 7→ 1, x 7→ 2
Global-CS : {v, w, x}

(a) Global-CS 6� C-May.

v

w

x

Block-CS : w 7→ ∅, x 7→ ∅, ...
C-May: v 7→ ∞, w 7→ ∞, x 7→ ∞

Block-CS : w 7→ {w, x}, x 7→ {x}, ...
C-May: v 7→ 1, w 7→ 2, x 7→ 1

Block-CS : w 7→ {w}, x 7→ {w, x}, ...
C-May: v 7→ 2, w 7→ 1, x 7→ 2

(b) C-May 6� Block-CS.

Figure 4 Examples illustrating that Global-CS 6� C-May and C-May 6� Block-CS.

Let us consider two example programs and their analysis using C-May in Figure 4. On the left,
in Figure 4a, C-May is able to classify both w and x as persistent in a cache of associativity 2,
while none of the blocks are determined persistent by Global-CS. For C-May, the figure shows the
lower bounds on each block’s conflict set at each program point. There are at most two blocks
with a lower bound of 2 at any program point and thus these blocks are guaranteed to be cached
if they have been accessed. On the right, in Figure 4b, C-May is unable to classify w and x as
persistent in a cache of associativity 2, while Block-CS is. This is because all three blocks v, w,
and x have a lower bound less than or equal to 2 within the loop.

I Theorem 16 (C-May vs. Global-CS?). C-May is more precise than Global-CS.

I Theorem 17 (Block-CS vs. C-May?). Block-CS is more precise than C-May.

By Theorem 8, Theorems 11 and 17 also imply the correctness of C-May. Also, due to the
transitivity of the more-precise relation, Theorems 16 and 17 together imply Theorem 12, which
states that Block-CS is more precise than Global-CS.

5.2 Combinations of Basic Abstractions
We have seen four basic cache persistence abstractions: Block-CS, C-May, Global-CS, and C-Must.
Among these, Block-CS is more precise than C-May, which in turn is more precise than Global-CS.
On the other hand, C-Must is incomparable to Block-CS, C-May, and Global-CS.

To obtain more precise analysis results, it may be beneficial to combine incomparable cache
trace abstractions with each other. In Section 5.2.1 we show how to construct the direct product
of two arbitrary abstractions and show that the direct product of two incomparable abstractions
A and B is more precise than A and B individually.

To further increase analysis precision, Section 5.2.2 introduces two ways to exchange information
between two abstractions A and B, which may yield cache trace abstractions that are more precise
than the direct product of A and B. In the remainder of the section, we then show how to exploit

J. Reineke 03:21

these two ways of information exchange to build more precise analyses for various combinations of
basic analyses.

5.2.1 Direct Product of Cache Trace Abstractions
The direct product of two persistence analyses corresponds to running the two analyses in parallel
and classifying a block as persistent if at least one of the two analyses is able to classify the block
persistent. Formally, it is defined as follows:

I Definition 18 (Direct Product). The direct product A×B of two persistence analyses A and B
is the tuple A×B =

〈
C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , update

#
A×B , classify

#
A×B

〉
with

C#
A×B := C#

A × C
#
B ,

γA×B(ŜA, ŜB) := γA(ŜA) ∩ γB(ŜB),

ÎA×B := 〈ÎA, ÎB〉,

〈ŜA, ŜB〉 vA×B 〈T̂A, T̂B〉 :⇔ ŜA vA T̂A ∧ ŜB vB T̂B ,

〈ŜA, ŜB〉 tA×B 〈T̂A, T̂B〉 := 〈ŜA tA T̂A, ŜB tB T̂B〉,

update#
A×B(〈ŜA, ŜB〉, b) := 〈update#

A(ŜA, b), update#
B (ŜB , b)〉,

classify#
A×B(〈ŜA, ŜB〉, b) := classify#

A(ŜA, b) ∨ classify#
B (ŜB , b).

I Theorem 19 (Soundness of Direct Product?). The direct product A×B of two sound persistence
analyses A and B that satisfy (6), (7), (8), and (10) is a sound persistence analysis.

In the proof in the appendix, we show that A×B satisfies the conditions of Theorems 3 and 4,
i.e., (6), (7), (8), and (10), and is thus a sound persistence abstraction.

We note that if both A and B satisfy the ascending chain condition, then so does A×B. Thus,
persistence analysis with a direct product of two analyses terminates if both constituent analyses
are guaranteed to terminate. Moreover, if the lengths of the ascending chains of A and B are
bounded by lA and lB , then the length of A×B’s longest ascending chains is bounded by lA + lB .

I Theorem 20 (Precision of Direct Product). The direct product A×B of two persistence analyses
A and B is at least as precise as A and B, i.e., A×B � A and A×B � B.

Proof. This follows from the fact that the two constituents of A×B exactly mirror A and B,
respectively, and from the fact that

classify#
A(ŜA, b)⇒ classify#

A×B(〈ŜA, ŜB〉, b) = classify#
A(ŜA, b) ∨ classify#

B (ŜB , b),

classify#
B (ŜB , b)⇒ classify#

A×B(〈ŜA, ŜB〉, b) = classify#
A(ŜA, b) ∨ classify#

B (ŜB , b). J

It is not useful to construct the direct product of two analyses A and B if A � B, as the result
is not going to be more precise than A. If, on the other hand, A and B are incomparable, their
direct product will be more precise than both A and B:

I Corollary 21 (Precision of Direct Product). The direct product A×B of two incomparable
persistence analyses A and B is more precise than A and B, i.e., A×B � A and A×B � B.

Proof. From Theorem 20 we already know that A×B � A and A×B � B. Assume for a
contradiction that B � A×B. By transitivity of � this would imply B � A, which contradicts
the assumption that A and B are incomparable. Thus B 6� A×B and so A×B � B. The fact
that A×B � A can be shown analogously. J

LITES

03:22 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

5.2.2 Domain Cooperation
To increase precision, it is sometimes possible for different analyses in a product to exchange
information with each other. Here, we distinguish two ways in which such an information exchange
can take place between two analyses A and B:

State reduction: the analysis state of A is refined using the analysis state of B.
Cooperative update: The abstract update function for A takes into account not only A’s analysis
state but also B’s to compute a more precise successor state.

Below we state correctness conditions for state and update reductions.

I Definition 22 (State Reduction). Let A and B be persistence analyses. A reduction operator
for A in the context of B is a function red : C#

A × C
#
B → C#

A that is reductive and that preserves
concretizations, i.e., for all ŜA ∈ C#

A , ŜB ∈ C
#
B :

red(ŜA, ŜB) vA ŜA, (42)

γA(red(ŜA, ŜB)) ∩ γB(ŜB) = γA(ŜA) ∩ γB(ŜB). (43)

A reduction operator can be used as follows to obtain a potentially more precise reduced
update for the product of A and B:

I Theorem 23 (State Reduction?). Let A and B be sound persistence analyses that satisfy (6),
(7), (8), and (10), and let red be a reduction operator for A in the context of B. Let the reduced
update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (red(update#
A(ŜA, b), update#

B (ŜB , b)), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis that is at least as precise as A×B, i.e., A×B′ � A×B.

Sometimes, it is not possible to come up with a state reduction to transfer information between
two domains A and B, but it is still possible to profit from the information in B during the update
of A. We call such an update cooperative:

I Definition 24 (Cooperative Update). Let A and B be two persistence analyses. A cooperative
update for A in the context of B is a function coop-upd : (C#

A × C
#
B)× B → C#

A , such that:

∀〈ŜA, ŜB〉 ∈ C#
A × C

#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA(ŜA) ∩ γB(ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(coop-upd(〈ŜA, ŜB〉, b)) (44)

Given a cooperative update, it is straightforward to define the following reduced update for
the product of A and B:

I Theorem 25 (Cooperative Update). Let A and B be sound persistence analyses that satisfy (6),
(7), (8), and (10), and let coop-upd be a cooperative update function for A in the context of B.
Let the reduced update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (coop-upd(〈ŜA, ŜB〉, b), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis.

J. Reineke 03:23

Proof. We know that A×B is a sound persistence analysis from Theorem 19. The only condition
from Theorem 4 that involves the update function is (8). Thus all conditions but (8) are fulfilled
by A×B′ as they are fulfilled by A×B.

For (8), we need to show:

∀〈ŜA, ŜB〉 ∈ C#
A×B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA×B(ŜA, ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA×B(red-upd(〈ŜA, ŜB〉, b)) (45)

= γA(coop-upd(〈ŜA, ŜB〉, b)) ∩ γB(update#
B (ŜB , b))

By the soundness of B and by (44) we have

∀ŜA ∈ C#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γB(ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γB(update#
B (ŜB , b)) (46)

∀〈ŜA, ŜB〉 ∈ C#
A × C

#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA×B(ŜA, ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(coop-upd(〈ŜA, ŜB〉, b)) (47)

Together, (46) and (47) imply (45), and thus (8). J

Given the definition of a cooperative update in Definition 24 it is not possible to conclude that
the product A×B′ from Theorem 25 is more precise than A×B . However, it is relatively easy to
see that this is indeed the case if coop-upd(〈ŜA, ŜB〉, b) vA update#

A(ŜA, b) for all ŜA, ŜB , and b.

5.2.3 State Reduction between C-Must and Block-CS
In terms of precision, the block-wise may-conflict set and the conditional must analyses are
incomparable, as the former has more precise updates, while the latter has more precise joins.
Here we show how to exchange information between the two analyses, by a state reduction, to
achieve higher precision than the direct product of the two analyses would.

How can information be exchanged between the two domains? Clearly, the size of the may-
conflict set of a block is also a bound on the number of conflicting blocks. Thus, we introduce the
following reduction operation:

reduceC-Must×Block-CS

(
ŜC-Must, ŜBlock-CS

)
:= λb ∈ B.min

{
ŜC-Must(b), |ŜBlock-CS(b)|

}
(48)

I Theorem 26 (Soundness of the State Reduction between C-Must and Block-CS). The function
reduceC-Must×Block-CS is a reduction operator for C-Must in the context of Block-CS.

Proof. reduceC-Must×Block-CS is reductive, as min
{
ŜC-Must(b), |ŜBlock-CS(b)|

}
≤ ŜC-Must(b).

It remains to show that for all Ŝ1 ∈ C#
C-Must, Ŝ2 ∈ C#

Block-CS:

γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
= γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

As reduceC-Must×Block-CS is reductive and γC-Must×Block-CS is monotone, we have
γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
⊇ γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

LITES

03:24 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

v

w

w

x y

C-Must: v 7→ 4, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

C-Must: v 7→ 1, . . .
Block-CS : v 7→ {v}, . . .

C-Must: v 7→ 2, . . .
Block-CS : x 7→ 1, v 7→ {v, w}, . . .

C-Must: v 7→ 3, . . .
Block-CS : v 7→ {v, w}, . . .

C-Must: v 7→ 4, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

(a) C-Must× Block-CS without domain cooperation.

v

w

w

x y

C-Must: v 7→ 3, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

C-Must: v 7→ 1, . . .
Block-CS : v 7→ {v}, . . .

C-Must: v 7→ 2, . . .
Block-CS : x 7→ 1, v 7→ {v, w}, . . .

C-Must: v 7→ 2 = |{v, w}| , . . .
Block-CS : v 7→ {v, w} , . . .

C-Must: v 7→ 3, . . .
Block-CS : v 7→ {v, w, x, y}, . . .

(b) C-Must× Block-CS with state reduction.

Figure 5 Example illustrating C-Must× Block-CS.

To show that
γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
⊆ γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
, assume for a

contradiction that there is a trace s = c0〈b0, h0〉 . . . cn in γC-Must×Block-CS

(
Ŝ1, Ŝ2

)
that is not in

γC-Must×Block-CS

(
reduceC-Must×Block-CS

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

Then, there must be an i, 0 ≤ i < n, such that |CSi| ≤ Ŝ1(bi) and CSi ⊆ Ŝ2(bi), but |CSi| 6≤
min{Ŝ1(bi), |Ŝ2(bi)|}. However, observe that CSi ⊆ Ŝ2(bi) implies that |CSi| ≤ |Ŝ2(bi)|, and so
|CSi| ≤ min{Ŝ1(bi), |Ŝ2(bi)|}, which yields a contradiction. J

We have seen previously that C-Must and Block-CS are incomparable in terms of precision.
See Figure 5 for an example where the state reduction described above yields a more precise
analysis result than is possible with any of the two analyses in isolation. In the example, v is
persistent in a cache of associativity 3, which neither C-Must nor Block-CS are able to prove on
their own. The example consists of a loop whose body contains two phases, each of which can only
be handled precisely by one of the two domains. In the first phase of the loop body, containing
the two accesses to w, Block-CS is more precise, as it does not double count these two accesses
in v’s conflict set. In the second phase of the loop body, C-Must is more precise as it accounts
for a single conflict due to the potential accesses to x and y, whereas Block-CS accounts for two
conflicts. State reduction enables C-Must to profit from the more precise Block-CS analysis in
the phase of the loop body, reducing the bound for v to 2, as highlighted in the figure on the
right. Due to this reduction, C-Must is then able to show that v is indeed persistent in a cache of
associativity 3.

5.2.4 State Reduction between C-Must and C-May
Similarly to the information exchange between C-Must and Block-CS, information can also be
exchanged between C-Must and C-May.

J. Reineke 03:25

The idea of the reduction is the following: C-May and C-Must provide lower and upper bounds
on the ages of memory blocks that have been accessed. A memory block b’s conflict set may only
include another block c, if c’s lower bound is less than b’s upper bound. Thus b’s conflict set
must be a subset of {b} ∪ {c ∈ B | c 6= b ∧ ŜC-May(c) < ŜC-Must(b)} and so its size is bounded by
|{c ∈ B | c 6= b ∧ ŜC-May(c) < ŜC-Must(b)}|+ 1.

Based on this insight, we introduce the following reduction operation:

reduceC-Must×C-May

(
ŜC-Must, ŜC-May

)
:=

λb ∈ B.min
{
ŜC-Must(b), |{c ∈ B | c 6= b ∧ ŜC-May(c) < ŜC-Must(b)}|+ 1

}
(49)

I Theorem 27 (Soundness of the State Reduction between C-Must and C-May?). The operator
reduceC-Must×C-May is a reduction operator for C-Must in the context of C-May.

On the example program given in Figure 5 the state reduction between C-Must and C-May
yields the same analysis result as the state reduction between C-Must and Block-CS given in the
previous section.

5.2.5 Must Analysis
Recall the update of the C-Must analysis in (34). The bound on the size of a block’s conflict set
is increased by 1 upon any access to a different block (case 3 in (34)). At first sight it may seem
that the update could be improved. It is tempting to take into account the size of the conflict
set of the accessed block, as we did in case of C-May. Unfortunately, any such attempt would
be incorrect: This is because the size bounds determined by C-Must are conditional, i.e., they
only hold given that a block has been accessed at all. Given this definition of C-Must, it is always
possible that an access is the very first access to the given block, which would contribute to the
conflict sets of all other blocks, which have been accessed before, necessitating the update as it is.

In order to improve the update of C-Must, unconditional bounds on the sizes of blocks’ conflict
sets are required. Such unconditional bounds can be determined using the original LRU must
analysis by Ferdinand and Wilhelm [12]. In this section, we recapitulate this must analysis, which
we simply call Must. In order to use it in a cooperative update of C-Must in the context of Must
in Section 5.2.6, we formalize the Must analysis as a persistence analysis. In particular, we provide
a concretization function that expresses the set of cache traces represented by a Must analysis
state. As a stand-alone persistence analysis, Must is not useful at all: no memory block can be
classified as persistent by a stand-alone Must analysis. Its utility in persistence analysis stems
from the fact that it may be used to improve the precision of C-Must via a cooperative update,
which is provided in the following section.

Must analysis maintains an upper bound on the ages of memory blocks, where age bounds
greater than k are collapsed to ∞:

C#
Must := B → {1, . . . , k,∞} (50)

The original formalization of Must in [12] is not based on a trace collecting semantics. There,
an abstract state corresponds to a set of concrete cache states. To fit into our persistence
analysis framework, we here give an alternative formalization that captures the set of cache traces
represented by an abstract cache trace9. The resulting concretization is quite similar to the one

9 We use the term abstract trace rather than abstract state as we interpret it to represent a set of cache traces.

LITES

03:26 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

for C-Must. The difference is that C#
Must(b) must be ∞ for blocks that have not been accessed:

γMust

(
Ŝ
)

:= LRUCacheTraces ∩ (51)

{s = c0〈b0, h0〉 . . . cn | (∀b ∈ B : (∀i, 0 ≤ i < n : bi 6= b)⇒ Ŝ(b) =∞)

∧ ∀i, 0 ≤ i < n : bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi)},

where, as before, CSi(c0〈b0, h0〉 . . . cn) := {bj | i ≤ j < n}.
The concretization function given in the original formalization by Ferdinand and Wilhelm [12]

is an abstraction of the one given above. It captures the final cache states of the cache traces
determined by γMust

(
Ŝ
)
, which is sufficient to classify memory accesses as guaranteed hits.

In the initial abstract cache trace, each block is assigned a bound of ∞. By the concretization
function this represents all possible cache traces, in particular those of length 0, i.e., traces
consisting of an arbitrary initial cache state:

ÎMust := λb ∈ B.∞ (52)

As in C-Must the maximum of the bounds is taken at joins:

Ŝ vMust T̂ :⇔ ∀b ∈ B : Ŝ(b) ≤ T̂ (b) Ŝ tMust T̂ := λb ∈ B.max{Ŝ(b), T̂ (b)} (53)

Upon a memory access, the accessed block’s bound is reduced to 1, as its conflict set will only
contain the block itself (case 1, below). Other blocks’ bounds are increased only if the accessed
block’s bound is greater than their bound (cases 2 and 3). This is sound because the bounds are
unconditional in the must analysis.

update#
Must

(
Ŝ, b
)

:= λb′.


1 : b′ = b

Ŝ(b′) : b′ 6= b ∧ Ŝ(b) ≤ Ŝ(b′)
Ŝ(b′) + 1 : b′ 6= b ∧ Ŝ(b) > Ŝ(b′) ∧ Ŝ(b′) < k

∞ : b′ 6= b ∧ Ŝ(b) > Ŝ(b′) ∧ Ŝ(b′) = k

(54)

For completeness, we provide the following classification function. A memory block is locally
classified as persistent, if its bound is less than or equal to k, which implies that the block must
be cached:

classify#
Must

(
Ŝ, b
)

:= Ŝ(b) ≤ k (55)

As the bounds are initialized to ∞, prior to the first access to a block, no block can be classified
as persistent. This is why Must is not useful as a stand-alone persistence analysis.

I Theorem 28 (Soundness of Must Analysis?). Must is a sound persistence analysis.

5.2.6 Cooperative Update for C-Must in the Context of Must
The unconditional bounds computed by Must can be used to improve the update of C-Must. A
cooperative update for C-Must in the context of Must is given below:

coop-updC-Must×Must

(
Ŝ, ŜMust, b

)
:= λb′.



0 : b′ 6= b ∧ Ŝ(b′) = 0
1 : b′ = b

Ŝ(b′) : b′ 6= b ∧ ŜMust(b) ≤ Ŝ(b′)
Ŝ(b′) + 1 : b′ 6= b ∧ ŜMust(b) > Ŝ(b′) ∧ 0 < Ŝ(b′) < k

∞ : b′ 6= b ∧ ŜMust(b) > Ŝ(b′) ∧ k ≤ Ŝ(b′)
(56)

J. Reineke 03:27

v

x

x

C-Must: v 7→ 3, x 7→ 1

C-Must: v 7→ 1, x 7→ 2

C-Must: v 7→ 2, x 7→ 1

C-Must: v 7→ 3, x 7→ 1

(a) C-Must without cooperation with Must.

v

x

x

C-Must: v 7→ 2, x 7→ 1
Must: . . .

C-Must: v 7→ 1, x 7→ 2
Must: . . .

C-Must: v 7→ 2, x 7→ 1
Must: x 7→ 1 , . . .

C-Must: v 7→ 2 , x 7→ 1
Must: . . .

(b) C-Must×Must with cooperative update.

Figure 6 Example illustrating C-Must×Must.

The update differs from the stand-alone update for C-Must in the third case, where the bound
for b′ is not increased even though another block is accessed. The correctness of all other cases
follows from the correctness of the original update for C-Must. Let’s consider the third case more
carefully. It occurs under the condition that b′ 6= b ∧ ŜMust(b) ≤ Ŝ(b′). If Ŝ(b′) = ∞ then the
update is trivially correct. So assume Ŝ(b′) ≤ k and thus also ŜMust(b) ≤ k. In this case, the
correctness of the update can be understood by the following case distinction:
1. Either b was actually contained in b′’s conflict set before the access. Then b′’s conflict set does

not grow due to the access to b and keeping the previous bound on its size is correct.
2. Or b was not contained b′’s conflict set before the access. Crucially, b must have been accessed

before, as ŜMust(b) ≤ k, and so b’s conflict set must contain b′’s conflict set. Further, b’s
conflict set additionally contains b itself. As a consequence, b’s conflict set before the access
contains b′’s conflict set after the access, and thus its bound, ŜMust(b) ≤ Ŝ(b′) is a correct
bound for b′’s conflict set after the access.

A more formal and detailed correctness argument is given in the proof of the following theorem:

I Theorem 29 (Soundness of Cooperative Update?). The function coop-updC-Must×Must is a coop-
erative update for C-Must in the context of Must.

Let’s consider a small example illustrating the benefit of the cooperative update for C-Must in
the context of Must. Figures 6a and 6b show the analysis results of C-Must with and without
cooperation with Must on a loop containing a conditional. Without cooperation, C-Must is unable
to prove that v is persistent in a cache of associativity 2. This is because, the two accesses to x
both cause the bound on the size of v’s conflict set to increase by 1, even though only the first
access to x may actually increase its size. In contrast, C-Must×Must with a cooperative update is
able to prove that v is persistent in a cache of associativity 2, as illustrated in Figure 6b. Here, we
only show the relevant information that Must provides for the cooperative update: Right before
the potential second access to x in the loop, Must determines an unconditional bound on the size
of x’s conflict set of 1. This information is then exploited in the cooperative update to determine
that this second access may not increase the size of v’s conflict set, and so 2 is a correct bound on
v’s conflict set at the end of the loop body.

LITES

03:28 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

5.3 Summary: The Landscape of Persistence Abstractions
In this section, we summarize the results obtained in Sections 5.1 and 5.2. In Section 5.1 we have
seen abstractions following these two general approaches to persistence analysis:
1. Overapproximating the set of conflicting blocks
2. Overapproximating the number of conflicting blocks

Global-CS, C-May, and Block-CS all follow the first of these two approaches. Further, these
three abstractions are totally ordered in terms of precision, with Block-CS strictly dominating
C-May, and C-May strictly dominating Global-CS.

The only basic abstraction following the second approach is C-Must, which is incomparable to
Global-CS, C-May, and Block-CS, i.e., there are cases where C-Must is more precise than Block-CS,
but there are also cases where even Global-CS is more precise than C-Must.

In Section 5.2 we have then seen how to combine two incomparable basic abstractions into their
so-called direct product, which is more precise than its constituents. To further increase analysis
precision, we have also introduced two general mechanisms to exchange information between two
abstractions:

state reduction – where the analysis state of one abstraction is refined based on the analysis
state of another abstraction, and
update reduction – where the update of one abstraction takes into account information provided
by another abstraction.

Then, we have seen three concrete instantiations of these mechanisms: state reductions between
C-Must and Block-CS and between C-Must and C-May, as well as an update reduction between
C-Must and a regular must cache analysis, which we simply call Must here. To facilitate the
update reduction with C-Must, we have formalized Must as a persistence analysis, i.e., as an
abstraction of sets of cache traces rather than sets of cache states.

We note that a state reduction between C-Must and Global-CS could be defined easily, similarly
to the state reduction between C-Must and Block-CS. We do not provide this reduction here,
because we believe that it would have little practical value: We have shown C-May to strictly
dominate Global-CS, while it is hardly more expensive in terms of analysis time and memory
consumption than Global-CS.

Figure 7 illustrates the landscape of persistence abstractions formalized in this article in the
form of a Hasse diagram. Two comparable abstractions are connected by an edge, with the
more precise abstraction drawn higher up in the diagram. Transitive relations are omitted for
readability. Each abstraction is annotated with the corresponding theorem that shows its soundness.
Similarly, relations between abstractions that are not the consequence of a product constructions
are annotated with the corresponding dominance theorem. We also annotate abstractions with
papers from the literature, which are based on the given abstraction. We discuss the related work
in more detail in the following section.

6 Related Work and How It Maps Into the Landscape of Persistence
Abstractions

In 1994, Mueller et al. [20, 1] introduced the “first miss” persistence notion and a corresponding
persistence analysis for direct-mapped instruction caches. Later they extended their analysis to
set-associative data [31] and instruction caches [21] with LRU replacement. The basic idea behind
their analysis for set-associative caches is to collect all conflicting blocks in a given cache set within
a loop. If all conflicting blocks fit into the cache together, then these blocks are classified as “first
miss”. This corresponds to Global-CS applied separately to each loop in the program.

J. Reineke 03:29

C-Must
Thm. 13
[11, 12]

C-Must×C-May
Thm. 27

[6, 8, 7, 32]
C-Must×Must

Thm. 29

C-Must×Block-CS
Thm. 26
[7, 32]

Block-CS
Thm. 11
[17, 7]

C-Must×Must×C-May
Thms. 29+27

[23, 22]

C-Must×Must×Block-CS
Thms. 29+26

C-May
Thm. 15

Global-CS
Thm. 10

[1, 20, 31, 21, 8, 7]

(Must)
Thm. 28
[11, 12]

Thm. 16

Thm. 17

Figure 7 Hasse diagram illustrating the relative precision of different persistence abstractions. The
Must domain is in parentheses because it is not suitable to prove persistence of memory blocks on its own,
but it may be useful in conjunction with other domains.

Ferdinand andWilhelm [11, 12] introduced the “no eviction” persistence notion and a persistence
analysis for set-associative caches. They characterized their analysis [12] as computing “themaximal
position (relative age) for all memory blocks that may be in the cache.” Intuitively, their analysis
thus corresponds to the C-Must analysis defined in this article. However, while their analysis
employs the same join function as in the C-Must analysis, its update function differs; it is identical
to the update function of the Must analysis: upon an access to memory block b only the ages
of younger blocks are incremented. Unfortunately, this is unsound. To our knowledge, Hugues
Cassé was the first to point this out. Given the concretization function of C-Must defined in this
article, it is apparent why the update function is incorrect: C-Must bounds the age (the size of its
conflict set) of a block only in case the block has previously been accessed. If the accessed block
has not been accessed previously, it increases the ages of all other previously accessed blocks (the
sizes of their conflict sets, respectively). Thus, without any additional information, upon an access
to block b, a sound update function has to increase the bounds of all blocks, other than b, that
have potentially been accessed before. The original Must analysis may provide such additional
information, as it provides unconditional bounds on the maximum ages of blocks. The cooperative
update for C-Must in the context of Must defined in Section 5.2.6 shows how to exploit this
information for a more precise update of C-Must.

Aiming to solve the soundness issue of Ferdinand’s analysis, Cullmann [6] proposed an analysis
combining Ferdinand’s persistence analysis with a slightly modified version of the may analysis
from [12]. This combination corresponds to the product of C-Must and C-May, however with a
less precise reduction than the one given in (49).

In a different approach to fix the soundness issues of the original persistence analysis, Huynh et
al. [17] proposed a scope-aware persistence analysis for set-associative data caches. Their analysis
tracks a younger set for each memory block, which corresponds to the Block-CS analysis in this
article. To increase precision in the analysis of data caches, temporal scopes are used to distinguish
different loop iterations in which array accesses in a loop touch different memory blocks.

LITES

03:30 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

Listing 2 Input- and loop-iteration-dependent data accesses.
for (int i=0; i<N; i++) {

k = read_sensor ();
sum[k] = sum[k] + arr[i];

}

Later, Cullmann [8] proposed “set-wise conflict counting”, which corresponds to Global-CS in
this article and is similar to Mueller et al.’s approach. In his dissertation [7], Cullmann discusses
two further analyses:
1. Element-wise conflict counting, which corresponds to the younger-set analysis by Huynh et

al. [17] and Block-CS in this article.
2. Age-tracking conflict counting, which corresponds to the direct product of C-Must and Block-CS

in this article, however, without the state reduction given in (48).

Nagar and Srikant [23, 22] show how to improve the precision of must, may, and persistence
analysis by exchanging information between the analyses via what we call reductions in this
article. Along the way they also identify and correct the soundness issue of Ferdinand’s persistence
analysis. In case of persistence analysis, their approach corresponds to C-Must×Must× C-May
with the update and state reductions given in Theorems 29 and 27.

Similarly to Nagar and Srikant, Zhang and Koutsoukos [32] show how to combine C-Must
and C-May using an update reduction. Their update improves upon Cullmann’s update in the
combination of C-Must and C-May, which only uses the information from C-May to exclude
the eviction of memory blocks from C-Must. Zhang and Koutsoukos also note that Block-CS is
incomparable to C-Must×C-May. They propose to combine C-Must×C-May and Block-CS in a
single analysis to achieve higher precision than any of its constituents. As Block-CS dominates
C-May, the resulting analysis is equivalent to C-Must × Block-CS in our framework (with the
appropriate state reduction), and one might wonder why it could be useful to run the two analyses
together with C-May. However, Zhang and Koutsoukos show how to derive “younger sets” from
C-Must× C-May. Whenever the derived younger set is equal to the one maintained by Block-CS
it is not necessary to explicitly represent the younger set in Block-CS. In this way, the memory
consumption of the analysis can be significantly reduced.

Ballabriga and Cassé [2] note that different blocks can be persistent within different scopes.
For example, while an inner loop may entirely fit into the cache, its enclosing loop might not. In
such a case, a sound persistence analysis would not be able to declare any of the loop’s memory
blocks as persistent. Still, during any execution of the inner loop, each of its memory blocks may
miss the cache at most once. Ballabriga and Cassé thus propose “multi-level” persistence analysis,
which determines for each loop nesting level, whether blocks are persistent within the execution of
the loop at that nesting level. This idea was later also applied to “temporal scopes” by Huynh et
al. [17] as discussed earlier.

7 Extension to Data Caches

In the preceding sections we have focused on persistence analysis for instruction caches. Persistence
analysis for data caches faces the additional challenge that an individual load or store instruction
may result in different data memory accesses depending on the program’s inputs or the loop
iteration the instruction is executed in. Consider the example in Listing 2. Within the loop, the
access to the array arr depends on the loop iteration, and the accesses to the array sum depend
on external sensor inputs.

J. Reineke 03:31

It is possible to employ a control flow abstraction similar to the one described in Section 3.1
to such programs. However, due to input- and loop-iteration-dependent data accesses, some
transitions in the control flow graph will have to be annotated with a set of possible memory
blocks rather than an single one. The abstract trace update function then needs to be lifted to
sets, which can be done in a generic manner as follows:

update#
A

(
Ŝ, B

)
:=
⊔
b∈B

update#
A

(
Ŝ, b
)
, (57)

where B is a set of memory blocks.
In this way, all the persistence analyses discussed in this article can also be applied to the

analysis of data caches. However, this generic approach comes with two drawbacks:
1. Reduced efficiency: Implementing (57) literally, the update and join functions need to be

applied |B| and |B| − 1 times, respectively. So if the set of potentially-accessed blocks B is
large the analysis may become quite costly. However, in most cases, it is fairly straightforward
to derive an expression for update#

A(Ŝ, B) that does not involve applying the original update
and join functions that often. For example, update#

Global-CS(Ŝ, B) =
⊔
b∈B update#

Global-CS(Ŝ, b)
can be simplified to update#

Global-CS(Ŝ, B) = Ŝ ∪B. Nagar and Srikant [23, 22] describe such
simplifications for their persistence analysis.

2. Limited precision: Due to uncertainty about the accessed memory blocks the analysis may
be imprecise. In case of loop-iteration-dependent data accesses, more precise persistence
classifications could be derived by performing the analysis on a more fine-grained abstraction
of the program than its control flow abstraction. For instance, to increase analysis precision,
Huynh et al. [17] introduce temporal scopes to distinguish different loop iterations in which
array accesses in a loop touch different memory blocks.

8 Conclusions and Future Work

Our main goal has been to put persistence analysis on a more solid semantic foundation. We have
argued that persistence is a property of cache traces rather than cache states. Accordingly, we
introduced a trace-based semantics to formally capture varying persistence notions and to enable
rigorous correctness proofs of persistence analyses.

Section 5 demonstrates that persistence analyses can be defined and proved correct as ab-
stractions of a trace collecting semantics; we believe rather elegantly. Such formalizations also
contribute to a better understanding of how and why an analysis works, simply by requiring
its designer to precisely capture the meaning of the abstraction that the analysis is based upon.
To our own surprise, it is possible to explain the essence of all prior persistence abstractions as
combinations of just a few rather basic abstractions.

We note that our focus has been on the underlying abstractions and not on their efficient
implementation. Different implementations of the same abstraction will deliver the same persistence
classifications, but may exhibit different performance characteristics, in particular in terms of
space consumption. This is, for example, demonstrated by Zhang and Koutsoukous [32], who
show how to implement Block-CS more efficiently than a straightforward implementation that
directly matches its logical definition.

In this article, we have only considered private single-level caches with LRU replacement.
Future work should consider replacement policies other than LRU, which have received some
attention in classifying cache analysis [26, 27, 25, 13, 14] and in the broader scope of quantitative
cache analysis [16, 15], but which have so far received very little attention in persistence analysis.
It may also be interesting to study persistence analysis for shared caches in multi cores. Such

LITES

03:32 The Semantic Foundations and a Landscape of Cache-Persistence Analyses

shared caches are usually second- or third-level caches and thus any step in this direction would
also require the analysis of multi-level caches. The lattice of abstractions in Figure 7 may be a
good starting point for a rigorous experimental evaluation of the various persistence analyses that
have been proposed to date. All abstractions studied in this article are sound but incomplete. It
is conceivable to design a sound and complete persistence analysis along the lines of the recent
work of Touzeau et al. [30].

Acknowledgments. I would like to sincerely thank the anonymous reviewers for their help in
improving this paper.

References
1 Robert D. Arnold, Frank Mueller, David B. Whal-

ley, and Marion G. Harmon. Bounding worst-
case instruction cache performance. In Proceedings
of the 15th IEEE Real-Time Systems Symposium
(RTSS ’94), San Juan, Puerto Rico, December 7-
9, 1994, pages 172–181. IEEE Computer Society,
1994. doi:10.1109/REAL.1994.342718.

2 Clément Ballabriga and Hugues Cassé. Improv-
ing the first-miss computation in set-associative
instruction caches. In 20th Euromicro Confer-
ence on Real-Time Systems, ECRTS 2008, 2-4
July 2008, Prague, Czech Republic, Proceedings,
pages 341–350. IEEE Computer Society, 2008. doi:
10.1109/ECRTS.2008.34.

3 Patrick Cousot and Radhia Cousot. Abstract inter-
pretation: A unified lattice model for static analy-
sis of programs by construction or approximation
of fixpoints. In Robert M. Graham, Michael A.
Harrison, and Ravi Sethi, editors, Conference
Record of the Fourth ACM Symposium on Princi-
ples of Programming Languages, Los Angeles, Cal-
ifornia, USA, January 1977, pages 238–252. ACM,
1977. doi:10.1145/512950.512973.

4 Patrick Cousot and Radhia Cousot. Systematic
design of program analysis frameworks. In Al-
fred V. Aho, Stephen N. Zilles, and Barry K.
Rosen, editors, Conference Record of the Sixth
Annual ACM Symposium on Principles of Pro-
gramming Languages, San Antonio, Texas, USA,
January 1979, pages 269–282. ACM Press, 1979.
doi:10.1145/567752.567778.

5 Patrick Cousot and Radhia Cousot. Basic concepts
of abstract interpretation. In René Jacquart, edi-
tor, Building the Information Society, IFIP 18th
World Computer Congress, Topical Sessions, 22-
27 August 2004, Toulouse, France, volume 156
of IFIP, pages 359–366. Kluwer/Springer, 2004.
doi:10.1007/978-1-4020-8157-6_27.

6 Christoph Cullmann. Cache persistence analy-
sis: a novel approachtheory and practice. In Jan
Vitek and Bjorn De Sutter, editors, Proceedings
of the ACM SIGPLAN/SIGBED 2011 conference
on Languages, compilers, and tools for embedded
systems, LCTES 2011, Chicago, IL, USA, April
11-14, 2011, pages 121–130. ACM, 2011. doi:
10.1145/1967677.1967695.

7 Christoph Cullmann. Cache persistence analy-
sis for embedded real-time systems. PhD thesis,
Saarland University, Saarbrücken, Germany, 2013.
URL: http://d-nb.info/1052779867.

8 Christoph Cullmann. Cache persistence analy-
sis: Theory and practice. ACM Trans. Embed-
ded Comput. Syst., 12(1s):40:1–40:25, 2013. doi:
10.1145/2435227.2435236.

9 B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge University Press,
second edition, 2002.

10 Goran Doychev, Boris Köpf, Laurent Mauborgne,
and Jan Reineke. Cacheaudit: A tool for the static
analysis of cache side channels. ACM Trans. Inf.
Syst. Secur., 18(1):4:1–4:32, 2015. doi:10.1145/
2756550.

11 Christian Ferdinand. Cache behavior prediction
for real-time systems. PhD thesis, Saarland Uni-
versity, Saarbrücken, Germany, 1997. URL: http:
//d-nb.info/953983706.

12 Christian Ferdinand and Reinhard Wilhelm. Effi-
cient and precise cache behavior prediction for real-
time systems. Real-Time Systems, 17(2-3):131–
181, 1999. doi:10.1023/A:1008186323068.

13 Daniel Grund and Jan Reineke. Precise and ef-
ficient fifo-replacement analysis based on static
phase detection. In 22nd Euromicro Conference on
Real-Time Systems, ECRTS 2010, Brussels, Bel-
gium, July 6-9, 2010, pages 155–164. IEEE Com-
puter Society, 2010. doi:10.1109/ECRTS.2010.8.

14 Daniel Grund and Jan Reineke. Toward precise
PLRU cache analysis. In Björn Lisper, editor, 10th
International Workshop on Worst-Case Execution
Time Analysis, WCET 2010, July 6, 2010, Brus-
sels, Belgium, volume 15 of OASICS, pages 23–
35. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany, 2010. doi:10.4230/OASIcs.WCET.
2010.23.

15 Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu.
WCET analysis with MRU cache: Challenging
LRU for predictability. ACM Trans. Embedded
Comput. Syst., 13(4s):123:1–123:26, 2014. doi:
10.1145/2584655.

16 Nan Guan, Xinping Yang, Mingsong Lv, andWang
Yi. FIFO cache analysis for WCET estimation: a
quantitative approach. In Enrico Macii, editor, De-
sign, Automation and Test in Europe, DATE 13,
Grenoble, France, March 18-22, 2013, pages 296–
301. EDA Consortium San Jose, CA, USA / ACM
DL, 2013. doi:10.7873/DATE.2013.073.

17 Bach Khoa Huynh, Lei Ju, and Abhik Roychoud-
hury. Scope-aware data cache analysis for WCET
estimation. In 17th IEEE Real-Time and Em-
bedded Technology and Applications Symposium,

http://dx.doi.org/10.1109/REAL.1994.342718
http://dx.doi.org/10.1109/ECRTS.2008.34
http://dx.doi.org/10.1109/ECRTS.2008.34
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1007/978-1-4020-8157-6_27
http://dx.doi.org/10.1145/1967677.1967695
http://dx.doi.org/10.1145/1967677.1967695
http://d-nb.info/1052779867
http://dx.doi.org/10.1145/2435227.2435236
http://dx.doi.org/10.1145/2435227.2435236
http://dx.doi.org/10.1145/2756550
http://dx.doi.org/10.1145/2756550
http://d-nb.info/953983706
http://d-nb.info/953983706
http://dx.doi.org/10.1023/A:1008186323068
http://dx.doi.org/10.1109/ECRTS.2010.8
http://dx.doi.org/10.4230/OASIcs.WCET.2010.23
http://dx.doi.org/10.4230/OASIcs.WCET.2010.23
http://dx.doi.org/10.1145/2584655
http://dx.doi.org/10.1145/2584655
http://dx.doi.org/10.7873/DATE.2013.073

Jan Reineke 03:33

RTAS 2011, Chicago, Illinois, USA, 11-14 April
2011, pages 203–212. IEEE Computer Society,
2011. doi:10.1109/RTAS.2011.27.

18 Gary A. Kildall. A unified approach to global pro-
gram optimization. In Patrick C. Fischer and Jef-
frey D. Ullman, editors, Conference Record of the
ACM Symposium on Principles of Programming
Languages, Boston, Massachusetts, USA, Octo-
ber 1973, pages 194–206. ACM Press, 1973. doi:
10.1145/512927.512945.

19 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard
Wilhelm, and Wang Yi. A survey on static cache
analysis for real-time systems. LITES, 3(1):05:1–
05:48, 2016. doi:10.4230/LITES-v003-i001-a005.

20 Frank Mueller. Static cache simulation and
its applications. PhD thesis, Florida State
University, Tallahassee, United States, 1994.
URL: http://www.cs.fsu.edu/~whalley/papers/
mueller_diss94.pdf.

21 Frank Müller. Timing analysis for instruction
caches. Real-Time Systems, 18(2/3):217–247, 2000.
doi:10.1023/A:1008145215849.

22 Kartik Nagar. Cache analysis for multi-level data
caches. Master’s thesis, Indian Institute of Science,
Bangalore, India, 2012.

23 Kartik Nagar and Y. N. Srikant. Interdependent
cache analyses for better precision and safety. In
Tenth ACM/IEEE International Conference on
Formal Methods and Models for Codesign, MEM-
CODE 2012, Arlington, VA, USA, July 16-17,
2012, pages 99–108. IEEE, 2012. doi:10.1109/
MEMCOD.2012.6292306.

24 Flemming Nielson, Hanne R. Nielson, and Chris
Hankin. Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

25 Jens Palsberg and Zhendong Su, editors. Static
Analysis, 16th International Symposium, SAS
2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings, volume 5673 of Lecture Notes in Com-
puter Science. Springer, 2009. doi:10.1007/978-
3-642-03237-0.

26 Jan Reineke. Caches in WCET Analy-
sis. PhD thesis, Universität des Saarlan-
des, November 2008. URL: http://rw4.cs.

uni-saarland.de/~reineke/publications/
DissertationCachesInWCETAnalysis.pdf.

27 Jan Reineke and Daniel Grund. Relative compet-
itive analysis of cache replacement policies. In
Krisztián Flautner and John Regehr, editors, Pro-
ceedings of the 2008 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES’08), Tucson, AZ,
USA, June 12-13, 2008, pages 51–60. ACM, 2008.
doi:10.1145/1375657.1375665.

28 Xavier Rival and Laurent Mauborgne. The trace
partitioning abstract domain. ACM Trans. Pro-
gram. Lang. Syst., 29(5):26, 2007. doi:10.1145/
1275497.1275501.

29 Helmut Seidl, Reinhard Wilhelm, and Sebastian
Hack. Compiler Design - Analysis and Transfor-
mation. Springer, 2012. doi:10.1007/978-3-642-
17548-0.

30 Valentin Touzeau, Claire Maïza, David Monniaux,
and Jan Reineke. Ascertaining uncertainty for ef-
ficient exact cache analysis. In Rupak Majum-
dar and Viktor Kuncak, editors, Computer Aided
Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II, volume 10427 of Lecture
Notes in Computer Science, pages 22–40. Springer,
2017. doi:10.1007/978-3-319-63390-9_2.

31 Randall T. White, Christopher A. Healy, David B.
Whalley, Frank Mueller, and Marion G. Harmon.
Timing analysis for data caches and set-associative
caches. In 3rd IEEE Real-Time Technology and
Applications Symposium, RTAS ’97, Montreal,
Canada, June 9-11, 1997, pages 192–202. IEEE
Computer Society, 1997. doi:10.1109/RTTAS.1997.
601358.

32 Zhenkai Zhang and Xenofon D. Koutsoukos. Im-
proving the precision of abstract interpretation
based cache persistence analysis. In Sam H. Noh,
Sebastian Fischmeister, and Jason Xue, editors,
Proceedings of the 16th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools
for Embedded Systems, LCTES 2015, CD-ROM,
Portland, OR, USA, June 18 - 19, 2015, pages
10:1–10:10. ACM, 2015. doi:10.1145/2670529.
2754967.

A Proofs

I Definition 1 (Persistence in a Program). Memory block b is persistent in program P , if

∀τ ∈ Col(P) : AtMostOneMiss(τ, b).

I Definition 2 (Cache Trace Abstraction). A cache trace abstraction is a tuple

A =
〈
C#

A , γA, ÎA,vA,tA, update#
A , classify

#
A

〉
,

consisting of the following components:
1. C#

A , a set of abstract traces,
2. γA : C#

A → 2CacheTraces, a concretization function, which specifies the set of concrete cache
traces represented by each abstract trace,

LITES

http://dx.doi.org/10.1109/RTAS.2011.27
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.4230/LITES-v003-i001-a005
http://www.cs.fsu.edu/~whalley/papers/mueller_diss94.pdf
http://www.cs.fsu.edu/~whalley/papers/mueller_diss94.pdf
http://dx.doi.org/10.1023/A:1008145215849
http://dx.doi.org/10.1109/MEMCOD.2012.6292306
http://dx.doi.org/10.1109/MEMCOD.2012.6292306
http://dx.doi.org/10.1007/978-3-642-03237-0
http://dx.doi.org/10.1007/978-3-642-03237-0
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://rw4.cs.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://dx.doi.org/10.1145/1375657.1375665
http://dx.doi.org/10.1145/1275497.1275501
http://dx.doi.org/10.1145/1275497.1275501
http://dx.doi.org/10.1007/978-3-642-17548-0
http://dx.doi.org/10.1007/978-3-642-17548-0
http://dx.doi.org/10.1007/978-3-319-63390-9_2
http://dx.doi.org/10.1109/RTTAS.1997.601358
http://dx.doi.org/10.1109/RTTAS.1997.601358
http://dx.doi.org/10.1145/2670529.2754967
http://dx.doi.org/10.1145/2670529.2754967

03:34 Appendix

3. ÎA ∈ C#
A , an abstract initial trace that represents all possible initial cache states,

4. vA, a partial order on C#
A , such that 〈C#

A ,vA〉 is a complete lattice [9],
5. tA, a join operator on abstract traces10,
6. update#

A : C#
A × B → C#

A , an abstract update function,
7. classify#

A : C#
A × B → B, a persistence classification function.

In the proof of the following theorem, we will make use of Knaster-Tarski’s fixpoint theorem.
Many variants of Knaster-Tarski’s fixpoint theorem can be found in the literature. Below, we
reproduce one such variant and its proof from [9], adapted to the terminology used in this article:

I Theorem 30 (Knaster-Tarski Fixpoint Theorem). Let (L,≤) be a complete lattice and F : L→ L

a monotone function. Let
∧
A denote the greatest lower bound of A ⊆ L. Then,

α :=
∧
{x ∈ L | F (x) ≤ x}

is a fixpoint of F . Further, α is the least fixpoint of F .

Proof. Let H = {x ∈ L | F (x) ≤ x}. For all x ∈ H, we have α ≤ x, so F (α) ≤ F (x) ≤ x. Thus
F (α) is a lower bound of H, and so F (α) ≤ α, as α is the greatest lower bound of H.

Since F is monotone, F (F (α)) ≤ F (α), and so F (α) ∈ H, and thus α ≤ F (α). Thus we have
established that α is a fixpoint of F .

If β is any fixpoint of F , then β ∈ H, and so α ≤ β. Thus α is the least fixpoint of F . J

I Theorem 3 (Soundness of Persistence Analysis). If the cache trace abstraction A satisfies the
following conditions:

IC ⊆ γA(ÎA), (6)

∀Ŝ, T̂ ∈ C#
A : Ŝ vA T̂ ⇒ γA(Ŝ) ⊆ γA(T̂), (7)

∀Ŝ ∈ C#
A , b ∈ B : {t.c〈b, h〉c′ | t.c ∈ γA(Ŝ) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(update#
A(Ŝ, b)). (8)

Then, its abstract semantics soundly approximates its concrete counterpart:

StickyCol(Pins) ≤ γA(̂StickyColA(Pins)), (9)

where γA is lifted to functions as follows: γA(Ŝ) = λl ∈ L.γA(Ŝ(l)).

Proof. We first show that (8) implies the “local consistency” of next#
ins,A relative to nextins, i.e.,

nextins(γA(Ŝ)) ≤ γA(next#
ins,A(Ŝ)).

Choose an arbitrary l′ ∈ L. Then:

nextins(γA(Ŝ))(l′) Def.=
⋃
〈l,l′〉∈E{t.c〈b, h〉c′ | t.c ∈ γA(Ŝ)(l)
∧b = effL(l, l′) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

(8)
⊆

⋃
〈l,l′〉∈E γA(update#

A(Ŝ(l), effL(l, l′)))
(7)
⊆ γA(

⊔
〈l,l′〉∈E update#

A(Ŝ(l), effL(l, l′)))
Def.= γA(next#

ins,A(Ŝ)(l′))

10Note that in a complete lattice 〈L,v〉 the partial order v uniquely defines the join operator t. Vice versa, a
given join operator uniquely defines a corresponding partial order. Nevertheless, we explicitly provide both
partial order and join operator here and in the following.

Jan Reineke 03:35

From this it follows that γA(̂StickyColA(Pins)) is a post fixpoint of nextins:

γA(̂StickyColA(Pins))
fixpoint= γA(ÎnitA tA next#

ins,A(̂StickyColA(Pins)))
(7)
≥ γA(Înit) ∨ γA(next#

ins,A(̂StickyColA(Pins)))
“local consistency”

≥ γA(Înit) ∨ nextins(γA(̂StickyColA(Pins)))
(6)
≥ Init ∨ nextins(γA(̂StickyColA(Pins)))

In order to apply Knaster-Tarski’s fixpoint theorem, we need to show that the domain of the sticky
cache trace collecting semantics (L → 2CacheTraces,≤) is a complete lattice, and that nextins is
a monotone function. The power set 2A of any set A is a complete lattice with respect to the
subset relation ⊆. Thus (2CacheTraces,⊆) is a complete lattice. Also, the total function space
A→ B between a set A and a complete lattice (B,≤) is a complete lattice w.r.t. to the pointwise
ordering f ≤ g :⇔ ∀a ∈ A : f(a) ≤ g(a). Thus L → 2CacheTraces is a complete lattice w.r.t. to ≤,
as it is defined in Section 3.2.

To see that nextins is monotone w.r.t. ≤, first observe that the lifting F (X) := {f(x) | x ∈ X}
of any function f to sets is a monotone function w.r.t. ⊆, i.e., if X ⊆ Y , then also F (X) ⊆ F (Y).
Thus F (l, l′) := {t.c〈b, h〉c′ | t.c ∈ X ∧ b = effL(l, l′) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)} is
monotone w.r.t. ⊆ for any l, l′. Also, the union of multiple monotone functions w.r.t. ⊆ is
monotone w.r.t. ⊆. Finally, the pointwise application of monotone functions w.r.t. ≤ is monotone
w.r.t. its pointwise extension ≤, as defined in Section 3.2, and so nextins is monotone. Further,
any constant function is monotone w.r.t. to any order. Thus, the pointwise union of the constant
function Init and nextins is monotone as well.

Applying Knaster-Tarski’s fixpoint theorem to the complete lattice (L → 2CacheTraces,≤) and
the monotone function Init∨ nextins, we get that its post fixpoint γA(̂StickyColA(Pins)) is greater
than or equal to its least fixpoint

StickyCol(Pins)
Def.= lfp≤Init nextins

= lfp≤(Init ∨ nextins)
Knaster-Tarski=

∧
{x | x ≥ Init ∨ nextins(x)}. J

I Theorem 4 (Soundness of Persistence Classification). If the cache trace abstraction A satisfies
conditions (6), (7), (8) from Theorem 3, and classify#

A satisfies

∀Ŝ ∈ C#
A , b ∈ B : classify#

A(Ŝ, b)⇒

∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA(Ŝ) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b), (10)

then classify#
A(Pins, b) := ∀l ∈ L : classify#

A(̂StickyColA(Pins)(l), b) implies the persistence of
memory block b in program Pins.

Proof. Proof by contradiction. Assume that ∀l ∈ L : classify#
A(̂StickyColA(Pins)(l), b) holds for

some memory block b, but b is not persistent in Pins according to Definition 1. Then, there must
be a trace τ = 〈l0, c0〉e0〈l1, c1〉e1 . . . en−1〈ln, cn〉 ∈ Col(Pins), such that AtMostOneMiss(τ, b) does
not hold. Let i and j be such that ei = ej = 〈b,miss〉 and i < j.

By conditions (6), (7), and (8), Theorem 3 holds, and so

Col(Pins) ⊆ γins(StickyCol(Pins)) ⊆ γins(γA(̂StickyColA(Pins))).

So τ ∈ γins(γA(̂StickyColA(Pins))). By (4), this implies that

c0e0. . .cj ∈ γA(̂StickyColA(Pins))(lj) = γA(̂StickyColA(Pins)(lj)).

LITES

03:36 Appendix

By assumption classify#
A(̂StickyColA(Pins)(lj), b) holds, and so due to (10), we have

b ∈ cj ∨ (∀i, 0 ≤ i < j : bi 6= b).

As ei = 〈b,miss〉, we can exclude the second part of the disjunction. However, b ∈ cj contradicts
ej = 〈b,miss〉, which concludes the proof. J

I Definition 5 (Precision). Given two cache trace abstractions A and B, we say that A is at least
as precise as B, denoted by A � B, if A classifies each block as persistent that B classifies as
persistent:

∀Pins,∀b : classify#
B (Pins, b)⇒ classify#

A(Pins, b).

We say that A is more precise than B, denoted by A � B, if A � B, but B 6� A. If neither A � B
nor vice versa, we say that A and B are incomparable.

I Theorem 6 (Approximation of Abstract Semantics). Given two cache trace abstractions A and B,
and a function γB→A : C#

B → C#
A that satisfies the following conditions:

ÎA ⊆ γB→A(ÎB), (11)

∀Ŝ, T̂ ∈ C#
B : Ŝ vB T̂ ⇒ γB→A(Ŝ) vA γB→A(T̂), (12)

∀Ŝ ∈ C#
B , b ∈ B : update#

A(γB→A(Ŝ), b) vA γB→A(update#
B (Ŝ, b)). (13)

Then, B’s abstract semantics soundly approximates its more concrete counterpart:

̂StickyColA(Pins) vA γB→A(̂StickyColB(Pins)), (14)

where γB→A is lifted to the abstract sticky trace collecting semantics as follows:
γB→A(Ŝ) = λl ∈ L.γB→A(Ŝ(l)).

Proof. We first show that (13) implies the “local consistency” of next#
ins,B relative next#

ins,A,
i.e., next#

ins,a(γB→A(Ŝ)) vA γB→A(next#
ins,B(Ŝ)).

Choose an arbitrary l′ ∈ L. Then:

next#
ins,A(γB→A(Ŝ))(l′) Def.=

⊔
〈l,l′〉∈E update#

A(γB→A(Ŝ(l)), effL(l, l′))
(13)
vA

⊔
〈l,l′〉∈E γB→A(update#

B (Ŝ(l), effL(l, l′)))
(12)
vA γB→A(

⊔
〈l,l′〉∈E update#

B (Ŝ(l), effL(l, l′)))
Def.= γB→A(next#

ins,B(Ŝ)(l′))

From this it follows that γB→A(̂StickyColB(Pins)) is a post fixpoint of next#
ins,A:

γB→A(̂StickyColB(Pins))
fixpoint= γB→A(ÎnitB tB next

#
ins,B(̂StickyColB(Pins)))

(12)
wA γB→A(ÎnitB) tA γB→A(next#

ins,B(̂StickyColB(Pins)))
“local consistency”

wA γB→A(ÎnitB) tA next#
ins,A(γB→A(̂StickyColB(Pins)))

(11)
wA ÎnitA tA nextins(γB→A(̂StickyColB(Pins)))

In order to apply Knaster-Tarski’s fixpoint theorem, we need to show that the domain of abstrac-
tion A, (L → C#

A ,vA) is a complete lattice, and that next#
ins,A is a monotone function. The total

function space A→ B between a set A and a complete lattice (B,≤) is a complete lattice w.r.t.

Jan Reineke 03:37

to the pointwise ordering f ≤ g :⇔ ∀a ∈ A : f(a) ≤ g(a). Thus L → C#
A is a complete lattice

w.r.t. to vA, as it is defined in Section 4.1.
To see that next#

ins,A is monotone w.r.t. vA, observe that by assumption update#
A is monotone

in its first parameter. Thus, Fl,l′(X) := update#
A(Ŝ(l), effL(l, l′)) is monotone in Ŝ for any l, l′.

Also, the least upper bound of multiple monotone functions is a monotone function, and so
F (l′) :=

⊔
〈l,l′〉∈E{update

#
A(Ŝ(l), b) | b = effL(l, l′)} is monotone in Ŝ. Finally, the pointwise

application of monotone functions w.r.t. ≤ is monotone w.r.t. its pointwise extension ≤, and so
next#

ins,A = λl′ ∈ L.F (l′) is monotone. Further, any constant function is monotone w.r.t. to any
order. Thus, the pointwise union of the constant function ÎnitA and next#

ins,A is monotone as
well.

Applying Knaster-Tarski’s fixpoint theorem to the complete lattice (L → C#
A ,vA) and the

monotone function ÎnitA tA next#
ins,A, we get that its post fixpoint γB→A(̂StickyColB(Pins)) is

greater than or equal to its least fixpoint:

̂StickyColA(Pins)
Def.= lfpvA

ÎnitA

next#
ins,A

= lfpvA ÎnitA tA next#
ins,A

Knaster-Tarski= ⊔

A

{x | x wA ÎnitA tA next#
ins,A(x)}. J

Whenever the proof of a theorem is in the main part of the article, the name of the theorem is
marked with a ? and serves as a link to the corresponding proof. The first example of such a case
is the following theorem:

I Theorem 7 (Precision?). Given cache trace abstractions A,B and a function γB→A that satisfies
conditions (11), (12), and (13) from Theorem 6, and further

∀Ŝ ∈ C#
B , b ∈ B : classify#

B (Ŝ, b)⇒ classify#
A(γB→A(Ŝ), b), (15)

∀Ŝ, T̂ ∈ C#
A , b ∈ B : Ŝ vA T̂ ⇒

(
classify#

A(T̂ , b)⇒ classify#
A(Ŝ, b)

)
. (16)

Then, A is at least as precise as B, i.e., A � B.

I Theorem 8 (Soundness of Persistence Classification?). Given two cache trace abstractions A
and B. If A is sound, and A is at least as precise as B, then B is also sound.

I Lemma 31 (Monotonicity of LRU). Consider an arbitrary cache trace c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈
LRUCacheTraces. Assume that c0(b) > c0(b′) and b 6∈ {b0, b1, . . . , bn−1}. Then:

∀i, 0 ≤ i ≤ n : ci(b) > ci(b′).

Proof. Proof by induction over i:
Base case (i = 0):
c0(b) > c0(b′) holds by assumption.
Inductive step:
We must show that ci+1(b) > ci+1(b′).
By the inductive hypothesis (I.H.) we have ci(b) > ci(b′).
We distinguish two cases:
1. ci(b) > ci(b′) + 1:

By the definition of updateLRU
C we have ci(b′) + 1 ≥ ci+1(b′).

As by assumption b 6= bi, it also follows from the definition of updateLRU
C that ci+1(b) ≥ ci(b).

Thus, ci+1(b) ≥ ci(b) > ci(b′) + 1 ≥ ci+1(b′).

LITES

03:38 Appendix

2. ci(b) = ci(b′) + 1:
We distinguish four cases based on the value of ci(bi):
ci(bi) < ci(b′):
By the definition of updateLRU

C (third case), ci+1(b′) = ci(b′) and ci+1(b) = ci(b).
And so ci+1(b) = ci(b)

I.H.
> ci(b′) = ci+1(b′).

ci(bi) = ci(b′):
This implies that bi = b′. Thus, by the definition of updateLRU

C , ci+1(b′) first case= 0 <

ci(b′) + 1 = ci+1(b) third case= ci(b).
ci(bi) = ci(b):
This implies that bi = b, which contradicts our assumption that b 6∈ {b0, b1, . . . , bn−1}.
ci(bi) > ci(b′):
By the definition of updateLRU

C , ci+1(b′) second case= ci(b′)+1 and ci+1(b) second case= ci(b)+1.
And so ci+1(b) = ci(b) + 1

I.H.
> ci(b′) + 1 = ci+1(b′). J

I Lemma 9 (Persistence under LRU). Consider an arbitrary cache trace c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈
LRUCacheTraces. Then cn(b0) < k, if |{bi | 0 ≤ i < n}| ≤ k.

Proof. Let s = c0〈b0, h0〉c1〈b1, h1〉. . .cn ∈ LRUCacheTraces be an arbitrary cache trace and
assume that B = {bi | 0 ≤ i < n} with |B| ≤ k. We need to show that cn(b0) < k.

Let j be the index of the last occurrence of b0 in s, i.e., bj = b0 and ∀l > j : bl 6= b0. Observe
that cj+1(b0) = 0, because of the preceding access to b0 = bj . Let Bj = {bi | j < i < n}. By
construction, b0 6∈ Bj . As b0 ∈ B and Bj ⊆ B, we have |Bj | < |B| ≤ k and thus |Bj | < k.

Each memory block in Bj occurs one or more times in the suffix sj = cj+1〈bj+1, hj+1〉 . . . cn.
Let I be the set of indices of the first occurrences of the blocks in Bj in sj , i.e.,

I = {i | j < i < n ∧ ∀l, j < l < i : bl 6= bi}.

Let IC be the complement of I, i.e., IC = {j + 1, . . . , n− 1} \ I. We claim that
1. ci+1(b0) ≤ ci(b0) + 1 for all i ∈ I, and
2. ct+1(b0) = ct(b0) for all t ∈ IC .
These two claims imply that cn(b0) ≤ cj+1(b0) + |I| = |I|. As |I| = |Bj | < k, cn(b0) = |I| < k,
and it only remains to show the two claims:
1. The fact that ci+1(b0) ≤ ci(b0) + 1 follows immediately from the definition of updateLRU

C .
2. Let t be an arbitrary index in IC and let v be the greatest index smaller than t such that

bv = bt. As t ∈ IC there must be such a v > j due to the definitions of I and IC .
Observe that cv+1(bt) = cv+1(bv) = 0 and cv+1(b0) > 0. Applying Lemma 31 to the the
subsequence cv+1〈bv+1, hv+1〉 . . . ct with b = b0 and b′ = bt yields that ct(b0) > ct(bt).
As ct(b0) > ct(bt), the third case in updateLRU

C applies and we get ct+1(b0) = ct(b0). J

I Theorem 10 (Soundness of Global May-Conflict Set). Global-CS is a sound persistence analysis.

Proof. We show that Global-CS satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 are
unconstrained in the definition of γGlobal-CS.
Let Ŝ vGlobal-CS T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γGlobal-CS(Ŝ).
Then {bi | 0 ≤ i < n} ⊆ Ŝ ⊆ T̂ and so by definition of γGlobal-CS, s ∈ γGlobal-CS(T̂), which
shows that (7) is satisfied.

Jan Reineke 03:39

Let Ŝ ∈ C#
Global-CS, b ∈ B, and t.c ∈ γGlobal-CS(Ŝ) be arbitrary.

To show that (8) is satisfied, we have to show that t.c〈b, h〉c′ with h = effLRU
C (c, b) and

c′ = updateLRU
C (c, b) is an element of γGlobal-CS(update#

Global-CS(Ŝ, b)).
By definition of γGlobal-CS and update#

Global-CS we have
γGlobal-CS(update#

Global-CS(Ŝ, b))
Def. update#

Global-CS= γGlobal-CS(Ŝ ∪ {b})
Def. γGlobal-CS= LRUCacheTraces ∩ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ ∪ {b}}

Because t.c ∈ γGlobal-CS(Ŝ), we have that t.c ∈ LRUCacheTraces. From h = effLRU
C (c, b)

and c′ = updateLRU
C (c, b), it follows that t.c〈b, h〉c′ ∈ LRUCacheTraces.

It remains to show that t.c〈b, h〉c′ ∈ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ ∪ {b}}.
As t.c ∈ γGlobal-CS(Ŝ), we have that t.c ∈ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ}. So
t.c〈b, h〉c′ ∈ {c0〈b0, h0〉c1 . . . cn | {bi | 0 ≤ i < n} ⊆ Ŝ ∪ {b}}
Let Ŝ ∈ C#

Global-CS and b ∈ B be arbitrary.
To show that (10) is satisfied, we consider two cases: 1. b 6∈ Ŝ and 2. b ∈ Ŝ.
Case 1: If c0〈b0, h0〉c1 . . . cn ∈ γGlobal-CS(Ŝ), then {bi | 0 ≤ i < n} ⊆ Ŝ by the definition of
γGlobal-CS. As b 6∈ Ŝ, the second disjunct in (10) holds: ∀i, 0 ≤ i < n : bi 6= b.

Case 2: Let c0〈b0, h0〉c1 . . . cn ∈ γGlobal-CS(Ŝ). Assume bi = b for some i. Otherwise the
second disjunct of (10) holds. As c0〈b0, h0〉c1 . . . cn ∈ γGlobal-CS(Ŝ), in particular {bj |
i ≤ j < n} ⊆ Ŝ. As |Ŝ| ≤ k and c0〈b0, h0〉c1 . . . cn ∈ LRUCacheTraces, we can apply
Lemma 9 to the trace ci〈bi, hi〉ci+1 . . . cn to conclude that b ∈ cn. J

I Theorem 11 (Soundness of Block-wise May-Conflict Set). Block-CS is a sound persistence
analysis.

Proof. We show that Block-CS satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 are
unconstrained in the definition of γBlock-CS.
Let Ŝ vBlock-CS T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γBlock-CS(Ŝ).
Because Ŝ(bi) ⊆ T̂ (bi) for all i, and ⊆ is transitive, s is also an element of γBlock-CS(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

Block-CS, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γBlock-CS(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γBlock-CS(T̂), with T̂ =

update#
Block-CS(Ŝ, bn).

Because s ∈ γBlock-CS(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn)

and cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (25) holds11, i.e.,

∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ CSi(t) ⊆ T̂ (bi), (58)

where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.
In order to show that (58) holds, we distinguish two cases based on the value of i:

11The constraint below accounts for the fact that t contains n + 1 accesses, where n is the number of accesses
in s.

LITES

03:40 Appendix

1. i = n:
Observe that CSn(t) = {bn}.
Due to the second case in the definition of update#

Block-CS, T̂ (bn) = {bn}, and so

CSn(t) = {bn} ⊆ {bn} = T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ CSi(s) ⊆ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γBlock-CS(Ŝ).
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi+1(s) = CSi+1(t) ∪ {bn}, the fact that bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus CSi(s) ⊆ Ŝ(bi):

We distinguish two cases:
i. bi 6= bn:

Then CSi(t) = CSi(s)∪{bn} ⊆ Ŝ(bi)∪{bn} = T̂ (bi) as the third case in update#
Block-CS

applies:
CSi(s) 6= ∅ and thus Ŝ(bi) 6= ∅ and bi 6= bn.

ii. bi = bn:
Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bi}.

Let Ŝ ∈ C#
Block-CS and b ∈ B be arbitrary.

To show that (10) is satisfied, assume classify#
Block-CS(Ŝ, b) holds and thus |Ŝ(b)| ≤ k. Let

s = c0〈b0, h0〉 . . . cn be an arbitrary cache trace in γBlock-CS(Ŝ). Let bi be the last occurrence
of b in the trace. If b does not occur in the trace, then (10) holds by the second disjunct.
Otherwise, bi 6∈ CSi+1(s) and so CSi(s) ⊆ Ŝ(b). As |Ŝ(b)| ≤ k and s ∈ LRUCacheTraces,
we can apply Lemma 9 to the suffix ci〈bi, hi〉 . . . cn to prove that b ∈ cn. J

I Theorem 12 (Block-CS vs. Global-CS?). Block-CS is more precise than Global-CS.

I Theorem 13 (Soundness of Conditional Must). C-Must is a sound persistence analysis.

Proof. We show that C-Must satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 only
are unconstrained in the definition of γC-Must.
Let Ŝ vC-Must T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γC-Must(Ŝ).
Because Ŝ(bi) ≤ T̂ (bi) for all i, and ≤ is transitive, s is also an element of γC-Must(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

C-Must, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γC-Must(T̂), with T̂ =

update#
C-Must(Ŝ, bn).

Because s ∈ γC-Must(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and

cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (31) holds, i.e.,

∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≤ T̂ (bi), (59)

where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.
In order to show that (59) holds, we distinguish two cases based on the value of i:

Jan Reineke 03:41

1. i = n:
Observe that CSn(t) = {bn}.
Due to the second case in the definition of update#

C-Must, T̂ (bn) = 1, and so

|CSn(t)| = |{bn}| = 1 ≤ 1 = T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ).
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi+1(s) = CSi+1(t) ∪ {bn}, the fact that bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus |CSi(s)| ≤ Ŝ(bi):

We distinguish two cases:
i. bi 6= bn:

Then CSi(t) = CSi(s) ∪ {bn}.
Because 1 ≤ |CSi(s)| ≤ Ŝ(bi) and bi 6= bn, the third or fourth case in update#

C-Must
applies. Thus |CSi(t)| = |CSi(s) ∪ {bn}| ≤ Ŝ(bi) + 1 ≤ T̂ (bi).

ii. bi = bn:
Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bi}.

Let Ŝ ∈ C#
C-Must and b ∈ B be arbitrary.

To show that (10) is satisfied, assume classify#
C-Must(Ŝ, b) holds and thus Ŝ(b) < k. Let

s = c0〈b0, h0〉 . . . cn be an arbitrary trace in γC-Must(Ŝ). Let bi be the last occurrence of b in
the trace. If b does not occur in the trace, then (10) holds by the second disjunct. Otherwise,
bi 6∈ CSi+1(s) and so |CSi(s)| ≤ Ŝ(b). As Ŝ(b) ≤ k and s ∈ LRUCacheTraces, we can
apply Lemma 9 to the suffix ci〈bi, hi〉 . . . cn to prove that b ∈ cn. J

I Theorem 14 (Global-CS vs. Block-CS?). C-Must is incomparable to Global-CS and Block-CS.

I Theorem 15 (Soundness of Conditional May). C-May is a sound persistence analysis.

Proof. We show that C-May satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is trivially satisfied, because sequences consisting only of the initial state c0 only
are unconstrained in the definition of γC-May.
Let Ŝ vC-May T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γC-May(Ŝ).
Because Ŝ(bi) ≥ T̂ (bi) for all i, and ≥ is transitive, s is also an element of γC-May(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

C-May, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γC-May(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γC-May(T̂), with T̂ =

update#
C-May(Ŝ, bn).

Because s ∈ γC-May(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and

cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (37) holds, i.e.,

∀i : 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≥ T̂ (bi), (60)

where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.
In order to show that (60) holds, we distinguish two cases based on the value of i:

LITES

03:42 Appendix

1. i = n:
CSn(t) = {bn}. Due to the first case in the definition of update#

C-May, T̂ (bn) = 1, and so
|CSn(t)| ≥ T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≥ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γC-May(Ŝ).
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi+1(s) = CSi+1(t) ∪ {bn}, the fact that bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus |CSi(s)| ≥ Ŝ(bi):

We distinguish two cases:
i. bi 6= bn:

We distinguish two cases:
A. Ŝ(bn) < Ŝ(bi):

Then |CSi(t)| ≥ |CSi(s)| ≥ Ŝ(bi) = T̂ (bi), as the second case of update#
C-May

applies.
B. Ŝ(bn) ≥ Ŝ(bi):

Then, by the definition of update#
C-May, T̂ (bi) ≤ Ŝ(bi) + 1.

Let j be the index of the last occurrence of bn in s. We distinguish two cases:
i > j:
Then bj 6∈ CSi(s). Thus

|CSi(t)| = |CSi(s)∪̇{bn}| = |CSi(s)|+ 1 ≥ Ŝ(bi) + 1 ≥ T̂ (bi).

i < j:
Then bi, bj ∈ CSi(s) and bi 6∈ CSj(s) and CSi(s) ⊇ CSj(s). Thus

|CSi(t)| = |CSi(s) ∪ {bj}| ≥ |CSj(s)|+ 1 ≥ Ŝ(bj) + 1 = Ŝ(bn) + 1 ≥ T̂ (bi).

ii. bi = bn:
Then bi ∈ CSi(t) = CSi(s) ∪ {bi}.

Let Ŝ ∈ C#
C-May and b ∈ B be arbitrary.

To show that (10) is satisfied, assume classify#
C-May(Ŝ, b) holds and thus Ŝ(b) = ∞ or

|Ci(Ŝ, b)| < i for some i ≤ k. Let s = c0〈b0, h0〉 . . . cn be an arbitrary trace in γC-May(Ŝ). Let
i′ be the index of the last occurrence of b in the trace. If b does not occur in the trace, then
(10) holds by the second disjunct. If Ŝ(b) =∞ holds, then b is guaranteed not to occur in the
trace s.
Otherwise, |Ci(Ŝ, b)| = |{b′ ∈ B | b′ 6= b ∧ Ŝ(b′) ≤ i}| < i and bi′ 6∈ CSi′+1(s).
We will show that |CSi′(s)| ≤ i.
Assume for a contradiction that |CSi′(s)| > i. Let j > i′ be an index such that |CSj(s)| = i,
which must then exist as |CSi′(s)| > i and CSi(s) is monotonically decreasing in i and
eventually reaches |CSn(s)| = 1.
For each element b′ of CSj(s), we must have Ŝ(b′) ≤ i as s ∈ γC-May(Ŝ). So CSj(s) ⊆ Ci(Ŝ, b).
Thus i = |CSj(s)| ≤ |Ci(Ŝ, b)|, which contradicts the fact that |Ci(Ŝ, b)| < i.
Thus |CSi′(s)| ≤ i. As i ≤ k and s ∈ LRUCacheTraces, we can apply Lemma 9 to the
suffix ci′〈bi′ , hi′〉 . . . cn to prove that b ∈ cn. J

I Theorem 16 (C-May vs. Global-CS). C-May is more precise than Global-CS.

Jan Reineke 03:43

Proof. We will show this by making use of Theorem 7. To this end, we need to define a function
γCS→May : C#

Global-CS → C#
C-May that satisfies conditions (11), (12), (13), (15), and (16).

We define γCS→May as follows:

γCS→May(Ŝ) := λb.

{
∞ : b 6∈ Ŝ
1 : b ∈ Ŝ

(61)

The rationale is that if b 6∈ Ŝ then it has not yet been accessed and thus ∞ is a sound lower bound
on the size of b’s conflict set. On the other hand, if b ∈ Ŝ, and thus may have been accessed, then
1 is the best sound lower bound on the size of b’s conflict set that can be given, as the access to b
may have been the final one in the cache trace.

Proof of satisfaction of (11): γCS→May(̂IGlobal-CS) = γCS→May(∅) = λb.∞ = ÎC-May.
Proof of satisfaction of (12): Let Ŝ, T̂ be arbitrary abstract traces from C#

Global-CS.
Assume Ŝ vGlobal-CS T̂ , i.e., Ŝ ⊆ T̂ .
Then ∀b ∈ Ŝ : γCS→May(Ŝ)(b) = 1 = γCS→May(T̂)(b) and

∀b 6∈ Ŝ : γCS→May(Ŝ)(b) =∞ ≥ γCS→May(T̂)(b),

which implies

∀b : γCS→May(Ŝ)(b) ≥ γCS→May(T̂)(b), i.e., γCS→May(Ŝ) vC-May γCS→May(T̂),

which shows (12).
Proof of satisfaction of (13): We need to show that

∀Ŝ ∈ C#
Global-CS, b ∈ B :

update#
C-May(γCS→May(Ŝ), b) vC-May γCS→May(update#

Global-CS(Ŝ, b)).

Let Ŝ ∈ C#
Global-CS and b ∈ B be arbitrary.

Due to the definition of vC-May, we need to show

∀b′ ∈ B : update#
C-May(γCS→May(Ŝ), b)(b′) ≥ γCS→May(update#

Global-CS(Ŝ, b))(b′).

To prove this, let b′ ∈ B be arbitrary.
We distinguish two cases:
1. b′ ∈ update#

Global-CS(Ŝ, b):
Then γCS→May(update#

Global-CS(Ŝ, b))(b′) = 1, which is the smallest value that a block may
be assigned to in C#

C-May, and so

update#
C-May(γCS→May(Ŝ), b)(b′) ≥ 1 = γCS→May(update#

Global-CS(Ŝ, b))(b′).

2. b′ 6∈ update#
Global-CS(Ŝ, b):

Then, b′ 6= b and b′ 6∈ Ŝ. Thus, γCS→May(Ŝ)(b′) =∞ and the fifth case in the definition of
update#

C-May applies, so

update#
Global-CS(γCS→May(Ŝ), b)(b′) =∞ ≥∞ = γCS→May(update#

Global-CS(Ŝ, b))(b′).

Proof of (15): Let Ŝ ∈ C#
Global-CS and b ∈ B be arbitrary.

Assume classify#
Global-CS(Ŝ, b) holds.

Then, either b 6∈ Ŝ or |Ŝ| ≤ k:

LITES

03:44 Appendix

If b 6∈ Ŝ, then γCS→May(Ŝ)(b) =∞ and by definition, classify#
C-May(γCS→May(Ŝ)), b) holds

as well.
If b ∈ Ŝ and thus |Ŝ| ≤ k we have exactly |Ŝ| blocks b′ for which γCS→May(Ŝ)(b) ≤ k.
Thus, the second disjunct of classify#

C-May applies and classify#
C-May(γCS→May(Ŝ)), b) holds.

Proof of satisfaction of (16): Let Ŝ, T̂ ∈ C#
C-May with Ŝ vC-May T̂ and b ∈ B be arbitrary.

Assume classify#
C-May(T̂ , b) holds.

If T̂ (b) =∞, then Ŝ(b) =∞ as Ŝ(b) ≥ T̂ (b). Then, classify#
C-May(Ŝ, b) holds as well.

If T̂ (b) ≤ k + 1, then there is an i ≤ k, such that |Ci(T̂ , b)| < i.
As Ŝ vC-May T̂ we have Ŝ(b′) ≥ T̂ (b′) for all b′ ∈ B.
So Ci(Ŝ, b) = {b′ ∈ B | b′ 6= b ∧ T̂ (b′) ≤ Ŝ(b′) ≤ i} ⊆ Ci(T̂ , b),
and thus |Ci(Ŝ, b)| ≤ |Ci(T̂ , b)| < i, which implies classify#

C-May(Ŝ, b).
To see that C-May is more precise than Global-CS, consider the example in Figure 4a. Here, x is
classified as persistent by C-May, but not by Global-CS. J

I Theorem 17 (Block-CS vs. C-May). Block-CS is more precise than C-May.

Proof. We will show this by making use of Theorem 7. To this end, we need to define a function
γMay→CS : C#

C-May → C#
Block-CS that satisfies conditions (11), (12), (13), (15), and (16).

We define γMay→CS as follows:

γMay→CS(Ŝ) := λb.

{
∅ : Ŝ(b) =∞
{b} ∪ Cn(Ŝ, b) : Ŝ(b) 6=∞∧ n = min{i ∈ N | |Ci(Ŝ, b)| < i}

(62)

where Ci(Ŝ, b) := {b′ ∈ B | b′ 6= b ∧ Ŝ(b′) ≤ i}.

Proof of satisfaction of (11): γMay→CS(ÎC-May) = γMay→CS(λb.∞) = λb.∅ = ̂IBlock-CS.
Proof of satisfaction of (12): Let Ŝ, T̂ be arbitrary abstract traces from C#

C-May.
Assume Ŝ vC-May T̂ , i.e., ∀b : Ŝ(b) ≥ T̂ (b).
We need to show that

γMay→CS(Ŝ) vBlock-CS γMay→CS(T̂)⇔ ∀b : γMay→CS(Ŝ)(b) ⊆ γMay→CS(T̂)(b).

Let b be arbitrary. We will show γMay→CS(Ŝ)(b) ⊆ γMay→CS(T̂)(b) by the following case
distinction:
Ŝ(b) =∞:
Then γMay→CS(Ŝ)(b) = ∅, which is a subset of any set, in particular γMay→CS(T̂)(b).
Ŝ(b) ≤ k + 1:
Let n = min{i ∈ N | |Ci(T̂ , b)| < i} and thus γMay→CS(T̂)(b) = {b} ∪ Cn(T̂ , b).
As ∀b : Ŝ(b) ≥ T̂ (b), Ci(Ŝ, b) ⊆ Ci(T̂ , b) and so |Ci(Ŝ, b)| ≤ |Ci(T̂ , b)| < i.
Thus, γMay→CS(Ŝ)(b) = {b} ∪ Cn′(Ŝ, b), with n′ = min{i ∈ N | |Ci(Ŝ, b)| < i} ≤ n.
As CSi is monotone in i and CSi(Ŝ, b) ⊆ CSi(T̂ , b), we have
γMay→CS(Ŝ)(b) ⊆ γMay→CS(T̂)(b).

Proof of satisfaction of (13): We need to show that

∀Ŝ ∈ C#
C-May, b ∈ B : update#

Block-CS(γMay→CS(Ŝ), b) vBlock-CS γMay→CS(update#
C-May(Ŝ, b)).

Let Ŝ and b be arbitrary, and let T̂ = update#
C-May(Ŝ, b). Then, we need to show for all b′ ∈ B:

update#
Block-CS(γMay→CS(Ŝ), b)(b′) ⊆ γMay→CS(update#

C-May(Ŝ, b))(b′) = γMay→CS(T̂)(b′).

To prove this we distinguish two cases:

Jan Reineke 03:45

1. b′ = b:
Then update#

Block-CS(γMay→CS(Ŝ), b)(b′) = {b′} and as update#
C-May(Ŝ, b)(b′) 6=∞, we have

γMay→CS(update#
C-May(Ŝ, b))(b′) ⊇ {b′}, and so

update#
Block-CS(γMay→CS(Ŝ), b)(b′) = {b′} ⊆ γMay→CS(update#

C-May(Ŝ, b))(b′).

2. b′ 6= b:
We further distinguish two cases:
a. Ŝ(b′) =∞:

Then, it is easy to see that

update#
Block-CS(γMay→CS(Ŝ), b)(b′) = ∅ = γMay→CS(update#

C-May(Ŝ, b))(b′).

b. Ŝ(b′) ≤ k + 1:
Let n = min{i ∈ N | |Ci(Ŝ, b′)| < i} and n′ = min{i ∈ N | |Ci(T̂ , b′)| < i}.
We further distinguish three cases:
i. Ŝ(b) < n:

Then b ∈ γMay→CS(Ŝ)(b′) and so
update#

Block-CS(γMay→CS(Ŝ), b)(b′) = γMay→CS(Ŝ)(b′).
Observe that
C1(T̂ , b′) = {b},
Cj(T̂ , b′) = Cj−1(Ŝ, b′)∪̇{b} for j ∈ {2, . . . , Ŝ(b)}, and
Cj(T̂ , b′) = Cj(Ŝ, b′) for j ∈ {Ŝ(b) + 1, . . . , n}.

Due to the definition of n, we have that |Ci(Ŝ, b′)| ≥ i for all i < n, and so:
|C1(T̂ , b′)| ≥ 1,
|Cj(T̂ , b′)| ≥ |Cj−1(Ŝ, b′)|+ 1 ≥ j − 1 + 1 = j for j ∈ {2, . . . , Ŝ(b)}, and
|Cj(T̂ , b′)| = |Cj(Ŝ, b′)| ≥ j for j ∈ {Ŝ(b) + 1, . . . , n}.

As a consequence n′ ≥ n and thus

γMay→CS(T̂)(b′) ⊇ γMay→CS(Ŝ)(b′) = update#
Block-CS(γMay→CS(Ŝ), b)(b′).

ii. Ŝ(b) = n:
This case is impossible:
As n = min{i ∈ N | |Ci(Ŝ, b′)| < i}, we have |Cn−1(Ŝ, b)| ≥ n− 1.
However, Cn(Ŝ, b′) ⊇ Cn−1(Ŝ, b)∪̇{b}, if Ŝ(b) = n, which implies |Ci(Ŝ, b′)| ≥ n, which
contradicts of our definition of n, which implies |Cn(Ŝ, b′)| < n.

iii. Ŝ(b) > n:
Then b 6∈ γMay→CS(Ŝ)(b′) and so
update#

Block-CS(γMay→CS(Ŝ), b)(b′) = γMay→CS(Ŝ)(b′)∪̇{b}.
Observe that
C1(T̂ , b′) = {b}, and
Cj(T̂ , b′) = Cj−1(Ŝ, b′)∪̇{b} for j ∈ {2, . . . , n}.

Due to the definition of n, we have that |Ci(Ŝ, b′)| ≥ i for all i < n, and so:
|C1(T̂ , b′)| ≥ 1, and
|Cj(T̂ , b′)| ≥ |Cj−1(Ŝ, b′)|+ 1 ≥ j − 1 + 1 = j for j ∈ {2, . . . , n}.

Thus n′ ≥ n+ 1. Also, Cn+1(T̂ , b′) ⊇ Cn(Ŝ, b′)∪̇{b} and thus

γMay→CS(T̂)(b′) ⊇ Cn(Ŝ, b′)∪̇{b}

= γMay→CS(Ŝ)(b′) ∪ {b} = update#
Block-CS(γMay→CS(Ŝ), b)(b′).

LITES

03:46 Appendix

Proof of satisfaction of (15): Let Ŝ ∈ C#
C-May and b ∈ B be arbitrary. Assume classify#

C-May(Ŝ, b)
holds.
Then either Ŝ(b) =∞ or ∃i ≤ k : |Ci(Ŝ, b)| < i.
In the first case, γMay→CS(Ŝ)(b) = ∅ and so classify#

Block-CS(γMay→CS(Ŝ), b) holds.
In the second case, γMay→CS(Ŝ)(b) = {b} ∪ Cn(Ŝ, b) with |Cn(Ŝ, b)| < k and thus
|γMay→CS(Ŝ)(b)| ≤ k, which implies that classify#

Block-CS(γMay→CS(Ŝ), b) holds as well.
Proof of satisfaction of (16): Let Ŝ, T̂ ∈ C#

Block-CS with Ŝ vBlock-CS T̂ and b ∈ B be arbitrary.
Assume classify#

Block-CS(T̂ , b) holds. Then, |T̂ (b)| ≤ k. As Ŝ(b) ⊆ T̂ (b) this implies |Ŝ(b)| ≤ k
and so classify#

Block-CS(Ŝ, b) holds as well.
To see that Block-CS is more precise than C-May, consider the example in Figure 4b. Here, w
and x are classified as persistent by Block-CS, but not by C-May. J

I Definition 18 (Direct Product). The direct product A×B of two persistence analyses A and B
is the tuple A×B =

〈
C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , update

#
A×B , classify

#
A×B

〉
with

C#
A×B := C#

A × C
#
B ,

γA×B(ŜA, ŜB) := γA(ŜA) ∩ γB(ŜB),

ÎA×B := 〈ÎA, ÎB〉,

〈ŜA, ŜB〉 vA×B 〈T̂A, T̂B〉 :⇔ ŜA vA T̂A ∧ ŜB vB T̂B ,

〈ŜA, ŜB〉 tA×B 〈T̂A, T̂B〉 := 〈ŜA tA T̂A, ŜB tB T̂B〉,

update#
A×B(〈ŜA, ŜB〉, b) := 〈update#

A(ŜA, b), update#
B (ŜB , b)〉,

classify#
A×B(〈ŜA, ŜB〉, b) := classify#

A(ŜA, b) ∨ classify#
B (ŜB , b).

I Theorem 19 (Soundness of Direct Product). The direct product A×B of two sound persistence
analyses A and B that satisfy (6), (7), (8), and (10) is a sound persistence analysis.

Proof. We show that A×B satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

As A and B satisfy (6), we have IC ⊆ γA(ÎA) and IC ⊆ γB(ÎB). Thus,

IC ⊆ γA(ÎA) ∩ γB(ÎB) Def. γA×B= γA×B(ÎA, ÎB) Def. ÎA×B= γA×B(ÎA×B),

and so A×B satisfies (6).
For (7), we have to show that

∀Ŝ, T̂ ∈ C#
A×B : Ŝ vA×B T̂ ⇒ γA×B(Ŝ) ⊆ γA×B(T̂).

Let Ŝ = 〈ŜA, ŜB〉 and T̂ = (T̂A, T̂B) be arbitrary. Assume that Ŝ vA×B T̂ , otherwise the
implication trivially holds. Then, we have ŜA vA T̂A and ŜB vB T̂B by definition of vA×B.
As A and B satisfy (7) this implies γA(ŜA) ⊆ γA(T̂A) and γB(ŜB) ⊆ γB(T̂B), and so we have

γA×B(Ŝ) Def. γA×B= γA(ŜA) ∩ γB(ŜB)
⊆ γA(T̂A) ∩ γB(T̂B)

Def. γA×B= γA×B(T̂).
For (8), we have to show that

∀Ŝ ∈ C#
A×B , b ∈ B : {t.c〈b, h〉c′ | t.c ∈ γA×B(Ŝ) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA×B(update#
A×B(Ŝ, b)).

Jan Reineke 03:47

Let Ŝ = 〈ŜA, ŜB〉 ∈ C#
A×B and b ∈ B be arbitrary. Further, let t.c ∈ γA×B(Ŝ) be arbitrary. We

will show that t.c〈b, h〉c′ ∈ γA×B(update#
A×B(Ŝ, b)), with h = effC(c, b) and c′ = updateC(c, b).

By definition of γA×B , t.c ∈ γA(ŜA) and t.c ∈ γB(ŜB). Because A and B satisfy (8), we have
both t.c〈b, h〉c′ ∈ γA(update#

A(ŜA, b)) and t.c〈b, h〉c′ ∈ γB(update#
B (ŜB , b)), and thus:

t.c〈b, h〉c′ ∈ γA(update#
A(ŜA, b)) ∩ γB(update#

B (ŜB , b))
Def. γA×B= γA×B(update#

A(ŜA, b), update#
B (ŜB , b))

Def. update#
A×B= γA×B(update#

A×B(Ŝ, b)).

For (10), we have to show that

∀Ŝ ∈ C#
A×B , b ∈ B : classify#

A×B(Ŝ, b)⇒

∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA×B(Ŝ) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b), (63)

Let Ŝ = (ŜA, Ŝb) ∈ C#
A×B and b ∈ B be arbitrary. Assume classify#

A×B(Ŝ, b) holds, otherwise
the implication holds trivially.
By the definition of classify#

A×B, classify
#
A(ŜA, b) holds or classify#

B (ŜB , b) holds. Assume
classify#

A(ŜA, b) holds. The case that classify#
B (ŜB , b) is analogous.

As A satisfies (10), we have ∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA(ŜA) : b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6=
b). As by definition, γA×B(Ŝ) ⊆ γA(ŜA), we also have: ∀c0〈b0, h0〉c1〈b1, h1〉 . . . cn ∈ γA×B(Ŝ) :
b ∈ cn ∨ (∀i, 0 ≤ i < n : bi 6= b). J

I Theorem 20 (Precision of Direct Product?). The direct product A×B of two persistence analyses
A and B is at least as precise as A and B, i.e., A×B � A and A×B � B.

I Corollary 21 (Precision of Direct Product?). The direct product A×B of two incomparable
persistence analyses A and B is more precise than A and B, i.e., A×B � A and A×B � B.

I Definition 22 (State Reduction). Let A and B be persistence analyses. A reduction operator
for A in the context of B is a function red : C#

A × C
#
B → C#

A that is reductive and that preserves
concretizations, i.e., for all ŜA ∈ C#

A , ŜB ∈ C
#
B :

red(ŜA, ŜB) vA ŜA, (42)

γA(red(ŜA, ŜB)) ∩ γB(ŜB) = γA(ŜA) ∩ γB(ŜB). (43)

I Theorem 23 (State Reduction). Let A and B be sound persistence analyses that satisfy (6),
(7), (8), and (10), and let red be a reduction operator for A in the context of B. Let the reduced
update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (red(update#
A(ŜA, b), update#

B (ŜB , b)), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis that is at least as precise as A×B, i.e., A×B′ � A×B.

Proof. We know that A×B is a sound persistence analysis from Theorem 19 that satisfies (6),
(7), (8), and (10). The only condition from Theorem 4 that involves the update function is (8).
Thus all conditions but (8) are fulfilled by A×B′ as they are fulfilled by A×B.

To show that (8) is satisfied, we argue that γA×B(red-upd(〈ŜA, ŜB〉, b)) =

LITES

03:48 Appendix

γA×B(update#
A×B(〈ŜA, ŜB〉, b)) for all 〈ŜA, ŜB〉 ∈ C#

A×B and b ∈ B:

γA×B(red-upd(〈ŜA, ŜB〉, b))
Def. red-upd= γA×B(red(update#

A(ŜA, b), update#
B (ŜB , b)), update#

B (ŜB , b))
Def. γA×B= γA(red(update#

A(ŜA, b), update#
B (ŜB , b))) ∩ γB(update#

B (ŜB , b)))
(43)= γA(update#

A(ŜA, b)) ∩ γB(update#
B (ŜB , b)))

Def. γA×B= γA×B(update#
A(ŜA, b), update#

B (ŜB , b))
Def. update#

A×B= γA×B(update#
A×B(〈ŜA, ŜB〉, b))

We can easily show that A×B′ is at least as precise as A×B by making use of Theorem 7.
To this end, we need to define a function γA×B′→A×B that satisfies conditions (11), (12), (13),
(15), and (16). We define γA×B′→A×B to be the identity function. Conditions (11), (12), (15), and
(16) trivially hold as the left and right hand sides of these inequalities are the same. Finally (13)
reduces to ∀〈ŜA, ŜB〉 ∈ C#

A×B , b ∈ B : red-upd(〈ŜA, ŜB〉, b) vA×B update#
A×B(〈ŜA, ŜB〉, b), which

follows from (42):

red-upd(〈ŜA, ŜB〉, b) = (red(update#
A(ŜA, b), update#

B (ŜB , b)), update#
B (ŜB , b))

(42)
vA×B (update#

A(ŜA, b), update#
B (ŜB , b))

= (update#
A×B(〈ŜA, ŜB〉, b) J

I Definition 24 (Cooperative Update). Let A and B be two persistence analyses. A cooperative
update for A in the context of B is a function coop-upd : (C#

A × C
#
B)× B → C#

A , such that:

∀〈ŜA, ŜB〉 ∈ C#
A × C

#
B , b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γA(ŜA) ∩ γB(ŜB) ∧ h = effC(c, b) ∧ c′ = updateC(c, b)}

⊆ γA(coop-upd(〈ŜA, ŜB〉, b)) (44)

I Theorem 25 (Cooperative Update?). Let A and B be sound persistence analyses that satisfy
(6), (7), (8), and (10), and let coop-upd be a cooperative update function for A in the context of
B. Let the reduced update be defined as follows:

red-upd(〈ŜA, ŜB〉, b) := (coop-upd(〈ŜA, ŜB〉, b), update#
B (ŜB , b))

Then, A×B′ = 〈C#
A×B , γA×B , ÎA×B ,vA×B ,tA×B , red-upd, classify

#
A×B〉 is a sound persistence

analysis.

I Theorem 26 (Soundness of the State Reduction between C-Must and Block-CS?). The function
reduceC-Must×Block-CS is a reduction operator for C-Must in the context of Block-CS.

I Theorem 27 (Soundness of the State Reduction between C-Must and C-May). The operator
reduceC-Must×C-May is a reduction operator for C-Must in the context of C-May.

Proof. reduceC-Must×Block-CS is reductive, as min
{
ŜC-Must(b), . . .

}
≤ ŜC-Must(b).

It remains to show that for all Ŝ1 ∈ C#
C-Must, Ŝ2 ∈ C#

C-May:

γC-Must+C-May

(
Ŝ1, Ŝ2

)
= γC-Must+C-May

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
, Ŝ2

)
. (64)

Jan Reineke 03:49

If we can show

γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
= γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
, (65)

then (64) can be shown as follows:

γC-Must+C-May

(
Ŝ1, Ŝ2

) Def. γC-Must+C-May= γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
(65)= γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
Def. γC-Must+C-May= γC-Must+C-May

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
, Ŝ2

)
Let us now show that (65) holds:
As reduceC-Must×Block-CS is reductive and γC-Must is monotone, we know that

γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
⊇ γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
.

To prove that

γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
⊆ γC-Must

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

))
∩ γC-May

(
Ŝ2

)
,

assume for a contradiction that there is a trace s = c0〈b0, h0〉 . . . cn in γC-Must

(
Ŝ1

)
∩ γC-May

(
Ŝ2

)
that is not in γC-Must+C-May

(
reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
, Ŝ2

)
.

Then, there must be an i, such that bi 6∈ CSi+1 and |CSi| ≤ Ŝ1(bi), but not

|CSi| ≤ reduceC-Must×C-May

(
Ŝ1, Ŝ2

)
(bi)

= min{Ŝ1(bi)|{b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) < Ŝ1(bi)}|+ 1}

≤ |{b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) < Ŝ1(bi)}|+ 1.

To reach a contradiction, we will show that CSi \ {bi} ⊆ {b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) ≤ Ŝ1(bi)}.
Let c be an arbitrary element of CSi \ {bi} and let j denote the index of the last occurrence of c
in the trace s. As c ∈ CSi \ {bi}, j must be greater than i. Thus j ≥ i+ 1, and so CSj ⊆ CSi+1.
As bi 6∈ CSi+1, we also have bi 6∈ CSj . So |CSi| ≤ Ŝ1(bi) implies |CSj | < Ŝ1(bi).
As the trace s is in γC-May

(
Ŝ2

)
, we have |CSj | ≥ Ŝ2(c).

Thus Ŝ2(c) ≤ |CSj | < Ŝ1(c), which shows that c ∈ {b′ ∈ B | b′ 6= bi ∧ Ŝ2(b′) < Ŝ1(bi)}. J

I Theorem 28 (Soundness of Must Analysis). Must is a sound persistence analysis.

Proof. We show that Must satisfies the conditions of Theorems 3 and 4 and is thus a sound
persistence abstraction. We need to show that the abstraction satisfies (6), (7), (8), and (10).

Equation (6) is satisfied, because γMust(ÎMust) represents all possible sequences.
Let Ŝ vMust T̂ . Let s = c0〈b0, h0〉c1 . . . cn be an arbitrary trace such that s ∈ γMust(Ŝ).
Because Ŝ(bi) ≤ T̂ (bi) for all i, and ≤ is transitive, s is also an element of γMust(T̂), which
shows that (7) is satisfied.
Let Ŝ ∈ C#

Must, b ∈ B, and s = c0〈b0, h0〉 . . . cn ∈ γMust(Ŝ) be arbitrary.
To show that (8) is satisfied, we have to show that t = c0〈b0, h0〉 . . . cn〈bn, hn〉cn+1 with
hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of γMust(T̂), with T̂ =

update#
Must(Ŝ, bn).

LITES

03:50 Appendix

Because s ∈ γMust(Ŝ), we have that s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and

cn+1 = updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second and third constraint in (51) hold12, i.e.,
(∀b ∈ B : (∀i, 0 ≤ i < n+ 1 : bi 6= b)⇒ T̂ (b) =∞) (66)

∧ ∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≤ T̂ (bi) (67)
where CSi(c0〈b0, h0〉 . . . cn+1) := {bj | i ≤ j < n+ 1}.

Let us consider the constraint (66) first.
Let b ∈ B be arbitrary. We distinguish two cases:
1. Ŝ(b) 6=∞:

Then, as s ∈ γMust(Ŝ), there must be an i, 0 ≤ i < n, such that bi = b. As t is an
extension of s, bi also is part of t and thus (∀i, 0 ≤ i < n+ 1 : bi 6= b) is false for t as well.

2. Ŝ(b) =∞:
Then, we further distinguish two cases:
a. bn = b:

Then, the constraints holds for t, because (∀i : bi 6= b) is false.
b. bn 6= b:

Then, T̂ (b) = ∞ due to the definition of update#
Must, where the second case applies.

With T̂ (b) =∞ the constraint holds trivially.
Let us now consider the constraint (67).
Let i be arbitrary. We distinguish two cases based on i’s value:
1. i = n:

CSn(t) = {bn}. Due to the first case in the definition of update#
Must, T̂ (bn) = 1, and so

|CSn(t)| ≤ T̂ (bn).
2. 0 ≤ i < n:

We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γMust(Ŝ).
Observe that CSi(t) = CSi(s) ∪ {bn} for all i, 0 ≤ i < n.
We distinguish two cases:
a. bi ∈ CSi+1(s):

As CSi(t) ⊇ CSi(s), we have bi ∈ CSi+1(t).
b. bi 6∈ CSi+1(s) and thus |CSi(s)| ≤ Ŝ(bi):

We distinguish two further cases:
i. bi = bn:

Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bn} = CSi+1(s) ∪ {bi}.
ii. bi 6= bn:

We distinguish three cases based on which case in update#
Must applies:

A. First case in update#
Must applies:

This is impossible as bi 6= bn.
B. Second case in update#

Must applies:
Thus, Ŝ(bn) ≤ Ŝ(bi) and T̂ (bi) = Ŝ(bi).
We distinguish two further cases:
∗ Ŝ(bi) =∞:

Then, T̂ (bi) =∞ and trivially |CSi(t)| ≤ T̂ (bi).

12The constraints below account for the fact that t contains n + 1 accesses, where n is the number of accesses
in s.

Jan Reineke 03:51

∗ Ŝ(bi) <∞:
As Ŝ(bn) ≤ Ŝ(bi), we also have Ŝ(bn) <∞.
As a consequence, due to the second constraint in (51), bn must occur in s.
Let j be the index of the last occurrence of bn in s.
If i < j then CSi(t) = CSi(s) and so |CSi(t)| = |CSi(s)| ≤ Ŝ(bi) = T̂ (bi).
Otherwise, if j < i then CSi(t) = CSi(s) ∪ {bn} ⊆ CSj(s).
As |CSj(s)| ≤ Ŝ(bn) and Ŝ(bn) ≤ Ŝ(bi) = T̂ (bi), we have |CSi(t)| ≤ T̂ (bi).

C. Third or fourth case in update#
Must applies:

Then |CSi(t)| ≤ |CSi(s)|+ 1 ≤ Ŝ(bi) + 1 ≤ T̂ (bi)

Let Ŝ ∈ C#
Must and b ∈ B be arbitrary.

Assume classify#
Must(Ŝ, b) holds and thus Ŝ(b) < k. Let s = c0〈b0, h0〉 . . . cn be an arbitrary

trace in γMust(Ŝ). Let bi be the last occurrence of b in the trace. If b does not occur in the trace,
then (10) is satisfied by the second disjunct. Otherwise, bi 6∈ CSi+1(s) and so |CSi(s)| ≤ Ŝ(b).
As Ŝ(b) ≤ k and s ∈ LRUCacheTraces, we can apply Lemma 9 to the suffix ci〈bi, hi〉 . . . cn
to prove that b ∈ cn. J

I Theorem 29 (Soundness of Cooperative Update). The function coop-updC-Must×Must is a cooper-
ative update for C-Must in the context of Must.

Proof. We need to show that coop-updC-Must×Must satisfies (44), i.e.

∀(Ŝ, ŜMust) ∈ C#
C-Must × C

#
Must, b ∈ B :

{t.c〈b, h〉c′ | t.c ∈ γC-Must(Ŝ) ∩ γMust(ŜMust) ∧ h = effLRU
C (c, b) ∧ c′ = updateLRU

C (c, b)}

⊆ γC-Must(coop-updC-Must×Must(Ŝ, ŜMust, b)) (68)

Let (Ŝ, ŜMust) ∈ C#
C-Must × C

#
Must and b ∈ B be arbitrary.

Pick an arbitrary s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ) ∩ γMust(ŜMust). We have to show that
t = s.〈bn, hn〉cn+1 with hn = effLRU

C (cn, bn) and cn+1 = updateLRU
C (cn, bn) is an element of

γC-Must(T̂), with T̂ = update#
C-Must(coop-updC-Must×Must(Ŝ, ŜMust, bn)) for all bn ∈ B.

Because s ∈ γC-Must(Ŝ), s ∈ LRUCacheTraces. From hn = effLRU
C (cn, bn) and cn+1 =

updateLRU
C (cn, bn), it follows that t = s.〈bn, hn〉cn+1 is also in LRUCacheTraces.

It remains to show that the second constraint in (31) holds, i.e.:

∀i, 0 ≤ i < n+ 1 : bi ∈ CSi+1(t) ∨ |CSi(t)| ≤ Ŝ(bi).

Let i be arbitrary. We distinguish two cases based on its value:
1. i = n:

Observe that CSn(t) = {bn}.
The second case in the definition of coop-updC-Must×Must applies, and so T̂ (bn) = 1.
Thus, |CSn(t)| ≤ T̂ (bn).

2. 0 ≤ i < n:
We have that bi ∈ CSi+1(s) ∨ |CSi(s)| ≤ Ŝ(bi), because s = c0〈b0, h0〉 . . . cn ∈ γC-Must(Ŝ).
Clearly, bi ∈ CSi+1(s) implies bi ∈ CSi+1(t).
So the case where bi 6∈ CSi+1(s) and thus |CSi(s)| ≤ Ŝ(bi) remains.
Then, the first case in the update may not apply, because |CSi(s)| > 0 and thus Ŝ(bi) > 0.
We distinguish two cases:
a. bi = bn:

Then bi ∈ CSi+1(t) = CSi+1(s) ∪ {bn} = CSi+1(s) ∪ {bi}.

LITES

03:52 Appendix

b. bi 6= bn:
Because bi 6= bn, the second case in the update may not apply. So only the three final cases
in coop-updC-Must×Must are possible.

Observe that CSi(t) = CSi(s) ∪ {bn}.
We distinguish two cases:
i. bi ∈ CSi(s):

Then |CSi(t)| = |CSi(s)| ≤ Ŝ(bi) ≤ T̂ (bi) regardless of which of the three possible final
cases in coop-updC-Must×Must applies to bi.

ii. bn 6∈ CSi(s):
Then |CSi(t)| = |CSi(s)|+ 1.
We apply a case distinction based on the three possible final cases in coop-updC-Must×Must:
A. If the fourth case in coop-updC-Must×Must applies to bi, then

|CSi(t)| = |CSi(s)|+ 1 ≤ Ŝ(bi) + 1 = T̂ (bi).

B. If the fifth case in the update applies, then |CSi(t)| ≤ ∞ = T̂ (bi).
C. It remains to show that |CSi(t)| ≤ T̂ (bi) even if the third case in the update applies,

which is where the update profits from the information provided by the must analysis.
If bn does not occur in s, then by the definition of γMust, ŜMust(bn) = ∞, and so
T̂ (bn) = Ŝ(bn) =∞ > |CSi(t)|.
Otherwise, let j be the index of the last occurrence of bn in s.
As bn 6∈ CSi(s), j < i, and CSj(s) ⊇ CSi(s) ∪ {bj} = CSi(s) ∪ {bn} = CSi(t).
By the definition of γMust, |CSj(s)| ≤ ŜMust(bn).
Under the assumption that the third case in the update applies, ŜMust(bn) ≤ Ŝ(bi)
and thus |CSi(t)| ≤ |CSj(s)| ≤ ŜMust(bn) ≤ Ŝ(bi) = T̂ (bi). J

A Static Analysis for the Minimization of Voters in
Fault-Tolerant Circuits
Dmitry Burlyaev
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
dmitry.burlyaev@inria.fr

https://orcid.org/0000-0001-8685-6923

Pascal Fradet
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
pascal.fradet@inria.fr

https://orcid.org/0000-0003-4961-9923

Alain Girault
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
alain.girault@inria.fr

https://orcid.org/0000-0001-7500-1655

Abstract
We present a formal approach to minimize the num-
ber of voters in triple-modular redundant (TMR)
sequential circuits. Our technique actually works
on a single copy of the TMR circuit and considers a
large class of fault models of the form “at most one
Single-Event Upset (SEU) or Single-Event Transient
(SET) every k clock cycles”. Verification-based voter
minimization guarantees that the resulting TMR
circuit (i) is fault tolerant to the soft-errors defined
by the fault model and (ii) is functionally equivalent
to the initial TMR circuit. Our approach operates
at the logic level and takes into account the input
and output interface specifications of the circuit.
Its implementation makes use of graph traversal
algorithms, fixed-point iterations, and binary deci-
sion diagrams (BDD). Experimental results on the

ITC’99 benchmark suite indicate that our method
significantly decreases the number of inserted vot-
ers, yielding a hardware reduction of up to 55%
and a clock frequency increase of up to 35% com-
pared to full TMR. As our experiments show, if
the SEU fault-model is replaced with the stricter
fault-model of SET, it has a minor impact on the
number of removed voters. On the other hand,
BDD-based modelling of SET effects represents a
more complex task than the modelling of an SEU
as a bit-flip. We propose solutions for this task
and explain the nature of encountered problems.
We address scalability issues arising from formal
verification with approximations and assess their
efficiency and precision.

2012 ACM Subject Classification Hardware → Model checking, Hardware → Redundancy
Keywords and Phrases Digital Circuits, Fault-tolerance, Optimization, Static Analysis, Triple Modular
Redundancy.
Digital Object Identifier 10.4230/LITES-v005-i001-a004
Received 2017-01-11 Accepted 2018-06-21 Published 2018-10-15

1 Introduction

Circuit tolerance towards soft (non-destructive, non-permanent) errors is an important research
topic. As technology shrinks, the risk of system failures due to soft errors increases, which is
especially dangerous in safety-critical industries (e.g., space, transport, nuclear, etc.). Natural
radiation, such as neutrons of cosmic rays and alpha particles of packing or solder materials, is a
common source of soft errors [20, 34, 42, 47]. There are two main types of soft errors: Single-Event
Upsets (SEUs) (i.e., bit-flips in Flip-Flops (FFs)) and Single-Event Transients (SETs) (i.e. glitches

© Dmitry Burlyaev, Pascal Fradet, and Alain Girault;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 5, Issue 1, Article No. 4, pp. 04:1–04:26
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmitry.burlyaev@inria.fr
https://orcid.org/0000-0001-8685-6923
mailto:pascal.fradet@inria.fr
https://orcid.org/0000-0003-4961-9923
mailto:alain.girault@inria.fr
https://orcid.org/0000-0001-7500-1655
https://doi.org/10.4230/LITES-v005-i001-a004
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

04:2 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

primary

inputs

n

Internal structure of a voter

m
primary

outputs
voter

m voters

copy 2

p p

mn

copy 1

p p

n m

p p

m

copy 3

n

m

m

m

FF

FF

combinational part

combinational part

sequential part

sequential part

combinational part

sequential part

FF

Figure 1 TMR scheme proposed by von Neumann, with n primary inputs, m primary outputs, and a
voter after each primary output.

propagating in the combinational circuit). Since an SET may lead to several bit-flips, SETs are
more general than SEUs.

Triple-Modular Redundancy (TMR) proposed by von Neumann [45] remains the most popular
fault tolerance technique in Field-Programmable Gate Arrays (FPGAs) to mask both types of
soft-errors. In its original form, TMR relies on three redundant copies of an original system
receiving the same inputs, as shown in Figure 1. A majority voter is inserted after each of the
triplicated primary outputs. If at most one redundant module returns incorrect values, the voter
will return the correct result, therefore masking one possible error. An implementation example of
the majority voter is also depicted in Figure 1. The voter always returns the majority bit among
its three inputs provided that a fault does not occur in its own logic.

Manual introduction of TMR [24] into a circuit design is often a tedious and error-prone
process. Hence, several CAD tools automatically implement TMR for fault tolerant FPGA
designs [6, 19,37,44,46].

In a triplicated sequential circuit, adding voters at the primary outputs is not sufficient in
general. Indeed, an error may remain in a memory cell long enough until another error corrupts
a different redundant copy of the circuit. In that case, the final vote may produce an incorrect
output. Moreover, single voters cannot mask errors occurring within the voting logic itself. A
solution to these problems is to insert a triplicated voter after each memory cell (as depicted in
Figure 2). This is sufficient to mask any SET in the combinational circuit (even within voters)
and to prevent errors from remaining in cells 1. However, full TMR greatly increases both the

1 Of course, two upsets occurring at the same cycle in two different copies may not be masked; triplication does
not provide enough redundancy for multiple upsets.

D. Burlyaev, P. Fradet, and A. Girault 04:3

p

m
primary

outputs
voter

m voters

m
primary

outputs
voter

m voters

m
primary

outputs
voter

m voters

primary

inputs

n

voter

p voters

voter

p voters

voter

p voters

copy 2

p p

mn

copy 1

p p

n m

p p

m

copy 3

n

p

p

p

p

p

sequential part

combinational part

FF

FF

FF

sequential part

combinational part

combinational part

sequential part

Figure 2 Full TMR with triplicated voters after the p internal FFs and the m primary outputs.

hardware overhead and the critical path, which directly influences the circuit performance. Thus,
the overall TMR throughput is degraded whereas it should be the main advantage of TMR over
time-redundant fault-tolerance techniques.

From the functional point of view, introducing a voter per cell is excessive in most cases.
Intuitively, this is because some voters are useless, either because faults at this stage will be
captured by another voter “later” in the circuit, or because some faults are naturally masked by
the logic. But, to the best of our knowledge, there is no tool dedicated to voter minimization in
TMR that guarantees fault-tolerance according to a user-defined fault model. The main existing
research trends in TMR have been providing probabilistic solutions and not absolute ones (see
Section 8).

In this paper, we propose an automatic and optimized transformation process for TMR on
digital circuits. Our transformation inserts as few voters as possible, while guaranteeing to mask
all errors of the considered fault-model.

We consider circuits described at the gate level (i.e., netlists of AND, OR, NOT gates plus
FFs – also called memory cells). This level has two main advantages:

gate level netlists can be described by an elementary language, which simplifies correctness
proofs;
it is easier to prevent synthesis tools from optimizing (undoing) our transformation at this late
design stage.

Since the main contributors to Soft-Error Rate (SER) at frequencies below 1 GHz are the FFs [27],
we focus first on errors caused by SEUs (i.e., bit-flips in FFs). We consider fault models of the
form “at most one bit-flip within K cycles” denoted by SEU (1,K).

However, SETs in high-speed Integrated Circuits (ICs) have become a growing concern [8,25,35].

LITES

04:4 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

QD

QD
0

1

Y

SEL0

QD
0

1

Y

SEL0

F1

QD
0

1

Y

SEL0

in

F2 F3 F4

out

Figure 3 Use-case of the semantic analysis: voters are needed only at F1 and the primary output out.

An SET is a voltage pulse (glitch) caused by a particle. It may propagate through the combinational
logic provided that it is not logically masked by the circuit functionality. As a result, the outputs
of the combinational circuit might be glitched and be incorrectly latched by memory cells. Due
to the non-deterministic nature of the propagated glitch, it can be latched by none, some, or all
memory cells it reaches. Thus, since an SET may lead to several corrupted memory cells (bit-flips),
SETs subsume SEUs. In response, we expand our approach to fault-models of the form “at most
one SET within K clock cycles” denoted by SET (1,K).

The proposed voter-minimization methodology is based on a static analysis that checks whether
an error in a single copy of the TMR circuit may remain after K cycles. If not, protecting the
primary outputs with voters is sufficient to mask the error. If, for instance, the circuit is a pipeline
without feedback loops, then any bit-flip will propagate to the outputs and will thus disappear
before K cycles, where K is the length of the longest path. But if the state of the circuit is still
erroneous after K cycles (in the form of an incorrect value stored in one of its memory cells),
then there is a potential error accumulation since, according to the SEU/SET(1,K) models,
another soft-error may occur in another copy of the circuit. It may lead to two incorrect redundant
modules of the TMR circuit and the loss of its fault-tolerance properties. In this case, additional
voters are needed to prevent an error accumulation and mask all errors circulating inside one
redundant module before the next soft-error may occur.

Our static analysis consists of four steps. The first step, described in Section 2, is purely
syntactic and finds all loops in the circuit. Error accumulation can be prevented by keeping
enough voters to cut all loops.

In many cases, a digital circuit resets (or overwrites) some memory cells, which may mask
errors. Detecting such cases allows further useless voters to be removed. This second step is
performed by a semantic analysis (Section 3) taking into account the logic of the circuit.

Figure 3 shows a simple example where the previous syntactic analysis is not able to suppress
any voter because each FF is in a self-loop. Our semantic analysis can catch the behavior of F1
that changes its value every cycle. Since F1 controls the multiplexers before F2, F3, and F4, all
these FFs will be rewritten each other cycle. Consequently, even if a fault occurs in one of these
three FFs, it will be eventually re-written with new correct data coming from the primary input
in. The semantic analysis indicates that it is sufficient to protect F1 and the primary output with
majority voters.

Circuits are also often supposed to be used in a specific context. For instance, a circuit
specification may assume that a start signal occurs every x cycles and outputs are only read
y cycles after each start. When such assumptions exist, taking them into account makes the
semantic analysis more effective. Section 4 and Section 5 explain how to integrate such input and
output specifications respectively.

Our analysis has been implemented based on graph algorithms and fixed point iterations using
Binary Decision Diagrams (BDDs). We have tested several safe approximations and trade-offs
between cost and precision. The implementation and experiments are presented in Section 7.

D. Burlyaev, P. Fradet, and A. Girault 04:5

Related work on TMR and voter insertion strategies are reviewed in Section 8. We summarize our
contributions and sketch a few extensions in Section 9.

This article extends and revises the work presented in [10]. Section 6, presenting the extension
of the approach to SET, is new. Sections 3 and 7 present and assess respectively a new abstract
domain; explanations and examples have been added throughout.

2 Syntactic Analysis

We consider a triplicated circuit with voters but we actually work on a single copy of this circuit
that abstracts the triplicated version. The effect of insertion or removal of voters can be represented
and analyzed on such a single copy of the TMR circuit. We model a sequential circuit C as a
directed graph GC where each vertex represents a FF (memory cell or latch) and an edge x→ y

exists whenever there is at least one combinational path between the two FFs x and y in C. An
error in a cell x may propagate, in the next clock cycle, to all cells connected to x by an edge in
this graph. Note that this is an over-approximation since the error may actually be masked by
some logical operation.

Under the fault model SEU (1,K), error accumulation is the situation where an error remains
in the circuit K clock cycles after the SEU that caused it. Any circuit C without feedback loop
will return, after an SEU, to a correct state before K clock cycles, provided that K is larger than
the maximal length of the paths in GC . In environments with high levels of ionizing radiations
(e.g., space, particle accelerators), K is bigger than 1010 [5]. For comparison, Soft-Error Rate
(SER) can be as small as 10−10 bit-upset/day for Virtex FPGAs in terrestrial conditions [7]. So,
even if our approach can deal with any K, we can safely assume that K is larger than the max
length of all paths in GC . It follows that error accumulation can only be caused by cycles in GC ,
which must therefore be cut by removing vertices. Removing a vertex in GC amounts to protecting
the corresponding memory cells with a voter in the triplicated circuit.

The best solution to cut all cycles in GC is to find the Minimum Vertex Feedback Set (MVFS),
i.e., the smallest set of vertices whose removal leaves GC without cycles. This standard graph
problem is NP-hard [32]. While there exist good polynomial time approximations [22], the exact
algorithm was efficient enough to be used in all our experiments with relatively small circuits (less
than 200 FFs).

Having a voter after each cell belonging to the MVFS prevents error accumulation. This simple
graph-based analysis is very effective with some classes of circuits. In particular, it is sufficient to
remove all internal voters in pipelined architectures such as logarithm units and floating-point
multipliers (see Table 1).

However, this approach is not effective for many circuits due to the extensive use of loops in
circuit synthesis from Mealy machine representation. In such circuits, most cells are in self-loops
(e.g., D-type flip-flops with Enable input). This entails many voters if the syntactic analysis is
used alone. However, if the circuit functionality is taken into account, we can discover that such
memory cells may not lead to erroneous outputs. Detecting such cases requires to analyze the
logic (semantics) of the circuit. We address this issue in the following section.

3 Semantic Analysis

The semantic analysis first computes the Reachable State Set (RSS) of the circuit with a voter
inserted after each memory cell in the MVFS. Then, for each cell m ∈ MVFS, it checks whether
its voter is necessary: (i) First, the voter is removed and all possible errors (modeled by the chosen
fault-model in each state of RSS) are considered; (ii) If such an error leads to error accumulation,
then the voter is needed and kept.

LITES

04:6 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

Table 1 Voter Minimization, Syntactic Analysis Step.

Circuit FFs Syntactic

Da
ta

Fl
ow

I. Pipelined FP multiplier 8x8 [21] 121 0
Pipelined logarithm unit [21] 41 0
Shift/Add multiplier 8x8 [33] 28 28

ITC’99 [16](subset)
Co

nt
ro

l
Fl

ow

b01 Flows comparator 5 3
In

te
ns

iv
e b02 BCD recognizer 4 3

b03 Resource arbiter 30 29
b06 Interrupt handler 9 3
b08 Inclusions detector 21 21
b09 Serial converter 28 21

3.1 The precise logic domain D1

Correct and erroneous values are represented by the four-value logic domain D1:

D1 = {0, 1, 0, 1}

where 0 and 1 represent erroneous 0 and 1, respectively. The truth tables of standard operations
in this four-value logic are given in Table 2. The operators AND and OR gates can mask errors:

x ∨ 1 = 1 x ∧ 0 = 0 0 ∧ 1 = 0 1 ∨ 0 = 1

Since we work on circuits that abstracts their TMR version, a 0 (resp. 1) in a cell means that one
of its three copies may have the incorrect value 1 (resp. 0). A 0 (resp. 1) means that all three
memory cells have the same correct value 0 (resp. 1). This interpretation assumes that any SET
affects only one copy of the TMR circuit.

The err function models bit-flips and represents a bit corruption in one of three copies in the
TMR circuit:

err(0) = 1 err(1) = 0

The vot function models the effect of a voter on the TMR version of the circuit and corrects an
error:

vot(1) = 0 vot(0) = 1

It corresponds, in the TMR version that it abstracts, to the majority voter depicted in Figure 2.
Finally, for any x ∈ {0, 1}, vot(err(x))=x.

3.2 Semantic analysis with D1

A sequential synchronous circuit with M memory cells and I primary inputs is formalized as a
discrete-time transition system with the transition relation δ : {0, 1}M × {0, 1}I 7−→ {0, 1}M . We
abuse the notation and use M (resp. I) to denote both the number and the set of memory cells
(resp. inputs) of the circuit. The state of a circuit is the values of its cells and the initial state s0

D. Burlyaev, P. Fradet, and A. Girault 04:7

Table 2 Operators for the 4-value logic domain D1.

0 1
0 0 1

1 1 1 1 1
1 1
1 1

0 1
0 0 0 0 0
1 0 1

0 0
0 0

NOT err vot
0 1 0

1 0

1 1

𝟏 𝟎
1 0

𝟏 1 1
𝟎 0 0

𝟏 𝟎

1 0
𝟏 1 1
𝟎 0 0

1
0 1

𝟏 0 0 0
𝟎 1

OR AND

is obtained after the circuit reset. ∆(S) denotes the function returning the set of states obtained
from the set S after one clock cycle. Formally

∆(S) = {s′ | ∃i. ∃s ∈ S. δ(s, i) = s′}

∆ applies the transition function δ to all states of its argument set and all possible inputs. The
set of reachable states RSS is defined by the following iteration:

S0 = {s0}
Si+1 = Si ∪∆(Si)

(1)

Starting from the initial state, we compute the set of reachable states by accumulating states
obtained by applying ∆ iteratively. The set of possible states being finite, the iteration reaches a
fixed point equal to the RSS and denoted2 by {s0}∗∆.

The second phase is to check whether the suppression of voters may lead to an error accumulation
under the chosen fault-model. Let δV be the transition relation of a circuit equipped with a voter
after each cell in a given set V , and let ∆V be its extension to sets. δV is defined as:

δV ((m1, . . . ,mM
), i) = δ((m′1, . . . ,m′M), i)

where ∀ 1 ≤ j ≤M, m′j =
{

vot(mj) if mj ∈ V
mj otherwise

This checking process is described by Algorithm 1.
We start with the circuit equipped with a voter after each cell in the MVFS (line 1). For

each such cell m, we check whether its voter suppression entails error accumulation. Bit-flips are
introduced in all possible cells and states of RSS according to the fault-model (line 5):⋃

mi∈M

RSS [mi ← err(mi)]

The transition function corresponding to the circuit with the current set of voters (V) is
applied K times (∆K

V), where K is the number of clock cycles in the fault model (SEU(1,K)).

2 We will use this notation with other initial states and transition functions.

LITES

04:8 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

Algorithm 1 Semantic Analysis – Main Loop.
Input : MVFS ; // The minimum vertex feedback set.

∆; // The circuit transition function.
s0; // The initial state.

Output : V ; // The subset of vertices (i.e., memory cells) after which a voter is needed.
1: V := MVFS ;
2: RSS := {s0}∗∆;
3: forall m ∈ MVFS
4: V := V \{m};
5: S := ∆K

V (
⋃

mi∈M RSS [mi ← err(mi)]);
6: if ErrAcc(S) then
7: V := V ∪ {m};
8: return V

The resulting set of states shows error accumulation if there exists an erroneous cell in at least
one state of this set, which we capture with the predicate ErrAcc in line 6. ErrAcc is defined as:

ErrAcc(S)⇔ ∃s ∈ S. ∃m ∈ s. m = 0 ∨m = 1

If the set S does not show error accumulation, the voter is useless and can indeed be suppressed.
Otherwise the voter is re-introduced (line 7).

In practice, ∆ is applied a small number of times dictated by the circuit functionality and
available analysis time. It is always safe to stop the iterative computation before reaching K; the
only drawback would be to infer an error accumulation when there is none. The number of ∆
applications can be also adjusted to the available analysis time. In our experiments, the analysis
time limit was set to 20 minutes and K to 50. Furthermore, the iteration is stopped:

if the current set of states is errorless, then there cannot be error accumulation (no error can
reappear);
or, if the erroneous current set is the same as the previous one, a fixed point is reached and
there is an error accumulation.

The order in which the cells in the MVFS are analyzed (line 2 in Algorithm 1) may influence
the number of removed voters. It follows that the result of removing voters one-by-one is not
unique, it depends on the order the voters are chosen. We use the following heuristic to chose the
ordering of voter selection: starting from the MVFS of memory cells with voters, we first sort it
according to the number of successive memory cells that each cell has in the netlist (the number of
successors in GC). Then, we consider primarily the removal of voters that lead to the corruption
of the smallest number of cells in the next clock cycle. The voters whose removal may lead to a
large number of corrupted cells are considered last. We found out that following this ordering, we
are able to suppress more voters than with a random ordering or with the ordering relying on the
number of preceding memory cells in the netlist.

3.3 More Abstract Logic Domains
The aforementioned method is precise but costly since it considers all possible inputs. In general,
keeping track of the relations between indeterminate inputs is not very useful. Fortunately, our
technique can be used as it is with other, more abstract, logic domains. There are several domains
that retain enough precision and allow larger circuits to be analyzed.

D. Burlyaev, P. Fradet, and A. Girault 04:9

Table 3 Operators for the 4-value logic domain D2.

NOT err(x) vot(x)
0 1 U 0

1 0 U 1

U U U U

𝐔 U U U

0 1 U 𝐔
0 0 1 U

1 1 1 1
U U 1 U U

𝐔 U 1 U U

1
U

𝐔0 1 U
0 0 0 0 0
1 0 1 U U
U 0 U U

𝐔 U U0
U

U

x

OR AND

The 4-value logic domain D2 decreases the state space explosion that occurs with D1:

D2 = {0, 1,U,U}

The abstract value U represents a correct value (either 0 or 1) and U represents any (possibly
erroneous) value (i.e., 0, 1, 0, or 1). A vector of n inputs is represented as a unique vector
(U, . . . ,U) with D2 whereas 2n vectors had to be considered with D1. The truth tables of standard
operations in D2 are given in Table 3.

In contrast with D1, a gate with two erroneous values cannot produce a correct one. Logical
masking of errors can only occur with two operations: 0 ∧U and 1 ∨U. This is sufficient to take
into account the masking performed by explicit signals (e.g., resets).

Typical examples where the semantic analysis with D2 is more effective are circuits that use
D-type FFs with an enable input driven by a Finite State Machine (FSM) encoded in the circuit.
The syntactic approach would keep a voter for each such cell (they are in self-loops). The semantic
analysis can detect that such cells are regularly overwritten by fresh inputs. For example, the
resource arbiter b03 in Section 7 is such a circuit. After initialization, its finite state machine
forces 12 cells (fu1-fu4, ru1-ru4, grant_o[3:0]) to be overwritten with fresh values every other
cycle. The semantic analysis (using D1 or D2) is able to show that those cells, although in self
loops, do not need to be protected by voters.

Another approximate logic domain is the 16-values logic domain D3, where a memory cell is
encoded as a subset of its four possible values. It is defined as the powerset of D1:

D3 = P({0, 1, 0, 1})

A value A in D3 is the set of all possible values that its memory cell can take at this stage of
the analysis. For example, a fully determinate value is represented by a singleton (e.g., {0} for a
correct 0 or {0} for a bit-flipped 1), an unknown but uncorrupted value by the set {0, 1}, and a
completely unknown value by the set {0, 1, 0, 1}.

The operators of D3 are the power set extensions of the operators of D1.

A ∧3 B = {x | x = a ∧1 b, a ∈ A, b ∈ B}
A ∨3 B = {x | x = a ∨1 b, a ∈ A, b ∈ B}
¬3A = {x | x = ¬1a, a ∈ A}

err3(A) = {x | x = err1(a), a ∈ A}
vot3(A) = {x | x = vot1(a), a ∈ A}

LITES

04:10 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

where ∧1 ∨1, ¬1, err1, and vot1 denote the and, or, not, err, and vot operators of D1 as defined
in Table 2.

This domain is a trade-off in terms of precision between D1 and D2. The main advantage of
D3 over D1 is the prevention of state explosion, since a vector of n unknown and uncorrupted
inputs is represented as a unique vector ({0, 1}, . . . , {0, 1}). Contrary to D2, D3 remains able
to represent logical masking such as {0} ∧3 {0, 1} = {0} or {1} ∨3 {1, 0} = {1}. D3 can be
seen as retaining precise information about the possible values and corruptions but ignoring the
relationships between different inputs.

3.4 Summary
We have presented a semantic analysis to minimize the number of voters in TMR circuits. Using
several logic domains, we can represent the internal circuit state with various levels of precision.
The functional behavior of a circuit under random inputs is taken into account to analyse how
an error may propagate through it. Algorithm 1 and domain encodings have been implemented
in Ocaml using the BDD library CUDD [43] and MLCuddIDL [30]. Transition systems and
sets of states are expressed as BDD formulae [15]. Section 7 provides more details about the
implementation and experimental results. In the two next sections, we improve the analysis by
specifying and considering assumptions on inputs and outputs. This permits us to better express
real-life circuit behavior and to improve the precision of the analysis.

4 Inputs Specification

Circuits are often designed to be used in a specific context where some input signals must occur
at definite timings. Taking into account assumptions about the context may make the semantical
analysis much more precise, in particular, when the logical masking of corrupted cells depends
on specific inputs (e.g., a start control signal). Our approach is to translate these specifications
into an interface circuit feeding the original circuit with the specified inputs. The analysis of
the previous section can be applied to the resulting combined circuit. As a consequence, error
accumulation is checked with the method described in Section 3.2, but under the constraints
specified by the interface. The only small adjustment needed in Algorithm 1 is to make sure that
errors are introduced only in the cells of the original circuit and not in the cells of the interface
circuit. educe We use ω-regular expressions to specify circuit interfaces. An ω-regular expression
specifies constraints using vectors of {0, 1, ?}, which replace primary inputs by 0, 1, or leave them
unchanged (? being the wild card). Consider, for instance, a circuit with two primary inputs
[i1, i2], then the expression ([1, 0] + [0, 1]).[?, ?]ω specifies that the circuit first reads either i1 = 0
and i2 = 1, or i1 = 0 and i2 = 1, and then proceeds with no further constraints.

In general, specifications need non-determinism to describe a partially specified or a non-
deterministic context. Hence, the aforementioned ω-regular expression can also be seen as a
Non-deterministic Büchi Automaton (NBA) that reads inputs and replaces them by 0, 1, or leaves
them unchanged (?). Such a translation to NBA can be performed in linear time.

For instance, the expression ([1, 0] + [0, 1]).[?, ?]ω can be represented as the two-state NBA
of Figure 4 (a): in the first state, it reads inputs and returns either the outputs [1, 0] or [0, 1]
(regardless of the inputs). Then, the automaton goes (and stays) in the second state where inputs
are read and produced as outputs. The indices in ?1 and ?2 allow to identify the inputs according
to their position.

To generate a circuit from an ω-regular expression, we first convert the corresponding NBA into
a deterministic automaton as follows. Each nondeterministic edge is made deterministic using new
inputs (sometimes referred to as oracles). If a vertex has n nondeterministic outgoing edges, adding

D. Burlyaev, P. Fradet, and A. Girault 04:11

(a)

1 2

[?
1
, ?

2
]/[1, 0]

[?
1
, ?

2
]/[0, 1]

[?
1
, ?

2
]/[?

1
, ?

2
]

(b)

1 2

[0, ?
1
, ?

2
]/[1, 0]

[1, ?
1
, ?

2
]/[0, 1]

[?
0
, ?

1
, ?

2
]/[?

1
, ?

2
]

Figure 4 Input interface as a NBA (a) and its deterministic version (b).

log2(n) new inputs is sufficient. For example, the specification ([1, 0] + [0, 1]).[?, ?]ω can be made
deterministic by adding a single additional input i. The automaton (see Figure 4 (b)) now reads
three inputs: if i is 0 (resp. 1) it produces [1, 0] (resp. [0, 1]). The resulting deterministic automaton
is then translated into an interface circuit using standard logic synthesis techniques [17, p.118]. If
the original circuit has I inputs, the resulting interface circuit will have I + a (a new inputs to
make it deterministic) inputs and I outputs. It is then plugged by connecting its outputs to the
inputs of the circuit to be analyzed.

A typical example where an input specification is useful is the circuit b08 of Section 7. Such
a circuit has a start input signal and 8-bit data input. Its input interface specification can be
expressed as the following ω-regular expression:

([1, ?, ?, ?, ?, ?, ?, ?, ?].[0, ?, ?, ?, ?, ?, ?, ?, ?]17)ω (2)

A start signal is first raised and the input data is read. For the next 17 cycles, data is processed
and start is kept to 0. This process is repeated over and over. Since start is raised every 18
clock cycles, the internal data registers are rewritten periodically with new data, as they can keep
erroneous data only until the next start signal. The circuit also has an internal FSM which can
be corrupted but the periodic start ensures that it returns to its initial state every 18 cycles.
Consequently, error accumulation is impossible for any K > 18, and no voters (except implicit
voters at primary outputs) need to be inserted.

5 Outputs Specification

Consider another example, similar to the previous one, with 2 inputs, 1 output, and where some
waiting can occur before raising the start signal. Formally, the input interface would be:

([0, ?]∗.[1, ?].[0, ?]17)ω (3)

This interface does not guarantee that start will be raised before K clock cycles. Since the
analysis must consider the case where start is not raised, it may detect error accumulation even
though start would ensure logical masking. However, if it is known that the primary outputs
are not read before some useful computation triggered by the start signal completes, a better
analysis can be performed.

We specify the output interface by adding to each vector of the input interface a vector of
{0, 1} indicating whether the corresponding outputs are read (1) or not read (0). For instance,
the output interface of the previous example, where the single bit output is read only after start
is raised, can be specified as

(([0, ?] : [0])∗.([1, ?] : [0]).([0, ?] : [1])17)ω (4)

It states that the output is not read ([0]) until the start signal is raised. Then, the output is
read ([1]) during 17 cycles.

LITES

04:12 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

In
pu

t i
nt

er
fa

ce
ci

rc
ui

t

or
ac

le
s

&
fr

ee
 in

pu
ts

Interface circuit

O
ut

pu
t i

nt
er

fa
ce

ci
rc

ui
tOriginal circuit

Figure 5 Original circuit with the surrounding interface circuit.

The extended ω-regular expression is translated into an NBA as in Section 4, then made
deterministic, and finally translated into a sequential circuit. The corresponding interface circuit
will additionally produce 0 or 1 signals to filter the useless and needed outputs respectively. Each
such signal is connected using an AND gate to the corresponding primary output of the original
circuit. The final configuration with the surrounding interface circuit is shown in Figure 5.

The property to check must now be refined to allow error accumulation as long as no error
propagates to the filtered primary outputs. Recall that when an error occurs, it is allowed to
propagate to outputs (or final voters) within the next K clock cycles since no additional soft-error
can occur during that time. If there is an error accumulation, the analysis must further ensure
that no error can propagate to outputs after the K cycles i.e., when additional errors occur which
could not be masked by final voters.

The refined property check discussed in the previous paragraph is performed by lines 6-15 of
Algorithm 2. If an error accumulation is detected in the reached state set S, K cycles after a fault
occurrence (line 6), then we calculate all states S∗∆V

that can be reached after these K cycles
(line 7). Then, we iteratively simulate the occurrences of additional errors (line 9-12) separated by
at least K steps. E0 (line 7) represents the circuit reachable state space with only one fault. Ei

represents the reachable state space after at most i+ 1 errors separated from one another by at
least K clock cycles. The global fixpoint Ei (line 13) represents the set of all possible states that
can be reached after all possible sequence of errors allowed by the fault model. It can now be
checked that none of these states leads to the propagation of an error to the (filtered) primary
outputs (line 13).

Since this computation is done assuming that voters operate correctly, we must ensure that no
error accumulate in a cell followed by a voter. Indeed, in that case, if a similar error occurs in a
second copy of the circuit, the voter would fail to mask it. The function ErrProp (line 13) detects
if there is a reachable state where a memory cell with a voter or a primary output is corrupted
and prevents the voter under consideration (m) to be removed. We assume that each primary
output is represented by a new memory cell. Let out, vot and cor be predicates denoting whether
a cell represents an output, a cell protected by a voter or is corrupted respectively, then ErrProp
is defined as:

ErrProp(Ei) ⇔ ∃s ∈ Ei. ∃m ∈ s. (out(m) ∨ vot(m)) ∧ (cor(m))

These criteria are safe but sometimes too strict. Consider, for instance, a circuit with a
sequence of two enabled flip-flops (i.e., with self loops) that produce significant output only two
cycles after the enable signal is set. Both cells may be protected by voters to break self loops and
prevent error accumulation. However, no voter is necessary since error accumulation can occur
only when no significant output is produced. Indeed, when the enable signal is set, new input
and intermediate results will overwrite the (possibly corrupted) cells and a correct output will be
produced. If we first try to remove the first voter, our algorithm will detect that an error can

D. Burlyaev, P. Fradet, and A. Girault 04:13

Algorithm 2 Semantic Analysis with Output Specification.
Input : MVFS ; // The minimum vertex feedback set.

∆; // The circuit transition function.
s0; // The initial state.

Output : V ; // The subset of vertices (i.e., memory cells) after which a voter is needed.
1: V := MVFS ;
2: RSS := {s0}∗∆;
3: forall m ∈ MVFS
4: V := V \{m};
5: S := ∆K

V (
⋃

mi∈M RSS [mi ← err(mi)]);
6: if ErrAcc(S) then
7: E0 := {S}∗∆V

;
8: i := 0;
9: repeat

10: i+ +;
11: Ei := Ei−1 ∪ (∆K(

⋃
mi∈M Ei−1 [mi ← err(mi)]))∗∆V

;
12: until Ei = Ei−1;
13: if ErrProp(Ei) then
14: V := V ∪ {m};
15: return V ;

remain in the first cell after K steps. That cell will in turn corrupt the second one still protected
by a voter. Hence, the condition ErrProp will prevent removing the first voter whereas starting
with the second or removing both voters would have been possible. Therefore, a useful refinement
of Algorithm 2 is, whenever ErrProp is true only because of error accumulation before some
voters (and no error propagates to the output), to iterate and check whether all these voters can
be removed.

Output interfaces are especially useful for circuits whose outputs are not read before some
input signal is raised and some computation is completed. For instance, the shift/add multiplier
(see Section 7) waits for a start signal. During that time, errors may accumulate in internal
registers and propagate to the outputs, which are not read. When start occurs, fresh input data
is read and written to internal registers (which are thus reset). The outputs are read only after
the multiplication is completed and a done signal is raised.

Note that output interfaces allow to model Transient Error Tolerance (TET) where all errors
at primary outputs are not necessarily critical. For instance, if erroneous outputs are considered
non-critical within a specified number of cycles, output interfaces can express it and allow further
optimizations. In this case, the optimized TMR configuration is tuned to particular system
requirements. Such quality guided optimizations are investigated on MPEG decoding in [26,36] to
select gates whose hardening maximize fault-tolerance.

6 Extension to Single-Event Transients

In the previous sections, we considered single event upsets and the corresponding fault-models
SEU(1,K), corresponding to “at most one bit-flip every K cycles”. Hereafter, we extend our
approach to single event transients, in particular, the fault model SET (1,K) which can be read
as “at most one SET within K clock cycles”.

LITES

04:14 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

An SET occurs when a high-energy particle strikes a combinational logic element [25]. Such
a particle causes a transient voltage disturbance, which can propagate on wires and possibly be
latched by several memory cells. Due to the non-deterministic nature of the propagated glitch,
it can be latched by none, some, or all memory cells it reaches. Consequently, an SET can
potentially lead to several corrupted memory cells (i.e., several SEUs). In this section, we present
the extension of our previous analysis to SET.

6.1 Precise modeling of SETs
As opposed to an SEU, the effect of an SET depends on the logical propagation (and possible logical
masking) of the signal perturbation through the combinational part. Such signal perturbation or
glitch is latched in a non-deterministic manner. From now on, a signal can take 3 values: a logical
one, a logical zero, or a glitch written �.

Signal := 0 | 1 | �

A glitch can be masked in a combinatorial circuit by or(�, 1) = 1 or and(�, 0) = 0. The precise
modelling of a glitched signal in a TMR circuit requires the knowledge of its correct value (present
in the corresponding signals of the two other redundant modules). Consequently, the precise
domain D1 is extended as Dt to model a glitch propagation in a combinatorial circuit of one
redundant module:

Dt = {0, 1, 0, 1, 0�, 1�}

where 0� and 1� represent respectively a glitched 0 and 1. That is, 0� represents a glitch at one
point of the circuit such that the value in the two other redundant copies is 0. A glitch on an
incorrect signal with the value 0 (resp. 1) will be represented by the signal value 1� (resp. 0�).
One example that illustrates the difference between a glitch and a corrupted value is:

D1 : 0 ∨1 1 = 1 Dt : 0� ∨t 1� = 1�

While in the first case, an or gate with corrupted but stable signals returns a correct value, in
the second case, the glitch propagates.

While the precise domain D1 requires the aforementioned extension to Dt, the domains D2
and D3 can overapproximate such glitch behavior with no extension. In particular, a glitched
signal, as well as any possibly wrong stable signal, takes the value U in D2. A glitched 1 (resp. 0)
can be represented as {1, 0} (resp. {0, 1}) in D3.

A glitch propagated to a memory cell is non-deterministically latched as true or false. It
follows that the precise glitch modelling in Dt implies that any glitched signal 0� (resp. 1�) is
non-deterministically latched as a correct 0 or as an incorrect 1 (resp. as a correct 1 or as an
incorrect 0). This non determinism may lead to a significant state space growth in D1. The
domains D2 and D3 avoid this inconvenience since glitched signals are expressed in the same logic
as the latched values.

To take into consideration all possible effects of an SET, it is necessary to calculate the set of
reachable states for all cases of SET injections. These cases include a fault injection either at the
output of a logical gate/a memory cell or the mutually exclusive corruption of branches of a wire
split. The union of the state spaces that can be reached in each of these corruption cases forms
the reachable state set.

The precise SET modeling in Dt imposes significant computational overhead. Its two important
bottlenecks are the need to consider all possible SET injection points and all possible non
deterministic choices when a glitch is latched. Both points can been taken into account by a

D. Burlyaev, P. Fradet, and A. Girault 04:15

D Q

D Q

primary
input

D Q

logic

logic

logic

c1

f1

f2

f3

c2

c3

p1

Figure 6 Combinational cones for SET modeling.

transition function that expresses a circuit state change during a clock cycle with an SET and
returns a set of possibly corrupted states. In the next Section, we propose a safe approximation of
the precise SET modeling in domains D1, D2, and D3.

6.2 Safe SET over-approximation

If a memory cell is connected by a combinational path to a component (wire or gate) where an
SET occurs, this cell may be corrupted. We should find all sets of cells that can be corrupted
at the same clock cycle to find the worst case. Each of these sets has a common combinational
sub-circuit, in other words, a common combinational cone. The apex of such a cone is either the
output of a memory cell or a primary input. A cone apex fully identifies a cone and the memory
cells belonging to this cone.

In Figure 6, the cone with apex at c1 includes both cells c2 and c3. The cone with apex at p1
also includes {c1, c2}. The cones with apexes at c3 and c2 contain {c1} and {c2} respectively.

As a result, the worst case scenario of any SET that happens inside a cone j is the union of all
possible simultaneous corruptions of the memory cells ms(j) in this cone. The power set P (ms(j))
is the set of all possible memory cell corruption configurations.

As soon as all corruption configurations are found, a new error injection procedure can be defined
and used in both Algorithms 1 and 2 which remain the same. In particular, instead of mutually
exclusive bit-flips injection to a state space S, expressed for SEU as (

⋃
mi∈M S [mi ← err(mi)]),

the corruption of the RSS by an SET is computed as the disjunction of possible simultaneous
memory cells corruptions of the sets included in the cones after memory cells M or primary
inputs I:

⋃
j∈(M∪I)

 ⋃
p∈P (ms(j))

S
[⋂

mi∈p

mi ← err(mi)
]

where ms(j) is the subset of memory cells located in the cone with an apex at a memory cell or a
primary input j.

Such corruption procedure is a safe over-approximation in the precise (Dt) and approximate
(D2, D3) domains. The complexity bottleneck of the approach is the power-set computation with
a large number of memory cells in a single cone. However, in the case of the approximate logic
domains D2 and D3, we can consider only the worst case scenario: the simultaneous corruption of

LITES

04:16 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

Table 4 Voter Minimization, SEU model, Boolean domains D1 | D2 | D3.

Circuit FFs Syn. Semantic Sem.Inp. Sem.Out.

Da
ta

Fl
ow

In
t. D1 D2 D3 D1 D2 D3 D1 D2 D3

Pipelined FP mult. [21] 121 0 0 0 0 0 0 0 0 0 0
Pipelined log unit [21] 41 0 0 0 0 0 0 0 0 0 0
Shift/Add mult. [33] 28 28 19 19 19 19 19 19 8 8 8

ITC’99 [16](subset)

Co
nt

ro
l

Fl
ow

b01 Flows comparator 5 3 3 3 3 3 3 3 3 3 3

In
te

ns
iv

e b02 BCD recognizer 4 3 2 3 3 2 3 3 2 3 3
b03 Resource arbiter 30 29 17 29 17 17 29 17 17 29 17
b06 Interrupt handler 9 3 3 3 3 3 3 3 3 3 3
b08 Inclusion detector 21 21 21 21 21 0 21 0 0 21 0
b09 Serial converter 28 21 20 20 – 20 20 – 20 20 –

A ‘–’ denotes an out of time termination of the analysis (>20 mins).
The “Syn.” column shows the results of the syntactic analysis.

all memory cells in a cone (without calculation of its powerset), computed as:

⋃
j∈(M∪I)

S

 ⋂
mi∈ms(j)

mi ← err(mi)


It may happen that the result of such SET insertion includes corrupted states that are not
reachable because it does not take into consideration the internal error-masking capabilities of the
combinational circuit. Nevertheless, we will see in the experiments that, for the analysis presented
in this paper, such over-approximation is an appropriate choice.

7 Experimental results

The presented voter minimization technique has been implemented in Ocaml using the BDD
library CUDD [43] and the OCaml interface MLCuddIDL [30]. Transition systems and set of
states are expressed as BDD formulae [15].

The introduced logic domains (D1, D2, and D3) are encoded with multiple bits (two for D1
and D2; four for D3) and the associated operators (e.g., Tables 2 and 3) are expressed as logic
formulae over those bits. For instance, the values of D1 can be encoded with two bits (a, b) as:

1 as (1, 1)
0 as (1, 0)
0 as (0, 0)
1 as (0, 1)

In this encoding, the first bit a is the correctness bit, and the second one b is the value bit.
The NOT operator of D1 can be represented by the function:

¬1(a, b) = (a, ¬b)

D. Burlyaev, P. Fradet, and A. Girault 04:17

We used the Quine-McCluskey algorithm to simplify the boolean functions corresponding to the
AND and OR operators of D1. The AND operator is encoded as:

∧1((a1, b1), (a2, b2)) = (a3, b3)

where a3 = ((a1 ∧ a2) ∨ (a1 ∧ ¬b1) ∨ (a2 ∧ ¬b2) ∨ (¬a2 ∧ (¬b1 ∧ b2)) ∨ (¬a1 ∧ (¬b2 ∧ b1))
b3 = b1 ∧ b2

And the OR operator is encoded as:

∨1((a1, b1), (a2, b2)) = (a3, b3)

where a3 = ((a1 ∧ a2) ∨ (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (¬a1 ∧ (¬b1 ∧ b2)) ∨ (¬a2 ∧ (¬b2 ∧ b1))
b3 = b1 ∨ b2

An encoding is needed for all the presented abstract domains. At least three different values
for each bit (0, 1, and an incorrect value) must be encoded. Such an encoding cannot be replaced
with circuit simulation or emulation where only logical one and zero are available.

BDDs proved to be quite efficient to express the data structures and the processing required
by our technique. We made use of Rudell’s sifting reordering [39] while building and applying
the transition function. It allowed the semantic analysis of circuits up to 100 memory cells on a
standard PC (Intel Core i5-2430M/2Gb-DDR3). For comparison, without reordering, the negative
impact of big BDD structures on the algorithm performance was observed already for circuits
with 20-30 memory cells. We did not put much efforts in the optimization but we believe that
there remain much opportunities for improvement.

We used both fault-models SEU(1,K) and SET (1,K) with K = 50, which allows K cycles/-
transitions to be computed effectively (∆K). The obtained results are a fortiori valid for any
K ≥ 50. However, for non-restrictive trivial input/output specification and small circuits, it is
not worth to choose higher K values since all reachable states might be visited within a small
number of execution steps K, and no further optimization will be achieved even if we continue the
execution. When all reachable states are visited the execution can be stopped even if K steps have
not been fully performed. Thanks to the encoding of input/output specification into the circuit
structure (Section 5), the reachable states also contain the information about the values of input
signals and the relevance of primary outputs (for the error-propagation analysis). The number of
steps K needed to explore the whole state space varies depending on the specification and circuit
complexity. For small circuit (e.g., b02, b01) with simple input/output specification (e.g., only the
reset at the very beginning), we visit all reachable states in K < 10 steps. On the other hand,
for larger circuits (shift/add multipliers or the circuit b08) with explicit complex input/output
interface specifications (FSMs with 10 and more states), a higher value of K is rewarding and
allows us to catch error masking behaviors that happen regularly (e.g., circuit restarts or returns
to the initial state in cyclic FSMs within every 30-40 cycles).

Our analysis has been applied to common arithmetic units taken from the OpenCores project [21]
and from the ITC’99 benchmark suite [16]. For each circuit, we defined non-restrictive input-output
specification for the sake of generality. For the majority of the circuits, the input pattern specifies
only synchronous reset at its initialization phase and no further reset (b01, b02, b03, b04, b06, b09).
Such non-restrictive patterns may reduce achievable optimizations, which could be significantly
increased if more details about the behavior of the surrounding circuit were provided. However,
for the shift/add multiplier [33] the input-output specification is dictated by its functionality. The
produced output is relevant only two cycle after the start signal has been raised (one cycle to
fetch new data plus at least one cycle to process it). Since we should not assume when the output
is read out, we suppose that the data output may be read at any time two cycles after the last

LITES

04:18 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

start and until the next start. As a result, our semantic analysis with this output specification
shows that only the 8 product bits should be protected by voters.

Circuit b08 represents a group of self-stabilizing circuits that return to their initial state (and
wait for the next start) within a bounded number of cycles (for b08, this period is 8 cycles).
Additionally, by functionality, the circuit is supposed to be restarted periodically. The correspond-
ing input and output specification allowed us to suppress all voters. We would like to highlight
that any circuit with internal counters has a similar behavior of self-stabilization (the shift/add
multiplier is another example).

Table 4 summarizes the results of the analysis on those circuits in D1, D2, and D3, with the
fault-model SEU(1,K). The column FFs shows the total number of memory cells in the original
circuit, while the other columns show the number of remaining voters in the TMR circuit after
the syntactic and semantic steps (without, with input, with input and output interfaces). In each
case, we give the results obtained with the three logic domains.

The syntactic step eliminates all voters in circuits with a pipelined architecture such as adders,
multipliers, or logarithmic units. With rolling pipelined architectures, a control part and a looped
dataflow circuit may require voter protection (e.g., none of the 28 voters of the shift/add multiplier
are removed with only the syntactic analysis).

In general, control intensive circuits require a protection of their FSMs. Almost all memory
cells of the serial flow comparator (b01) or the serial-to-serial converter (b09) have to be protected.
Nevertheless, our analysis is capable of suppressing a significant amount of voters in many control
intensive circuits. A circuit is usually composed of data and control flow parts and we can expect
that most voters in the data flow part can be suppressed.

The logic domain D2 is, most of the time, precise enough. However, correcting a bit-flip in D2
(e.g., 0→ U→ U) looses information. In some circuits, like b03 and b08, substantial logical error
masking is performed by an FSM and the analysis fails to detect it.

The precision of the domain D3 allows us to achieve better optimizations than the domain D2
in circuits b03 and b08 (see Table 4). With D3, the corrupted FSM will recover to a precise state,
while with D2 its cells will recover to the correct unknown value U. This precise state plays a
crucial role to show that the rest of the circuit, that depends on this FSM, will be cleaned up too.

The results for SET (1,K) are shown in Table 5. The number of suppressed voters did not
change with D2. However, even the proposed approximations in Section 6.2 does not help to
resolve the complexity problem for some circuits when analyzed with D1 and D3. The bottleneck
results from the large number of corruption combinations if a single combinatorial cone includes
many memory cells. For example, in the circuit b03, there is an FSM of 2 cells where each cell is
connected through a combinatorial circuit to 26 memory cells (mainly controlling their enable
signals). As a result, to approximate the impact of an SET in this FSM, we have to calculate all
possible corruption combinations of 26 cells, which is 226 configurations. The circuits that could
not be analysed are marked by ∗ in Table 5.

The scalability of logic domains D1, D2, and D3 has also been compared. Figure 7 presents
the growth of the RSS Si after i iterations (see Section 3) for the b03 and b06 circuits. The fixed
point is reached with less iterations in D2, and the number of states grows exponentially for D1
versus linearly for D2. The same behavior is observed in all considered circuits.

The logic domain D3 reaches the fixed-point as fast as D1 while keeping the same precision.
This fact is demonstrated in Table 6 where we measured the number of cycles to calculate the
RSS for each domain (the column “# iterations”). The column “seconds” gives the execution
time spent to calculate the RSS, and the last column ,“# BDD nodes”, gives the complexity of
the RSS BDD representation in terms of allocated BDD nodes. On the one hand, the number of

D. Burlyaev, P. Fradet, and A. Girault 04:19

Table 5 Voter Minimization, SET model, Boolean domains D1 | D2 | D3.

Circuit FFs Synt. Semantic Sem.Inp. Sem.Out.

Da
ta

Fl
ow

In
t. D1 D2 D3 D1 D2 D3 D1 D2 D3

Pipelined FP mult. [21] 121 0 0 0 0 0 0 0 0 0 0
Pipelined log unit [21] 41 0 0 0 0 0 0 0 0 0 0
Shift/Add mult. [33] 28 28 – 19 – – 19 – – 8 –

ITC’99 [16](subset)

Co
nt

ro
l

Fl
ow

b01 Flows comparator 5 3 3 3 3 3 3 3 3 3 3

In
te

ns
iv

e b02 BCD recognizer 4 3 2 3 3 2 3 3 2 3 3
b03 Resource arbiter 30 29 – 29 – – 29 – – 29 –
b06 Interrupt handler 9 3 3 3 3 3 3 3 3 3 3
b08 Inclusion detector 21 21 – 21 21 – 21 0 – 21 0
b09 Serial converter 28 21 – 20 – – 20 – – 20 –

A ’–’ denotes an out of time termination of the analysis (>20 mins)
’Syn.’ column shows the results of syntactic analysis

BDD nodes allocated to represent the RSS in larger circuits (b03, b08, b09) is much smaller with
D3 than with D1. On the other hand, the BDD structures in D3 require more variables and are
more time consuming to manipulate. The domain D3 overapproximates the RSS (see Section 3.3),
which leads to less allocated nodes in the larger circuits. While it allows us to keep the necessary
precision for optimizations comparable to the ones allowed by D1, our existing implementation of
D3 would require further optimizations to be considered as an interesting compromise.

The bar graph of Figure 8 shows the ratio of the size of the RSS in D1 to the corresponding
size in D2. The RSSs in D1 are several orders larger than the corresponding ones in D2. The most
computation demanding step of the whole analysis is checking error propagation (see Section 5).
A prohibiting growth of BDD structures representing the set of states Ei was observed with D1
for circuits of around 30 memory cells. The logic domain D2 allows the analysis (with input and
output interfaces) of much larger circuits, up to 100 cells.

In order to evaluate the benefits of our analysis, TMR has been applied to the benchmarks
with the minimized set of voters. The inserted voters are triplicated following the practice in
the existing industrial tools to avoid a single-point of failure and to protect against SETs. The
final circuits have been synthesized with Synplify Pro with no optimization applied (Resource
Sharing, FSM Optimization, etc.). As a case study, we have chosen Flash-based ProASIC3 FPGA
as a synthesis target. Its configuration memory is immune to soft-errors [34] and data memory is
protected with voters. Table 7 compares the size and maximum frequency of the circuit with full
TMR (i.e., voters after each FF) versus TMR with the optimized number of voters. The gains
are presented in terms of the required FPGA hardware Core Cells (hw column) and maximum
synthesizable frequency (MHz column). The gain in the maximum frequency depends on the
location of the removed voters (in the circuit critical path or not). The reduction in area directly
depends on the number of suppressed voters (up to 55%).

Instead of using symbolic simulation with BDDs, we could have chosen a satisfiability-based
approach and have encoded the same algorithm as a bounded model checking problem. We could
benefit from the efficiency of SAT solvers and possibly improve the scalibility of our algorithms.

LITES

04:20 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

1 2 3 4 5 6 7 8 9 1011121314151617

b03-D2
b03-D1

b06-D2
b06-D1

10

1

10
2

10
3

10
4

b03-D2
b03-D1

b06-D2
b06-D1

10

1

10
2

10
3

10
4

b03-D2
b03-D1

b06-D2
b06-D1

i (iterations)

10

1

10
2

10
3

10
4

S
i c

ar
di

na
li

ty
 |S

i|

Figure 7 Logic Domain Comparison: Reachable State Space Size.

4 5 9 21 28 30 49 66

CardinalityuRatiouofuReachableuStateuSets
inudomainsuD1uanduD2u

NumberuofuMemoryuCellsuinuCircuitsu/ITC|99)

1

10

10
2

10
3

10
4

10
5

|RRSD1u|/|RRSD2|

4 5 9 21 28 30 49 66

CardinalityuRatiouofuReachableuStateuSets
inudomainsuD1uanduD2u

NumberuofuMemoryuCellsuinuCircuitsu/ITC|99)

1

10

10
2

10
3

10
4

10
5

|RRSD1u|/|RRSD2|

4 5 9 21 28 30 49 66

CardinalityuRatiouofuReachableuStateuSets
inudomainsuD1uanduD2u

NumberuofuMemoryuCellsuinuCircuitsu/ITC|99)

1

10

10
2

10
3

10
4

10
5

|RSSD1u|/|RSSD2|

|R
S

S
D

1u
|/|

R
S

S
D

2|

Figure 8 Logic Domain Comparison: Size Ratio of RSS.

However, since we use multi-value logic domains and the error-correction/-injection operators
vot and err, a SAT-based approach would require a non-trivial circuit orchestration. This option
offers nonetheless a possible avenue for future research.

8 Related work

Existing industrial tools for applying TMR into FPGA protect against both kinds of soft error,
SEUs and SETs. They include the Xilinx XTMR tool [6,46], BYU/Los Alamos National Laboratory
B-TMR [37], Synopsys’s Synplify Premier [44], and Mentor Graphics Precision Hi-Rel [19]. In
these tools, TMR is applied to circuit parts chosen by the user and, thus, the resulting circuits
might not be fault-tolerant unless voters are inserted after each memory cell and primary circuit
outputs. [19] proposes a protection technique against SEUs that requires only memory cells
triplication with a majority voter insertion. But this approach relies on the assumption that
only memory cells are influenced by radiation particles and that no signal perturbations in a
combinatorial circuit occur. Thus, unlike our technique, the technique of [19] protects only against
SEUs and not against SETs.

D. Burlyaev, P. Fradet, and A. Girault 04:21

Table 6 Time and memory resources to calculate the RSS.

δ, sec # iterations seconds # BDD nodes

b0
1

D1 0.037 9 0.01 156
D2 0.037 6 0.01 78
D3 0.060 6 0.01 151

b0
2

D1 0.020 9 0.005 81
D2 0.020 9 0.04 66
D3 0.024 9 0.01 127

b0
3

D1 0.42 17 2.53 1506
D2 0.44 7 0.28 311
D3 875.670 7 235.13 668

b0
6

D1 0.044 8 0.024 473
D2 0.052 6 0.018 130
D3 0.056 6 0.02 256

b0
8

D1 0.364 40 3.14 27813
D2 0.356 5 0.02 324
D3 41.49 5 48.08 1222

b0
9

D1 31.332 32 27.57 2919
D2 0.852 20 1.04 446
D3 >1000 - - -

While our static analysis uses exclusively logical masking to tolerate transient errors, many
other works rely on electrical and latching-window properties of hardware to estimate the chance
that errors will not manifest in failures. This is the primary reason why a good part of research on
voter insertion, Selective Triple-Modular Redundancy (STMR), and partial hardware redundancy
mainly focus on probabilistic approaches [2, 28,31,40]. Contrary to our approach, they are not
interested in formal guarantees that the final circuit tolerates a fault-model. [31] shows how
selective voter insertion minimizes the negative timing impact of TMR. In [38], probabilities are
used to apply TMR on selected portions of the circuit (STMR). In [40], STMR of combinational
circuits specifies input interfaces using input signal probabilities. The main advantage of STMR
over TMR is that the area of the STMR circuit is roughly two-thirds of the area of the TMR circuit.
An original probabilistic-based idea is given in [29] that allows a certain level of degradation in
output correctness in order to optimize TMR at a Data Flow Graph (DFG) abstraction level.
While this technique is originally dedicated to heterogenous systems, it could be applied to Digital
Signal Processing (DSP) hardware as well. Since the proposed methods are probabilistic, some
errors may propagate to primary outputs. In our approach, the circuit is guaranteed to mask all
possible errors of the considered fault model.

Other works use model-checking to guarantee user-defined fault-tolerance properties [3, 41].
[41] investigates which memory cells in SpaceWire node have to be protected so that even under
an SEU occurrence the circuit keeps its functional properties, expressed as 39 assertions in linear
temporal logic. If a cell is protected (fabricated with a special technology), an SEU cannot corrupt

LITES

04:22 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

Table 7 Frequency and area gain of optimized vs full TMR.

TMR circuit voters MHz gain hw gain

Da
ta

Fl
ow

In
te

ns
. Pipelined FP Multiplier 8x8 121 60.5 2338

Optimized 0 71.0 17.4% 1831 21.7%
Pipelined logarithm unit 41 128.3 693

Optimized 0 184.1 43.5% 447 35.5%
Shift/Add multiplier 8x8 28 106.0 537

Optimized 8 108.0 1.9% 408 24.0%

b01 Flows comparator 5 162.6 126
Optimized 3 162.6 0% 114 9.5%

Co
nt

ro
l

Fl
ow

In
te

ns
iv

e

b02 BCD recognizer 4 181.9 69
Optimized 2 206.6 13.6% 60 13.1%

b03 Resource arbiter 30 81.6 594
Optimized 17 109.0 33.6% 576 3.0%

b06 Interrupt handler 9 144.8 168
Optimized 3 144.8 0% 134 20.2%

b08 Inclusions detector 21 115.4 484
Optimized 0 142.4 23.4% 216 55.4%

b09 Serial converter 28 89.4 584
Optimized 20 95.0 6.3% 565 3.3%

it. On the other hand, a protected cell consumes more power than a non-protected memory cell.
As a result of verification-guided replacement of protected cells by their non-protected alternatives,
a 4.45X reduction in power has been achieved. The work [3] formally proves that some system
properties of ATM controller are kept if an SEU happens. The authors evaluate the probability to
obtain the expected property under faults.

Another group of formal studies investigates sequential circuit robustness symbolically [4, 23]
or by interpolation [13]. Since robustness is introduced probabilistically these work combine both
formal and probabilistic worlds.

While the aforementioned formal studies do not address voter minimization, their approaches
to fault-tolerance and robustness are related to our work.

It is worth noticing that the introduced reachability analysis with multi-value encoding can be
also interpreted within the well-known tainting dataflow-based analysis [18] and path sensitisation
theories [14]. The former assigns a security-related mark to each information bit and tracks its
propagation, just like we tag some bits as erroneous. The later approaches check if there is a
path so that a signal change along that path alters the output. In our case, the signal change
corresponds to an error injection, e.g., a bit-flip, and we check whether this change can propagate
to corrupt the output.

D. Burlyaev, P. Fradet, and A. Girault 04:23

9 Conclusion

We proposed a logic-level verification-guided approach to minimize the number of voters in TMR
circuits that guarantees a user-defined fault-model to be masked. Our approach is based on
reachable state set computations and input/output interface specifications. In order to avoid
analyzing the triplicated circuit, we introduced three logic domains, which allowed us to perform
the analysis on a single copy of the circuit. Our analysis shows that some voters are useless and
can be safely removed from the TMR application. We have used as case studies several arithmetic
circuits as well as the benchmark suite ITC’99. They show that our technique allows not only a
significant reduction in the amount of hardware resources (up to 35% for data flow intensive circuits
and up to 55% for control flow intensive ones), but also a significant increase in the clock rate,
compared to the full TMR method that inserts a voter after each memory cell. We demonstrated
that the choice of the logic domain influences the scalability of the analysis and its precision. We
considered both SEU and SET fault-models and explained the modeling methodology. As the
experimental results show, the same level of optimization can be reached for both fault-models,
but the SET model implies a potentially large number of corruption combinations to be examined,
which can cause an analysis bottleneck.

In this article, we have only considered hardware redundancy (TMR) but our approach also
applies to time redundancy. Time-redundant schemes mask errors by voting on re-computed data.
Such schemes reuse the combinational part of the circuit and have a lower hardware overhead
at the price of a lower throughput. We have proposed new fault-tolerance techniques based on
time-redundancy in [12] and [11]. We have demonstrated in [9] how the present voter minimization
technique could be applied to them.

Further research directions include taking into account other optimization criteria such as
frequency and allowing the analysis of large circuits by making our approach modular. We review
these issues in turn.

Frequency maximization
Voters ordering, discussed in Section 3.2, could also take into account other optimization criteria
than voter minimization. For instance, we may increase the maximum synthesizable frequency by
removing first the voters on the critical path. However, removing a voter from the critical path
may make another path critical. Thus, the choice of the next voter to remove depends not only
on the existing ordering but also on the current critical path. However, the critical path strategy
may not result in the minimal number of voters. In this sense, the two criteria “number of voters”
and “synthesizable frequency” are orthogonal, and bi-criteria optimization must be studied.

Modularity
Applying our analysis in a modular manner can increase its scalability and, consequently, the
applicability of the proposed technique to large circuits. The hierarchical compositional design of
today’s circuits makes it natural to decompose a circuit to the IPs of its block-by-block structure.
Such structural partitioning requires the deep design understanding and has already been used
in the model checking of Intel CPUs [1]. In our case, the presented analysis can be applied to
circuit sub-components after the decomposition. After the minimization of internal voters in each
sub-circuit, the components should be interconnected again to rebuild the whole design. However,
the interconnection wires should include voters to guaranty the fault-tolerance property of the final
optimized circuit. Such an approach is not optimal even if the local input/output specifications
are precise, because some of the interconnection voters may be redundant. Only a global analysis

LITES

04:24 A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

c1 c2 c1
c2

a) b)

c)

i2

c1
i1 o1 o2

c2

Figure 9 a) sequential, b) parallel, and c) feedback circuit decomposition.

on the blocks containing such wire with a voter (as an input or output wire) can safely remove
interconnection voters.

If a decomposition in sub-circuits is not known, the circuit netlist has to be automatically
divided and the input-output specifications of its parts have to be found. These steps by themselves
present complex tasks and require deep investigation. Here, we sketch some preliminary ideas
about how these problems can be solved. First, a circuit netlist can be separated according to
some syntactic criteria, e.g., the circuit cuts should be performed at wires that are included in
the biggest number of sequential loops. Such an approach eliminates as many sequential loops as
possible by reducing the number of sequential loops in each sub-component. It limits the number
of potential points where the voters have to be inserted.

After the circuit decomposition, our semantic analysis can be applied to each of its sub-parts.
The main difficulty lies in the identification of input/output specification of each sub-circuit to
perform the local semantic analyses. Figure 9 presents three cases of the circuit separation: a)
sequential, b) parallel, and c) feedback decomposition.

While the input/output specification for c1 and c2 sub-circuits can be extracted from the
global specification in the parallel decomposition (case b, Figure 9), the sequential and feedback
decompositions (cases a and c) create unknown internal specifications (marked in red). They have
to be found for each sub-part. Consider, for instance, the unknown input specification i2 for the
sequential decomposition (case a). The signals in i2 are the outputs o1. Since the netlist c1 and
its input specification i1 fully describe the behavior of c1, o1 and i2 can be described by the same
NBA. In the worst case, such NBA could be as big as c1 multiplied by the size of i1, which can
be prohibitive for the following semantic analysis of c2 sub-circuit. Consequently, the extracted
NBA should be over-approximated to lower the complexity. Naturally, the over-approximation
may influence the precision of the further semantic voter minimization in c2. The feedback
decomposition is even more complex because of the mutual dependency between sub-components
c1 and c2.

These modularity issues are complex but important and valuable since many other static
analyses of circuits could benefit from them.

D. Burlyaev, P. Fradet, and A. Girault 04:25

References
1 M.D. Aagaard, R.B. Jones, and C.-J.H. Seger. For-

mal verification using parametric representations
of boolean constraints. In Design Automation Con-
ference (DAC), pages 402–407, 1999.

2 B. Baykant Alagoz. Fault masking by probabilistic
voting. OncuBilim Algorithm And Systems Labs,
9(1), 2009.

3 S. Baarir, C. Braunstein, et al. Complementary
formal approaches for dependability analysis. In
IEEE Int.Symp. on Defect and Fault Tolerance in
VLSI Systems, pages 331–339, 2009. doi:10.1109/
DFT.2009.21.

4 S. Baarir et al. Feasibility analysis for MEU robust-
ness quantification by symbolic model checking. In
Proceedings in Formal Methods of Software Design,
2011.

5 A.L. Bogorad et al. On-orbit error rates of RHBD
SRAMs: Comparison of calculation techniques and
space environmental models with observed perfor-
mance. IEEE Trans. on Nuclear Science, pages
2804–2806, 2011.

6 Brendan Bridgford, Carl Carmichael, and
Chen Wei Tseng. Single-event upset mitigation
selection guide. Application Note XAPP987
(v1.0), Xilinx, 2008.

7 P. Brinkley, P. Avnet, and C. Carmichael. SEU
mitigation design techniques for the XQR4000XL.
Xilinx, 2000.

8 S. P. Buchner and M. P. Baze. Single-event tran-
sients in fast electronic circuits. IEEE NSREC
Short Course, pages 1–105, 2001.

9 Dmitry Burlyaev. Design, optimization, and for-
mal verification of circuit fault-tolerance tech-
niques. PhD thesis Joseph Fourier University/IN-
RIA, November 2015.

10 Dmitry Burlyaev, Pascal Fradet, and Alain Gi-
rault. Verification-guided voter minimization in
triple-modular redundant circuits. In Design, Au-
tomation & Test in Europe Conference & Exhibi-
tion, DATE 2014, Dresden, Germany, March 24-
28, 2014, pages 1–6, 2014.

11 Dmitry Burlyaev, Pascal Fradet, and Alain Gi-
rault. Automatic time-redundancy transformation
for fault-tolerant circuits. International Sympo-
sium on Field-Programmable Gate Arrays, pages
218–227, February 2015.

12 Dmitry Burlyaev, Pascal Fradet, and Alain Gi-
rault. Time-redundancy transformations for adap-
tive fault-tolerant circuits. In NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS),
pages 1–8, 2015.

13 Gianpiero Cabodi and Satnam Singh, editors.
Complete and Effective Robustness Checking by
Means of Interpolation. Formal Methods in
Computer-Aided Design (FMCAD), 2012.

14 Albert C. L. Chiang, Irving S. Reed, and An-
thony V. Banes. Path sensitization, partial boolean
difference, and automated fault diagnosis. IEEE
Trans. Computers, 21(2):189–195, 1972. doi:10.
1109/TC.1972.5008925.

15 E.M. Clarke, J.R. Burch, O. Grumberg, D.E. Long,
and K.L. McMillan. Automatic verification of se-
quential circuit designs. Phil. Trans. R. Soc. Lond,
series A, 339:105–120, 1992.

16 F. Corno, M.S. Reorda, and G. Squillero. RT-level
ITC’99 benchmarks and first ATPG results. De-
sign Test of Computers, pages 44–53, 2000. doi:
10.1109/54.867894.

17 Giovanni De Micheli. Synthesis and Optimization
of Digital Circuits. McGraw-Hill Higher Education,
1st edition, 1994.

18 Dorothy E. Denning and Peter J. Denning. Cer-
tification of programs for secure information flow.
Commun. ACM, 20(7):504–513, 1977. doi:10.
1145/359636.359712.

19 Roger D. Do. New tool for FPGA designers miti-
gates soft errors within synthesis. DSP-FPGA.com
Magazine, December 2011.

20 P.E. Dodd, M.R. Shaneyfelt, J.R. Schwank, and
G.L. Hash. Neutron-induced soft errors, latchup,
and comparison of SER test methods for SRAM
technologies. International Electron Devices Meet-
ing, pages 333–336, 2002.

21 Michael Dunn. Open source hardware IPs: Open-
Cores project. Logarithm Unit; Launchbird De-
sign Systems, Inc. Floating Point Multiplier. URL:
http://opencores.org.

22 Guy Even, Joseph (Seffi) Naor, Baruch Schieber,
and Madhu Sudan. Approximating minimum feed-
back sets and multi-cuts in directed graphs. In Int.
Conf. on Int. Prog. and Combinatorial Opt., pages
14–28, 1995.

23 Görschwin Fey, André Sülflow, and Rolf Drechsler.
Computing bounds for fault tolerance using formal
techniques. In Proceedings of the 46th Design Au-
tomation Conference, DAC, pages 190–195, 2009.

24 Sandi Habinc. Functional triple modular redun-
dancy FTMR. European Space Agency Contract
Report, FPGA-003-01, 2002.

25 K.J. Hass and J.W. Ambles. Single event transients
in deep submicron CMOS. In 42nd Midwest Sym-
posium on Circuits and Systems, pages 122–125
vol. 1, 1999.

26 John P. Hayes, Ilia Polian, and Bernd Becker. An
analysis framework for transient-error tolerance. In
25th IEEE VLSI Test Symposium (VTS 2007), 6-
10 May 2007, Berkeley, California, USA, pages
249–255, 2007.

27 T. Heijmen. Soft-error vulnerability of sub-100-nm
flip-flops. 14th IEEE Int.On-Line Testing Sympo-
sium, pages 247–252, 2008.

28 International Test Conference, ITC’03, Break-
ing Test Interface Bottlenecks, Charlotte
(NC), USA, 2003. IEEE Computer Soci-
ety. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=8970.

29 T. Imagawa, H. Tsutsui, H. Ochi, and T. Sato.
A cost-effective selective TMR for heterogeneous
coarse-grained reconfigurable architectures based
on DFG-level vulnerability analysis. InDesign, Au-
tomation, and Test in Europe (DATE), pages 701–
706, March 2013. doi:10.7873/DATE.2013.151.

30 B. Jeannet. MLCUDDIDL: An OCaml
interface for the CUDD BDD library.
http://pop-art.inrialpes.fr/~bjeannet/
mlxxxidl-forge/mlcuddidl/index.html. Ac-
cessed: 2014-09-01.

LITES

http://dx.doi.org/10.1109/DFT.2009.21
http://dx.doi.org/10.1109/DFT.2009.21
http://dx.doi.org/10.1109/TC.1972.5008925
http://dx.doi.org/10.1109/TC.1972.5008925
http://dx.doi.org/10.1109/54.867894
http://dx.doi.org/10.1109/54.867894
http://dx.doi.org/10.1145/359636.359712
http://dx.doi.org/10.1145/359636.359712
http://opencores.org
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8970
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8970
http://dx.doi.org/10.7873/DATE.2013.151
http://pop-art.inrialpes.fr/~bjeannet/mlxxxidl-forge/mlcuddidl/index.html
http://pop-art.inrialpes.fr/~bjeannet/mlxxxidl-forge/mlcuddidl/index.html

04:26 Glossary

31 Jonathan M. Johnson and Michael J. Wirthlin.
Voter insertion algorithms for FPGA designs us-
ing triple modular redundancy. In FPGA, pages
249–258, 2010.

32 R.M. Karp. Reducibility among combinatorial
problems. Complexity of Computer Computations,
43:85––103, 1972.

33 Steve Kilts. Advanced FPGA Design: Architecture,
Implementation, and Optimization. Wiley-IEEE
Press, 2007.

34 Microsemi Corporation. Neutron-Induced Single
Event Upset SEU, 55800021-0/8.11 edition, 2011.

35 H. T. Nguyen and Y. Yagil. A systematic approach
to SER estimation and solutions. Proc. Int. Relia-
bility Physics Symp., pages 60–70, April 2003.

36 Ilia Polian, Bernd Becker, Masato Nakasato,
Satoshi Ohtake, and Hideo Fujiwara. Low-cost
hardening of image processing applications against
soft errors. In 21th IEEE International Sympo-
sium on Defect and Fault-Tolerance in VLSI Sys-
tems (DFT 2006), 4-6 October 2006, Arlington,
Virginia, USA, pages 274–279, 2006.

37 B. Pratt, M. Caffrey, P. Graham, K. Morgan, and
M. Wirthlin. Improving FPGA design robustness
with partial TMR. IEEE International Reliability
Physics Symposium, pages 226–232, 2006.

38 O. Ruano, P. Reviriego, and J.A. Maestro. Auto-
matic insertion of selective TMR for SEU mitiga-
tion. European Conference on Radiation and its
Effects on Components and Systems, pages 284–
287, 2008.

39 Richard Rudell. Dynamic variable ordering for or-
dered binary decision diagrams. In Proc. of CAD-
93, pages 42–47, 1993.

40 P.K. Samudrala et al. Selective triple modular re-
dundancy based single-event upset tolerant synthe-
sis for FPGAs. IEEE Transactions on Nuclear Sci-
ence, pages 284–287, October 2004.

41 S.A. Seshia, Wenchao Li, and S Mitra. Verification-
guided soft error resilience. In DATE ’07, pages
1–6, 2007. doi:10.1109/DATE.2007.364501.

42 P. Shivakumar, M. Kistler, S.W. Keckler,
D. Burger, and L. Alvisi. Modeling the effect of
technology trends on the soft error rate of combina-
tional logic. In Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International Con-
ference on, pages 389–398, 2002. doi:10.1109/DSN.
2002.1028924.

43 F. Somenzi. CUDD: CU Decision Diagram Pack-
age, release 2.5.0. http://vlsi.colorado.edu/
~fabio/CUDD. Accessed: 2014-09-01.

44 Angela Sutton. Creating highly reliable FPGA de-
signs. Military&Aerospace Technical Bullentin, Is-
sue 1:5–7, 2013.

45 J. von Neumann. Probabilistic logic and the syn-
thesis of reliable organisms from unreliable compo-
nents. Automata Studies, Princeton Univ. Press,
pages 43–98, 1956.

46 Xilinx TMR Tool product brief, 2006.
47 J.F. Ziegler et al. IBM experiments in soft fails in

computer electronics (1978-1994). IBM Journal of
Research and Development, 40(1):3–18, 1996.

Glossary

BDD Binary Decision Diagram.

DFG Data Flow Graph.
DSP Digital Signal Processing.

FF Flip-Flop.
FPGA Field-Programmable Gate Array.
FSM Finite State Machine.

IC Integrated Circuit.

MVFS Minimum Vertex Feedback Set.

NBA Non-deterministic Büchi Automaton.

RSS Reachable State Set.

SER Soft-Error Rate.
SET Single-Event Transient.
SEU Single-Event Upset.
STMR Selective Triple-Modular Redundancy.

TET Transient Error Tolerance.
TMR Triple-Modular Redundancy.

http://dx.doi.org/10.1109/DATE.2007.364501
http://dx.doi.org/10.1109/DSN.2002.1028924
http://dx.doi.org/10.1109/DSN.2002.1028924
http://vlsi.colorado.edu/~fabio/CUDD
http://vlsi.colorado.edu/~fabio/CUDD

	lites-v005-i001-frontmatter
	lites-v005-i001-a001-naim
	Introduction
	System Model
	Problem Definition: Integer Demands and Dual Criticalities
	MDP Setup
	The Transition Probabilities
	The Underlying Probability Space
	Problem Statement

	Solution Approach: Risk-Constrained MDP
	The Risk Constraints
	The Linear Programming Approach
	A Less Pessimistic Exact Formulation

	Quantitative Evaluations
	Concluding Remarks

	lites-v005-i001-a002-bletsas
	Introduction
	Process model and notation
	The simple model
	The linear model

	The analysis in [2,3], its flaws and how to fix it.
	Proof of Lemma 2
	Discussion

	The analysis in [7], its flaws and how to fix it.
	Additional discussion
	Some experiments
	Conclusions

	lites-v005-i001-a003-reineke
	Introduction
	A Formal Definition of Cache Persistence
	Programs, Computations, Trace Collecting Semantics
	Taking Caches Into Account
	Persistence as a Property of Traces

	Preliminaries: Standard Abstractions and Simplifications
	Control Flow Graph Abstraction
	Abstraction from Locations in Traces

	A Generic Persistence Analysis Framework
	Sound Cache Trace Abstractions
	Computing the Abstract Sticky Trace Collecting Semantics
	On the Relative Precision of Different Cache Trace Abstractions

	Instantiations of the Analysis Framework: Abstractions of Cache Traces
	Basic Abstractions
	Global-CS: Global May-Conflict Set
	Block-CS: Block-wise May-Conflict Set
	C-Must: Conditional Must Analysis
	C-May: Conditional May Analysis

	Combinations of Basic Abstractions
	Direct Product of Cache Trace Abstractions
	Domain Cooperation
	State Reduction between C-Must and Block-CS
	State Reduction between C-Must and C-May
	Must Analysis
	Cooperative Update for C-Must in the Context of Must

	Summary: The Landscape of Persistence Abstractions

	Related Work and How It Maps Into the Landscape of Persistence Abstractions
	Extension to Data Caches
	Conclusions and Future Work
	Proofs

	lites-v005-i001-a004-burlyaev
	Introduction
	Syntactic Analysis
	Semantic Analysis
	The precise logic domain D_1
	Semantic analysis with D_1
	More Abstract Logic Domains
	Summary

	Inputs Specification
	Outputs Specification
	Extension to Single-Event Transients
	Precise modeling of SETs
	Safe SET over-approximation

	Experimental results
	Related work
	Conclusion
	Glossary

