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Abstract
Design, implementation and verification of dis-
tributed real-time systems are acknowledged to be
very hard tasks. Such systems are prone to different
kinds of delay, such as execution time of actions
or communication delays implied by distributed
platforms. The latter increase considerably the
complexity of coordinating the parallel activities
of running components. Scheduling such systems
must cope with those delays by proposing execu-
tion strategies ensuring global consistency while
satisfying the imposed timing constraints. In this
paper, we investigate a formal model for such sys-
tems as compositions of timed automata subject
to multiparty interactions, and propose a seman-
tics aiming to overcome the communication delays

problem through anticipating the execution of in-
teractions. To be effective in a distributed context,
scheduling an interaction should rely on (as much
as possible) local information only, namely the state
of its participating components. However, as shown
in this paper these information is not always suffi-
cient and does not guarantee a safe execution of the
system as it may introduce deadlocks. Moreover,
delays may also affect the satisfaction of timing
constraints, which also corresponds to deadlocks
in the former model. Thus, we also explore meth-
ods for analyzing such deadlock situations and for
computing deadlock-free scheduling strategies when
possible.
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1 Introduction

Nowadays, real-time systems are ubiquitous in several application domains, and such an emergence
led to an increasing need of performance: resources, availability, concurrency, etc. This expansion
initiates a shift from the use of single processor based hardware platforms, to large sets of
interconnected and distributed computing nodes. Moreover, it prompts the birth of a new family
of systems known as Networked Embedded Systems, that are intrinsically distributed. Such an
evolution stems from an increase in complexity of real-time software embedded on such platforms
(e.g. electronic control in avionics and automotive domains [13]), and the need to integrate
formerly isolated systems [24] so that they can cooperate as well as share resources improving
thus functionality and reducing costs.

To deal with such complexity, the community of safety critical systems often restricts its scope
to predictable systems, which are represented with domain specific models (e.g. periodic tasks,
synchronous systems, time-deterministic systems) for which the range of possible executions is
small enough to be easily analyzed, allowing the pre-computation of optimal control strategies.
Networked Embedded Systems usually describe a set of real-time systems, distributed across several
platforms, and interacting through a network. Because of their adaptive behavior, the standard
practice when implementing such systems is not to rely on models for pre-computation of execution
strategies but rather to design systems dynamically adapting at runtime to the actual context of
execution. Such approaches, however, do not offer any formal guarantee of timeliness. Also, the
lack of a priori knowledge on system behavior leaves also little room for static optimization.

Model-based development is one promising approach in building distributed real-time systems.
First, an application model expressing a timed abstraction of the application behavior is built. This
abstraction is platform independent, meaning that it does not consider any hardware specification
such as communication delays or CPU(s) speed, which allows to: (i) model the system at early
stages without any knowledge of the target platform, and (ii) verify the obtained model against
some safety properties (functional requirements). Thereafter, the application source code, which
represents the actual implementation of the system on a given platform, is automatically generated
from the high level model. Then, the big challenge becomes how to verify the timing behavior of
the implementation, since a lot of assumptions drop such as atomic execution of actions or timeless
communication delays. In this paper, we propose a model-based approach aiming to mitigate the
communication delays of distributed platforms. In this approach, systems consist of components
represented as timed automata that may synchronize on particular actions to coordinate their
activities. We contribute to this research field by proposing a different semantics than the usual
semantics of timed automata. This semantics aims to distinguish between the decision dates for
executing interactions and their actual execution dates by introducing a notion of scheduling
on a semantics level. The idea behind this practice is to distinguish between the date at which
interactions are executed and the date at which the execution decisions are effectively made. This
will particularly help to anticipate the execution of interactions at least some delay beforehand,
corresponding to the actual worst estimation of communication delays of a given platform, which
will alleviate the effect of those delays on the system behavior.

This work is an extension of our work presented in [16]. We extend our previous work by
(1) defining a more mature and realistic semantics for planning interactions. Especially, we
introduce a lower bound horizon for planning interactions, that is, we impose at least a minimum
delay, representing communication delays, between the effective planning of an interaction and its
execution. In other words, immediate (timeless) planning is no longer allowed. Thereafter, we
show that by enforcing a minimum delay between interactions planning and their executions, we
may engender situational blocking situations that were nonexistent at first. We provide (2) a
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formal characterization of such blocking situations and (3) suggest an execution strategy aiming
to avoid the latter. Furthermore, (4) if no execution strategy guarantying safe executions can be
found, we propose an alternative method based on real-time controller synthesis approach as well
as a discussion comparing both approaches.

The rest of the paper is organized as follows. Section 2 gives preliminary definitions of timed
automata with respect to multiparty interactions as well as predicates definitions needed for the
rest of the paper. In Section 3, we present our extended local planning semantics, discuss its
relation with the usual timed automata semantics, and give sufficient conditions that formally
characterize its deadlock states. Then, Section 4 presents an execution strategy aiming to enforce
the correctness of the presented approach and find a deadlock free execution scenario when possible.
Additionally, Section 5 explains how the local planning semantics can be formalized as a real-time
controller synthesis problem and provide, thus, an alternative method for finding an execution
strategy for such semantics. We also highlight the key issues met during our reflection and discuss
important modeling points when using this technique. An implementation of the proposed is
approach is described in Section 6 along with experimental results conducted on real-life case
studies. Finally, the related works are presented in Section 7 and the conclusion given in Section 8.

2 Timed Systems and Properties

In the framework of the present paper, components are timed automata and systems are composi-
tions of timed automata with respect to multiparty interactions. The timed automata we use are
essentially the ones from [4], however, slightly adapted to embrace a uniform notation throughout
the paper.

Given a set of clock X , a clock constraint is an expression of the form:

c := true | x ∼ ct | x − y ∼ ct | c ∧ c | false,

with x, y ∈ X , ∼ ∈ {<, ≤, =, ≥, >} and ct ∈ Z. We denote by C(X ) the set of clock constraints
over X .

▶ Definition 1 (Component). A component is a tuple B = (L, ℓ0, A, X , T , tpc) where L is a finite
set of locations, ℓ0 ∈ L is an initial location, A a finite set of actions, X is a finite set of clocks,
T ⊆ L × (A × C(X ) × 2X ) × L is a set of transitions labeled with an action, a guard, and a set of
clocks to be reset, and tpc : L → C(X ) assigns a time progress condition tpc(ℓ) to each location
ℓ ∈ L. Notice that time progress conditions are backward closed, that is, they are restricted to
conjunctions of constraints of the form x ≤ ct.

Throughout the paper, we assume components that are deterministic timed automata, that
is, at a given location ℓ and for a given action a, there is at most one outgoing transition from
ℓ labeled by a. Given a timed automaton (L, ℓ0, A, X , T , tpc), we write ℓ

a,g,r−−−→ ℓ′ if there exists
a transition τ =

(
ℓ, (a, g, r), ℓ′) ∈ T . We also denote by guard(a, ℓ) the clock constraints of the

transition labeled by a and outgoing from ℓ if it exists, and false otherwise and we write:

guard(a, ℓ) =
{

g, if ∃τ =
(
ℓ, (a, g, r), ℓ′) ∈ T

false, otherwise

Before recalling the semantics of a component, we first fix some notations. Let V(X ) be the set
of all clock valuation functions v : X → R≥0 and v0 be the clock valuation assigning zero to all
clocks. For a clock constraint c, c(v) is a boolean value corresponding to the evaluation of c on v.
For a valuation v ∈ V and for δ ∈ R≥0, v + δ is the valuation satisfying (v + δ)(x) = v(x) + δ for

LITES
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any x, while for a subset of clocks r, v[r] is the valuation obtained from v by resetting clocks of r,
i.e., v[r](x) = 0 for x ∈ r, v[r](x) = v(x) otherwise. We denote by c + δ the clock constraint c

shifted by δ, i.e. such that (c + δ)(v) iff c(v + δ). We also consider the classical backward and
forward operators [30] on clock constraints, i.e. (↙ c)(v) iff ∃δ ≥ 0 . c(v + δ) and (↗ c)(v) iff
∃δ ≥ 0 . c(v − δ). In what follows, we also use two variants of the backward operator considering
lower bounds l ∈ Z≥0 and upper bounds u ∈ Z≥0 ∪ {+∞}: (↙l c)(v) iff ∃δ ≥ l . c(v + δ) and
(↙u

l c)(v) iff ∃δ . l ≤ δ ≤ u ∧ c(v + δ).

▶ Definition 2 (Semantics). A component B = (L, ℓ0, A, X , T , tpc) defines the labeled transition
system (LTS) (Q, q0, A ∪ R>0, →) where:

Q = L × V(X ) denotes the states of B, q0 = (ℓ0, v0) is the initial state.
→⊆ Q × (A ∪ R>0) × Q denotes the set of transitions between states according to the rules:

(ℓ, v) a−→ (ℓ′, v[r]) if ℓ
a,g,r−−−→ ℓ′ and g(v) and tpc(ℓ′)(v[r]) (action step).

(ℓ, v) δ−→ (ℓ, v + δ) if tpc(ℓ)(v + δ) for δ ∈ R>0 (time step).
A run ϱ of B is an execution sequence that alternates action steps and time steps, that is:

ϱ = q0σ0q1σ1q2 . . . , such that qi ∈ Q, qi
σi−→ qi+1, and i ∈ Z>0, σi ∈ A ∪ R>0.

We say that a state (ℓ, v) is reachable if there is an execution sequence from the initial configuration
(ℓ0, v0) leading to (ℓ, v). In this paper, we always assume components with well formed guards,
that is, transitions ℓ

a,g,r−−−→ ℓ′ satisfy g(v) ⇒ tpc(ℓ)(v) ∧ tpc(ℓ′)(v[r]) for any v ∈ V. This ensures
that the reachable states always satisfy the time progress conditions, i.e. if (ℓ, v) is reachable then
we have tpc(ℓ)(v). Consequently, the action step of Definition 2 can be simplified as:

(ℓ, v) a−→ (ℓ′, v[r]) if ℓ
a,g,r−−−→ ℓ′ and g(v)

Notice that the set of reachable states is in general infinite, but it can be partitioned into a finite
number of symbolic states [30, 7, 20]. A symbolic state is defined by a pair (ℓ, ζ) where, ℓ is a
location of B, and ζ is a zone, i.e. a set of clock valuations defined by a clock constraint (as
defined in Definition 1). Efficient algorithms for computing symbolic states and operations on
zones are fully described in [7]. Given symbolic states {(ℓj , ζj)}j∈J of B, the predicate Reach(B)
characterizing the reachable states can be expressed as:

Reach(B) =
∨
j∈J

at(ℓj) ∧ ζj ,

where at(ℓj) is true on states whose location is ℓj , and clock constraint ζj is straightforwardly
applied to clock valuation functions of states.

We define the predicate Enabled(a) characterizing states (ℓ, v) at which an action a is enabled,
i.e. such that (ℓ, v) a−→ (ℓ′, v′) for some (ℓ′, v′). It can be formally written as:

Enabled(a) =
∨
ℓ∈L

at(ℓ) ∧ guard(a, ℓ).

A state (ℓ, v) is said urgent if time cannot progress from (ℓ, v), that is, there is no δ ∈ R>0

such that (ℓ, v) δ−→ (ℓ, v′). Urgent states are characterized by the predicate:

Urgent(B) =
∨
ℓ∈L

at(ℓ) ∧ urg(ℓ) (1)

where urg(ℓ) is a clock constraint characterizing the valuations from which time cannot progress
with respect to the time progress condition of ℓ, that is, it is defined by urg(ℓ) =

∨m
i=1(xi ≥ cti) if
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tpc(ℓ) =
m∧

i=1
xi ≤ cti. Notice that due to well-formed guards, an urgent reachable state satisfies

also (1) if inequalities xi ≥ cti on clocks are replaced by equalities xi = cti in the expression of
urg(ℓ).

Following [31], we require that components or systems execute forever. This is referred to as
the requirement of progress which can be divided split into discrete and time progress captured
respectively by the notion of deadlocks and timelocks.

▶ Definition 3 (Deadlock and action-time-lock). We say that a state (ℓ, v) of a component B

is deadlock if, with respect to its semantics, no action can be executed from (ℓ, v) and from its
successors, that is:

Deadlock(B) = ¬
(

∃a ∈ A . (ℓ, v) a−→ (ℓ′, v′) ∨ ∃δ > 0 . (ℓ, v) δ−→ (ℓ, v + δ) a−→ (ℓ′, v′)
)

.

Deadlock states are characterized by the following predicate:

Deadlock(B) = ¬
( ∨

a∈A
↙

(
Enabled(a) ∧ tpc(ℓ)

))
.

Because of well-formed guards this could be simplified into:

Deadlock(B) =
∧

a∈A
¬

(
↙ Enabled(a)

)
.

A deadlock (ℓ, v) is called an action-time-lock when no interaction can execute nor time can
progress from (ℓ, v), that is:

ActionT imeLock(B) = ¬
(

∃a ∈ A . (ℓ, v) a−→ (ℓ′, v′) ∨ ∃δ > 0 . (ℓ, v) δ−→ (ℓ, v + δ)
)

.

Action-time-lock states are characterized by the following predicate:

ActionT imeLock(B) =
( ∧

a∈A
¬Enabled(a)

)
∧

( ∨
ℓ∈L

at(ℓ) ∧ urg(ℓ)
)

.

Deadlocks are situations from which a component is stuck at a given location without being able
to progress by executing an action, which must be avoided in reactive systems. Action-time-locks
are modeling errors and consist in deadlocks from which time cannot progress.

We denote by time(ϱ, i) the total elapsed time until point i, that is,
∑

j<i σj such as σj ∈ R>0.
In the same way, time(ϱ) represents the total elapsed time during ϱ, and is defined to be the limit
of time(ϱ, i) if the sequence converges and ∞ otherwise.

▶ Definition 4 (Zeno runs and Timelocks). Let ϱ be an infinite run such that time(ϱ) ̸= ∞. Such
a run violates the time progress requirements (only a finite number of events can occur in a finite
amount of time), and is called zeno. Given a component B, a state of B is timelock if all infinite
runs starting form that state are zeno.

In [31], it was shown that the class of timed automata in which 1 time unit is elapsed in every
structural loop, also known as strongly non-zeno, is non zeno. An interesting property of this
class is that it preserves non-zenoness under composability. Thus, checking the requirements of
progress of a given system will boil down to checking its deadlock freedom.

In our framework, components communicate by means of multiparty interactions. A multiparty
interaction is a rendez-vous synchronization between actions of a fixed subset of components.
It takes place only if all the participants agree to execute the corresponding actions. Given n

LITES
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components Bi, i = 1, . . . , n, with disjoint sets of actions Ai, an interaction is a subset of actions
α ⊆ ∪1≤i≤nAi containing at most one action per component, i.e. α ∩ Ai is either empty or a
singleton {ai}. That is, an interaction α can be put in the form {ai}i∈I with I ⊆ {1, . . . , n}
and ai ∈ Ai for all i ∈ I. We denote by part(α), the set of components participating in α, that
is, part(α) = {Bi}i∈I . We say that two interactions α and β are conflicting, denoted by α#β,
part(α) ∩ part(β) ̸= ∅.

The semantics of a composition is interpreted at runtime by evaluating enabled interactions
based on current states of the system components. In a composition of n components Bi∈{1,...,n}
synchronizing through the interaction set γ, denoted by γ(B1, . . . , Bn), an action ai can execute
only as part of an interaction α such that ai ∈ α, that is, along with the execution of all other
actions aj ∈ α, which corresponds to the usual notion of multiparty interaction.

▶ Definition 5 (Standard Semantics of a Composition). Given a set of components {B1, . . . , Bn}
and an interaction set γ. The (standard) semantics of the composition S = γ(B1, . . . , Bn) w.r.t
the set of interactions γ, is the LTS (Qg, q0, γ ∪ R>0, →γ) where:

Qg = L × V(X ) is the set of global states, where L = L1 × . . . × Ln and X =
⋃n

i=1 Xi. We
write a state q = (ℓ, v) where ℓ = (ℓ1, . . . , ℓn) ∈ L is a global location and v ∈ V(X ) is a global
clock valuation. q0 = (ℓ0, v0) is the initial state, where ℓ0 = (ℓ1

0, . . . , ℓn
0 ) and v0 is the clock

valuation assigning 0 to all clocks.
→γ⊆ Q × (γ ∪ R>0) × Q is the set of labeled transitions defined by the rules:

(ℓ, v) α−→γ (ℓ′, v′) for α = {ai}i∈I ∈ γ, if ∀i ∈ I (ℓi, vi)
ai−→ (ℓ′

i, v′
i) and ∀i /∈ I (ℓi, vi) = (ℓ′

i, v′
i).

(ℓ, v) δ−→γ (ℓ, v + δ) for δ ∈ R>0 if ∀i ∈ {1, . . . , n} tpci(ℓi)(vi + δ) where vi denotes the
restriction of v to clocks Xi of Bi.

To simplify notations, predicates defined on individual components Bi are straightforwardly
interpreted on states (ℓ, v) of a composition S = γ(B1, . . . , Bn) by considering the projection
(ℓi, vi) of (ℓ, v) on Bi, which is such that ℓ = (ℓ1, . . . , ℓn) and vi is restriction of v to clocks Xi of
Bi. For instance, at(ℓi) evaluates to true on (ℓ, v) iff ℓ ∈ L1 × . . . × Li−1 × {ℓi} × Li+1 × . . . × Ln.
Similarly, clock constraints of components Bi are applied to clock valuation functions v of the
composition by restricting v to clocks Xi of Bi. This allows to write the predicate Enabled(α)
characterizing states (ℓ, v) from which an interaction α = {ai}i∈I ∈ γ can be executed, i.e., such
that (ℓ, v) α−→γ (ℓ′, v′), as:

Enabled(α) =
∧
i∈I

Enabled(ai)

=
∧
i∈I

∨
ℓi∈Li

at(ℓi) ∧ guard(ai, ℓi)

=
∨
ℓ∈L

ℓ=(ℓ1,...,ℓn)

at(ℓ) ∧
∧
i∈I

ai∈α

guard(ai, ℓi).

Notice that the above formulation of Enabled(α) corresponds to locations enumeration of all
components participating in interaction α. In practice, we rather consider only a subset of
locations Lα ⊆ L, from which the execution of α is possible. This corresponds to

∏
i∈I |Lai

|
possible configuration, where Lai

⊆ Li is a subset of locations from which there exists a transition
labeled by action ai ∈ α, and |Lai

| denotes the cardinality of Lai
, which is reasonably small in

pratical examples but can be (at the worst case) equal to
∏

i∈I |L|.
The definitions of run, reachable states, deadlocks and action-time-locks of components are also

trivially extended to composition of components. Deadlocks of a composition S = γ(B1, . . . , Bn)
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ℓ1
0

ℓ1
1

C

init0
z > 25

start0
z := 0

ℓ2
0 ℓ2

1

ℓ2
2 x ≤ 30

T1

ℓ2
3x ≤ 4

init1

start1
x := 0

process1
10 ≤ x ≤ 30, x := 0

end1
x ≤ 4

ℓ3
1ℓ3

0

ℓ3
2 y ≤ 30

T2

ℓ3
3y ≤ 4

init2

start2
y := 0

process2
10 ≤ y ≤ 30, y := 0

end2
y ≤ 4

ℓ4
0

R

ℓ4
1

take

free

init2 start2

end2process2

init1start1

end1 process1

take

free

init0 start0

α5α6

α1α2

α3α4

α7α8

Figure 1 Task Manager.

can be characterized as follows:

Deadlock(S) =
∨

ℓ=(ℓ1,...ℓn)∈L

at(ℓ) ∧
[ ∧

α∈γ

¬ ↙
(

Enabled(α) ∧
∧

1≤i≤n

tpci(ℓi)
)]

, (2)

and action-time-locks by:

ActionT imeLock(S) =
( ∧

α∈γ

¬Enabled(α)
)

∧
( ∨

1≤i≤n

∨
ℓi∈Li

at(ℓi) ∧ urg(ℓi)
)

.

▶ Example 6 (Running Example). Let us consider as a running example the composition of four
components C, T1, T2, and R of Figure 1. Component C represents a controller that initializes then
releases tasks T1 and T2. Tasks use the shared resource R during their execution. To implement
such behavior, we consider the following interactions between C, R, and T1: α1 = {init0, init1},
α3 = {start0, start1}, α5 = {take, process1}, α7 = {free, end1}, and similar interactions α2,
α4, α6, α8 for task T2, as shown by connections on Figure 1. The controller is responsible for
firing the execution of each task. First, it non-deterministically initializes one of the two tasks,
i.e. executes α1 or α2, and then releases it through interaction α3 or α4. Tasks perform their
processing independently of the controller, after being granted an access to the shared resource
(α5 or α6). When finished, a task releases the resource (interactions α7 or α8) and goes back to
its initial location. An example of execution sequence of the system of Figure 1 is given below, in
which valuations v of clocks x, y, and z are represented as a tuples (v(x), v(y), v(z)):

((ℓ1
0, ℓ2

0, ℓ3
0, ℓ4

0), (0, 0, 0)) 26−→γ ((ℓ1
0, ℓ2

0, ℓ3
0, ℓ4

0), (26, 26, 26)) α1−→γ ((ℓ1
1, ℓ2

1, ℓ3
0, ℓ4

0), (26, 26, 26)) α3−→γ

((ℓ1
0, ℓ2

2, ℓ3
0, ℓ4

0), (0, 26, 0)) 10−→γ ((ℓ1
0, ℓ2

2, ℓ3
0, ℓ4

0), (10, 36, 10)) α5−→γ ((ℓ1
0, ℓ2

3, ℓ3
0, ℓ4

1), (0, 36, 10)) 2−→γ

((ℓ1
0, ℓ2

3, ℓ3
0, ℓ4

1), (2, 38, 12)) α2−→γ ((ℓ1
1, ℓ2

3, ℓ3
1, ℓ4

1), (2, 38, 12))

LITES
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3 Local Planning of Interactions

In the previous Section, we presented a timed automata model for representing timed systems with
multiparty interactions. The semantics of such model is based on the notion of global states, that
is, interactions executions are based not only on the state of participating components but on the
states of all components of the system. Conversely, a distributed system can be seen as a collection
of loosely coupled components that communicate with a scheduling layer [23, 29] which, based
on a partial view of the system, is responsible of taking decisions for interactions executions and
their effective execution dates. Additionally, high-level coordination primitives, such as multiparty
synchronizations (interactions) are rarely built-in primitives of distributed platforms. Hence,
their implementation on a distributed platform requires synchronization protocols responsible
for realizing synchronizations using simpler primitives such as point-to-point messages passing
as explained in [29]. This is classically implemented using one or more additional coordination
component(s) observing the system state and deciding on interactions execution, which adds on a
communication overhead not reflected by the semantics of Section 2.

This motivates the introduction of the local planning semantics. This semantics differs from
the standard semantics of timed automata in two main aspects: (i) interactions execution is based
only on partial state of the system, that is, based only on the state of components participating
in the considered interaction. Thus, it allows to decide locally without monitoring the entire
system. (ii) it distinguishes between the execution decision of an interaction (its planning), and
the execution itself. This distinction allows us to impose a delay between the planning of an
interaction and its execution. The latter is constrained by the (maximal) communication latency
induced by the execution platform, which is a parameter of the semantics. It is correct in the
sense that it refines (it is included in) the semantics of Section 2. However, being based on local
states, planning decisions are too permissive and may introduce deadlocks when they are not
compatible with the global state of the system.

3.1 Definition of the LPS
Let S = γ(B1, · · · , Bn) be a composition of components B1, . . . , Bn with disjoint set of locations,
actions and clocks. We define the predicate Plannable(α, δ) characterizing states (ℓ, v) from which
an interaction α = {ai}i∈I ∈ γ is enabled in δ ∈ R≥0 units of time (if time progresses by δ units of
time), that is, such that Enabled(α) evaluates to true on state (ℓ, v + δ). It is characterized by:

Plannable(α, δ) =
∨
ℓ∈L

ℓ=(ℓ1,··· ,ℓn)

at(ℓ) ∧
∧
i∈I

ai∈α

(
guard(ai, ℓi) + δ

)
(3)

Notice that for an interaction α the predicate Plannable(α, δ) depends only on states of components
of part(α), which motivates the following property.

▶ Property 7. Let (ℓ, v) be a state of the composition S. For any interactions α, β ∈ γ such that,
(ℓ, v) β−→γ (ℓ′, v′) and part(α) ∩ part(β) = ∅, if Plannable(α, δ) holds at state (ℓ, v) then it still
holds at state (ℓ′, v′).

This property derives directly from the fact that executing an interaction β does not change the
states of components participating in an interaction α, provided that α and β have disjoint sets of
participating components, and thus, Plannable(α, δ) is not affected by the execution of β in this
case. In the following, we say that two interactions α and β conflicts when they have common
participating components, that is, when part(α) ∩ part(β) ̸= ∅, and we write α#β. We denote by
conf(α) the set of interactions conflicting with α, that is, conf(α) = {β ∈ γ | α#β}.
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▶ Property 8. Let (ℓ, v) and (ℓ, v + δ′), with δ′ ∈ R>0 be two states of the composition S. For an
interaction α ∈ γ, if Plannable(α, δ) holds at state (ℓ, v) then Plannable(α, δ − δ′) also holds at
any state (ℓ, v + δ′) such that δ′ ≤ δ.

This property can be found directly by expressing the predicate 3 on state (ℓ, v + δ′).
As previously explained, due to communication latencies induced by execution platforms we

assume that interactions cannot be planned in δ units of time if δ < hmin, where hmin ∈ Z≥0 is a
parameter representing the minimal planning horizon, which should represent the upper bound
communication latencies. Notice that for the sake of simplicity, we consider a global parameter
hmin but we could also assume different parameters for each interaction. Additionally, we also
consider upper bounds planning horizons hmax : γ → Z≥0 ∪ {+∞} for each interaction such that
for any α ∈ γ we have hmax(α) ≥ hmin. We denote by h∞

max the upper planning horizon assigning
infinity to every hmax(α). A direct consequence of introducing the planning horizons is that every
interaction α can be planned only using a horizon δ satisfying hmin ≤ δ ≤ hmax(α), meaning that
every component B ∈ part(α) will be blocked for a duration between [hmin, hmax(α)]. Observe
that while hmin represents the worst case estimation of the communication delays for a given
platform, the parameters hmax(α) will be used later to find a strategy that avoids deadlocks by
restricting the amount of time components can be blocked for.

For an interaction α we define the predicate Plannable(α) characterizing states from which α

can be planned in a delay respecting the planning horizons hmin and hmax(α), that is:

Plannable(α) ⇔ ∃δ ∈ R≥0 . hmin ≤ δ ≤ hmax(α) ∧ Plannable(α, δ),

It can be written equivalently as follows:

Plannable(α) =
∨
ℓ∈L

ℓ=(ℓ1,··· ,ℓn)

at(ℓ) ∧ ↙hmax(α)
hmin

( ∧
i∈I

ai∈α

guard(ai, ℓi)
)

(4)

▶ Definition 9 (Plan). A plan π is a function π : γ → R≥0 ∪ {+∞} defining relative times
for executing interactions. An interaction α is planned to execute in π(α) time units only if
π(α) < +∞. Plans satisfy that for any two interactions α ̸= β such that π(α) < +∞ and
π(β) < +∞, then the interactions α and β are not conflicting (i.e. ¬(α#β)).

We denote by π0 the plan assigning +∞ to every interaction of γ, that is, ∀α ∈ γ, π0(α) = +∞.
For a plan π, we consider its minimum value min(π) = min {π(α)|α ∈ γ}. We also denote
by conf (π) the set of interactions conflicting with the plan π, i.e. conf (π) = {α | ∃β#α.

π(β) < +∞}, and part(π) the set of components participating in interactions planned by π, i.e.
part(π) = {Bi | ∃α . π(α) < +∞ ∧ Bi ∈ part(α)}. Notice that since π stores relative times,
whenever time progresses by δ, the value π(α) assigned by π to an interaction α should be
decreased by δ until it reaches 0, meaning that α has to execute. We write π − δ to describe
the progress of time over the plan, that is, (π − δ)(α) = π(α) − δ for interactions α such that
π(α) < +∞. Similarly, π[α 7→ δ] assigns relative time δ to α, α /∈ conf(π), into existing plan π,
i.e. (π[α 7→ δ])(β) = δ for β = α, (π[α 7→ δ])(β) = π(β) otherwise.

▶ Definition 10 (Local Planning Semantics). Given a set of components {B1, · · · , Bn} and an
interaction set γ, we define the local planning semantics (LPS) of the composition γ(B1, · · · , Bn),
as the LTS (Qp, qp0 ,

∑
p, ∼∼∼>γ) where:

Qp = L × V(X ) × Π, where L is the set of global locations, V(X ) is the set of global clock
valuation, and Π is the set of plans.∑

p = γ ∪ R>0 ∪ (γ × R≥0), where (γ × R≥0) defines the action of planning interactions of γ

and their relative times.
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∼∼∼>γ ⊆ Qp ×
∑

p ×Qp is the set of labeled transitions defined by the rules:

(ℓ, v, π) ∼∼∼∼>
(α,δ)

γ (ℓ, v, π[α 7→ δ]) for α ∈ γ, hmin ≤ δ ≤ hmax(α) and δ ̸= +∞ if α /∈ conf (π)
and Plannable(α, δ) holds on (ℓ, v, π).
(ℓ, v, π) ∼∼∼>

α
γ (ℓ′, v′, π[α 7→ +∞]) for α ∈ γ if π(α) = 0 and (ℓ, v) α−→γ (ℓ′, v′).

(ℓ, v, π)∼∼∼>
δ

γ (ℓ, v+δ, π−δ) for δ ≤ min(π), ℓ = (ℓ1, . . . , ℓn), if tpci(ℓi)(v+δ) for components
Bi ∈ part(π) and tpci(ℓi)(v + δ + hmin) for components Bi /∈ part(π).

Remark that in the above definition as well as in what follows, predicates defined on states
(ℓ, v) ∈ Qg = L × V(X ) of the standard semantics are straightforwardly interpreted on states
(ℓ, v, π) ∈ Qp considering the projection (ℓ, v) of (ℓ, v, π) on Qg.

States of the LPS do not include only locations and clock valuations, but also the relative
execution times of the planned interactions stored by π. Initially, no interaction is planned, that
is, initial states (ℓ0, v0, π0) satisfy π0 = +∞. Planning an interaction α to be executed at a
relative time hmin ≤ δ ≤ hmax(α) corresponds to the operation π[α 7→ δ] on the plan, which can
only be done if α is not conflicting with the latter, and becomes enabled if time progresses by
δ (i.e. if Plannable(α, δ)). On the other hand, time progress not only updates clock values but
also the plan by decreasing the relative execution times of the planned interactions. To force
the execution of planned interactions when their relative execution times reach 0, time cannot
progress more than the closest relative execution times of the interactions (more than min(π)).
As for the standard semantics, time progress is limited by the time progress conditions of the
components, but with the following significant difference: Components Bi ∈ part(π) participating
in planned interactions behave as in the standard semantics, that is, time can progress until their
time progress conditions expire. For components Bi /∈ part(π), i.e., that are not participating
in planned interactions, we take into account the minimal delay hmin needed for planning and
then executing an interaction: in components Bi /∈ part(π) time can progress only up to hmin
time units before their time progress conditions expire. By doing so, we ensure that there always
remains enough time to plan interactions involving Bi /∈ part(π) , if they exist, and execute them
before their time progress conditions expire.
▶ Example 11. Let us consider the following execution sequence for example of Figure 1 under
the LPS with hmin = 2 and hmax = h∞

max.

((ℓ1
0, ℓ2

0, ℓ3
0, ℓ4

0), (0, 0, 0), +∞) ∼∼∼∼∼∼>
(α1,26)

γ((ℓ1
0, ℓ2

0, ℓ3
0, ℓ4

0), (0, 0, 0), {α1 7→ 26}) ∼∼∼∼∼∼>
26

γ

((ℓ1
0, ℓ2

0, ℓ3
0, ℓ4

0), (26, 26, 26), {α1 7→ 0}) ∼∼∼∼∼∼>
α1

γ((ℓ1
1, ℓ2

1, ℓ3
0, ℓ4

0), (26, 26, 26), +∞) ∼∼∼∼∼∼>
(α3,2)

γ

((ℓ1
1, ℓ2

1, ℓ3
0, ℓ4

0), (26, 26, 26), {α3 7→ 2}) ∼∼∼∼∼∼>
2

γ((ℓ1
1, ℓ2

1, ℓ3
0, ℓ4

0), (28, 28, 28), {α3 7→ 0}) ∼∼∼∼∼∼>
α3

γ

((ℓ1
0, ℓ2

2, ℓ3
0, ℓ4

0), (0, 28, 0), +∞) ∼∼∼∼∼∼>
(α2,26)

γ((ℓ1
0, ℓ2

2, ℓ3
0, ℓ4

0), (0, 28, 0), {α2 7→ 26}) ∼∼∼∼∼∼>
26

γ

((ℓ1
0, ℓ2

2, ℓ3
0, ℓ4

0), (26, 54, 26), {α2 7→ 0}) ∼∼∼∼∼∼>
α2

γ((ℓ1
1, ℓ2

2, ℓ3
1, ℓ4

0), (26, 54, 26), +∞) ∼∼∼∼∼∼>
(α4,2)

γ

((ℓ1
1, ℓ2

2, ℓ3
1, ℓ4

0), (26, 54, 26), {α4 7→ 2}) ∼∼∼∼∼∼>
2

γ((ℓ1
1, ℓ2

2, ℓ3
1, ℓ4

0), (28, 56, 28), {α4 7→ 0}) ∼∼∼∼∼∼>
α4

γ

((ℓ1
0, ℓ2

2, ℓ3
2, ℓ4

0), (28, 0, 0), +∞) ∼∼∼∼∼∼>
(α6,30)

γ

((ℓ1
0, ℓ2

2, ℓ3
2, ℓ4

0), (28, 0, 0), {α6 7→ 30})

This execution sequence represents a path that alternates plan actions, time progress and execution
of some interactions, and leads to the action-time-lock state ((ℓ1

0, ℓ2
2, ℓ3

2, ℓ4
0), (0, 0, 28), {α6 7→ 30}).

In fact, the time progress condition x ≤ 30 in component T1, imposes the planning of interaction
α7 at the latest hmin units of time before it becomes urgent. However, since interaction α6 was
planned in 28 units of time, α7 cannot be planned since it is conflicting with α6. This execution
sequence shows that a given system action-time-locks under the local planning semantics , even if
it is deadlock-free in the standard semantics.
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3.2 Properties of the LPS
We use weak simulation to compare models of the standard semantics and the local planning
semantics by considering the planning transitions unobservable. As shown in Example 11, the
LPS does not preserve the deadlock freedom property of our system. Nevertheless, the following
proves weak simulation relations between the two semantics.

▶ Lemma 12. Given a reachable state (ℓ, v, π) of the LPS. If for α ∈ γ, π(α) < +∞ ⇒
Plannable(α, π(α)).

▶ Proposition 13. An interaction can execute from a state (ℓ, v, π) in the LPS semantics only if
it can execute from (ℓ, v) in the standard semantics, that is:

∀α ∈ γ.(ℓ, v, π) ∼∼∼>
α

γ (ℓ′, v′, π′) ⇒ (ℓ, v) α−→γ (ℓ′, v′).

Proposition 13 is a consequence of Lemma 12: an interaction α can execute in the local
planning semantics only if π(α) = 0 (see Definition 9). That is, a state (ℓ, v, π) of the LPS from
which α can execute satisfies Plannable(α, 0 ) or equivalently Enabled(α), which demonstrates that
α can execute from (ℓ, v) in the standard semantics.

▶ Proposition 14. Time can progress by δ at a state (ℓ, v, π) in the local planning semantics only
if time can progress by δ at (ℓ, v) in the standard semantics, that is:

∀δ ∈ R>0.(ℓ, v, π) ∼∼∼>
δ

γ (ℓ′, v′, π′) ⇒ (ℓ, v) δ−→γ (ℓ′, v′).

Proposition 14 is a direct consequence of the definition of time progress in the local planning
semantics which is a restriction of the one in the standard semantics.

▶ Corollary 15. If a state (ℓ, v, π) is reachable in the local planning semantics, then the state (ℓ, v)
is reachable in the standard semantics.

Corollary 15 is obtained from Propositions 13 and 14 and the fact that planning transitions
(labeled by (α, δ)) affect only the plan π in states (ℓ, v, π) of the LPS.

▶ Definition 16 (Weak Simulation). A weak simulation over A = (QA, qA0

∑
∪{β}, →A) and

B = (QB , qB0

∑
∪{β}, →B), where β actions represent silent (unobservable) action, is a relation

R ⊆ QA × QB such that:
∀(q, r) ∈ R, a ∈

∑
.q

a−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r
β∗aβ∗

−−−−→B r′ and,
∀(q, r) ∈ R : q

β−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r
β∗

−→ r′.
B simulates A, denoted by A ⊑R B, means that B can do everything A does.

The definition of weak simulation is based on the unobservability of β−transitions. In our case,
β−transitions corresponds to planning transitions. Let LTSg and LTSp be respectively the
underlying labeled transition system of the standard semantics and the local planning semantics
respectively.

▶ Corollary 17. LTSp ⊑R LTSg with R = {((q, π); q) ∈ Qp × Qg}.

Corollary 17 corresponds to a notion of correctness of the local planning semantics: any
execution in the LPS corresponds to an execution in the standard semantics. In addition, if
interactions are allowed to be planned with relative execution times of 0 (i.e. hmin = 0) then
timeless planning of interactions becomes possible. Thus, the planning semantics simulates the
standards semantics in that case.
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▶ Corollary 18. LTSg ⊑R′ LTSp with R′ = {(q; (q, π)) ∈ Qg × Qp | hmin = 0}.

However, this is no longer true in general if hmin > 0 which means that not all execution
sequences of the standard semantics are preserved by the local planning semantics.

▶ Corollary 19. If LTSg is zeno runs free then LTSp is too.

Corollary 19 states that the LPS does not introduce any zenoness behavior if the standard
semantics is free from the latter. It is a direct consequence of Corollary 17 and the fact that it is
not possible to have infinite sequences of planning transitions without interaction execution (γ is
finite and planning times are bounded).

▶ Proposition 20. If every reachable state of LTSg is not a deadlock, then a reachable state of
LTSp is not deadlock if and only if it is not an action-time-lock.

Proof of Propostion 20. We prove Proposition 20 by contradiction. Let us assume that the
system under the standard (resp. local planning) semantics is deadlock free (resp. action-time-
lock-free). Let (ℓ, v, π) be a reachable deadlock state of the LPS. We have:

∄σ ∈ γ ∪ (γ ×R≥0), ∃δ. (ℓ, v, π) ∼∼∼>
σ

γ (ℓ′, v′, π′) ∨ (ℓ, v, π) ∼∼∼>
δ

γ (ℓ, v + δ, π − δ) ∼∼∼>
σ

γ (ℓ′, v′, π′)

We denote by wait(ℓ, v, π) the set of allowed waiting times at state (ℓ, v, π), that is:

wait(ℓ, v, π) = {0} ∪ {δ ∈ R>0|(ℓ, v, π) ∼∼∼>
δ

γ (ℓ, v + δ, π − δ)}

We also put max(wait(ℓ, v, π)) to denote the maximal waiting time at state (ℓ, v, π). Notice that
max(wait(ℓ, v, π)) may not be defined in some cases. In fact, we are not interested in its actual
existence but rather in the fact that it is bounded (< +∞) or not.

▶ Lemma 21. Let (ℓ, v, π) be a reachable state of the local planning semantics. For k ∈ R≥0, such
that k = max(wait(ℓ, v, π)), we have the following properties:
P1 If k < +∞ then (ℓ, v, π) ∼∼∼>

k
γ (ℓ, v + k, π − k) ∧ wait(ℓ, v + k, π − k) = {0}

P2 If π ̸= π0 then k ≤ min(π)

We distinguish 2 cases:

Case 1: no interaction is planned (i.e. π = π0)

By definition of the LPS, it is clear that for π = π0, there is no interaction to execute from (ℓ, v, π)
or any of its successor (ℓ, v + δ, π − δ).
1. wait(ℓ, v, π) = {0}:

This means that time progress is not allowed at state (ℓ, v, π). We also have ∄σ ∈ (γ ×
R≥0).(ℓ, v, π) ∼∼∼>

σ
γ (ℓ′, v′, π′) (deadlock assumption). We can conclude that (ℓ, v, π) is a

reachable action-time-lock state, which contradicts the assumption that the system under the
local planning semantics is action-time-lock-free.

2. wait(ℓ, v, π) ̸= {0}:
a. max(wait(ℓ, v, π)) = +∞:

▶ Lemma 22. Let (ℓ, v, π) be a reachable state of the local planning semantics . If ∀δ ∈
R>0. (ℓ, v, π) ∼∼∼>

δ
γ (ℓ, v + δ, π − δ) ∧ ¬Plannable(α) at (ℓ, v, π), then we have ¬Enabled(α)

at (ℓ, v + δ, π − δ) with δ ≥ hmin.
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By P1 of Lemma 21 we can deduce that ∃δ ≥ hmin such that (ℓ, v, π) ∼∼∼>
δ

γ (ℓ, v + δ, π − δ).
We also have from the deadlock assumption and Lemma 22:

∧
α∈γ ¬Enabled(α). Finally,

since the state (ℓ, v + δ, π − δ) is reachable in the standard semantics, and by evaluating the
deadlock characterization 2 on state (ℓ, v + δ, π − δ), we can conclude that the system under
the standard semantics deadlocks, which contradicts the assumption of deadlock freedom of
the system under the standard semantics.

b. max(wait(ℓ, v, π)) < +∞:
Considering that k = max(wait(ℓ, v, π)), then we have by P1 of Lemma 21: (ℓ, v, π) ∼∼∼>

k
γ

(ℓ, v + k, π − k) ∧ wait(ℓ, v + k, π − k) = {0}. Using the deadlock assumption we have:∧
α∈γ ¬Plannable(α) at state (ℓ, v + k, π − k). Since the system cannot progress beyond

this state (wait(ℓ, v + k, π − k) = {0}), we can conclude that (ℓ, v + k, π − k) is a reachable
action-time-lock state, which contradicts the assumption that the system under the local
planning semantics is action-time-lock-free.

Case 2: at least an interaction is planned (i.e. π ̸= π0)

Considering that k = max(wait(ℓ, v, π)), since π ≠ +∞, we have by 2 of Lemma 21: k < +∞∧k ≤
min π. Using the deadlock assumption we can infer that k < min π, since no execution is possible
from (ℓ, v, π) or any of its successors. This means that (ℓ, v+k, π−k) is a reachable action-time-lock
state, which contradicts the assumption that the system under the LPS is action-time-lock-free. ◀

4 Enforcing Deadlock-Free Planning

As explained in previous section, the local planning semantics is based on local conditions for
planning interactions and may exhibit deadlocks even when the system is deadlock-free with the
standard semantics. Such deadlocks are partly due to the fact that planning an interaction may
block, in addition to the participating components, extra components whose timing constraints are
not considered by these local conditions. In this section, we investigate simple execution strategies
that only restrict the horizon used for planning interactions with upper bounds. By reducing the
period of time during which components are blocked, they tend to remove deadlocks from the
reachable states. In what follows, we consider a composition of components S = γ(B1, · · · , Bn)
such that it is deadlock-free in the standard semantics.

▶ Corollary 23 (Sufficient Condition for Deadlock-freedom). If a reachable state of the planning
semantics is not an action-time-lock then it is not deadlock.

Corollary 23 is a direct consequence of Proposition 20. It affirms that for systems that are initially
deadlock-free under the standard semantics, it is sufficient to prove action-time-lock-freedom of
the LPS to prove its deadlock-freedom.

▶ Proposition 24. A reachable state (ℓ, v, π) of the local planning semantics is an action-time-lock
if and only if:

π > 0 ∧
∧

α/∈conf(π)

¬Plannable(α) ∧
∨

ℓi∈Li

Bi /∈part(π)

at(ℓi) ∧ (urg(ℓi) + hmin).

The above proposition derives directly from the definition of action-time-locks on a state of the
local planning semantics. As shown in Example 11, the local planning semantics may introduce
deadlocks. The source of deadlocks is twofold: (i) due to communication delays, consecutive
execution in a component are separated by at least hmin units of time which may be incompatible
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with its timings constraints, and (ii) conditions for planning interactions are too permissive as
they only take into account timing constraints of participating components whereas they may
block additional components, namely the ones participating in conflicting interactions. In the rest
of the paper, we study how to generate planning strategies for preserving deadlock-freedom by
restricting the planning transitions of the LPS so that deadlock states become unreachable. Such
a strategy may not exist when timing constraints cannot accommodate with the communication
delays hmin.

From Corollary 23, action-time-lock-freedom is a sufficient condition for deadlock-freedom of
the LPS. By Proposition 24, a state (ℓ, v, π) is an action-time-lock in the local planning semantics
if and only if no time progress is allowed nor planning or execution of interactions from (ℓ, v, π),
that is:

π > 0 ∧
∧

α∈γ\conf(π)

¬Plannable(α) ∧
∨

ℓi∈Li

Bi /∈part(π)

at(ℓi) ∧ (urg(ℓi) + hmin).

The above predicate characterizes the fact that no interaction can be executed or planned, nor
time can progress in component Bi /∈ part(π). Consequently, we deduce that a necessary condition
of action-time-lock is the existence of a component Bi /∈ part(π) such that time cannot progress
in Bi and Bi cannot be planned in an interaction, that is:∧

α∈γ(Bi)\conf(π)

(
¬Plannable(α) ∧

∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin)
)

.

where γ(Bi) denotes the subset of interactions in which Bi participates, that is, γ(Bi) = {β ∈
γ | Bi ∈ part(β)}. Notice that the above expression strongly depends on the plan π, which is
difficult to characterize in practice. The following theorem proposes sufficient plan-independent
condition characterizing action-time-lock states of the LPS .

▶ Theorem 25. Let ϕ be the following predicate:∨
1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼ )]

.

where Plannable(β)
∼

is the predicate defined as follows:

Plannable(β)
∼

⇔ ∃δ > 0 . δ ≤ hmax(β) ∧ Plannable(β, δ).

We prove that a reachable action-time-lock state (ℓ, v, π) satisfies ϕ.

Proof of Theorem 25. A reachable action-time-lock state of the LPS satisfies:

π > 0 ∧
∧

α∈γ(Bi)\conf(π)

(
¬Plannable(α) ∧

∨
ℓi∈Li

Bi /∈part(π)

at(ℓi) ∧ (urg(ℓi) + hmin)
)

.

In order to approximate the above formula, we distinguish two cases:

Case 1: no interaction is planned (i.e. π = π0)

From π = +∞ we deduce directly that there exists an urgent component Bi such that no
interaction α involving Bi can be planned, that is:∨

1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

¬Plannable(α)
]
. (1)



M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:15

Case 2: at least an interaction is planned (i.e. π ̸= π0)

In this case, there exists an urgent component Bi /∈ part(π) such that no interaction α involving
Bi can be planned, either because it conflicts with a planned interaction β (0 < π(β) < +∞) or
because Plannable(α) is not satisfied, that is ∃β ∈ π, ∃Bi /∈ part(β) satisfying:

(0 < π(β) < +∞) ∧
∧

α∈γ(Bi)\conf(β)

¬Plannable(α) ∧
∨

ℓi∈Li

Bi /∈part(β)

at(ℓi) ∧ (urg(ℓi) + hmin).

or equivalently ∃β ∈ π, ∃Bi /∈ part(β) satisfying:∨
ℓi∈Li

Bi /∈part(β)

at(ℓi) ∧(urg(ℓi)+hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α)∨

(
β ∈ conf (α)∧(0 < π(β) < +∞)

))
.

By noticing that we have the following implication between quantifiers ∃y, ∀x.Q(x, y) =⇒
∀x, ∃y.Q(x, y), we can deduce that the above condition implies:∨

1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

0 < π(β) < +∞
)]

.

As π > 0, and if we consider only reachable action-time-locks, we have 0 < π(β) ≤ hmax(β),
and by Lemma 12 we have Plannable(β, π(β)). That is, β satisfies Plannable(β) in which the
lower bound hmin is replaced by the strict lower bound 0, i.e. Plannable(β)

∼
. Then, the above

expression becomes:∨
1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼ )]

. (2)

By remarking that Expression 1 implies Expression 2, we can conclude that an action-time-lock
of the local planning semantics satisfies:∨

1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼ )]

. ◀

Notice that due to the monotony of ϕ on upper bound horizons, we obtain the following lemma:

▶ Lemma 26. If LTSp is action-time-lock free for the upper bound horizons function hmax, then
it is action-time-lock free for any upper bound horizon function h′

max ≤ hmax.

In order to attest that planning interactions does not introduce deadlocks, we use an SMT
solver to check the satisfiability of ϕ. As explained earlier, a given system is deadlock-free under
the restricted LPS if Reach(LTSp) ∧ ϕ is unsatisfiable. Since Reach(LTSp) ⊆ Reach(LTSg)
(Corollary 17), we can verify the above on Reach(LTSg). Effectively, we do not compute
Reach(LTSg) to avoid the combinatorial explosion problem, inherent to composition of timed
automata. In fact, we rather build an over-approximation, Reach(LTSg)

∼
, of the latter, and use

it during our verification. Finding a strategy granting action-time-lock-freedom is based on the
idea of restricting the upper bound horizon function hmax. In fact, since hmin is a parameter that
is dependent of the communication latency of a given execution platform, it cannot be tuned.
Instead, initially for each interaction α ∈ γ, hmax(α) = +∞. Thereafter, due to the monotony
of ϕ (Lemma 26) on upper horizons, this parameter will be refined, that is, its maximum will
be decreased until finding a function hmax for which Reach(LTSg)

∼
∧ ϕ is unsatisfiable or until

reaching the upper horizon function hhmin
max for which hmax(α) = hmin for every α ∈ γ and such

that Reach(LTSg)
∼

∧ ϕ is satisfiable.
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5 Planning Semantics as Real-Time Controller Synthesis

In Section 5, we presented a method that provides execution strategies by restricting the upper
bounds planning horizon for each interaction. This strategy aims to preserve the deadlock-freedom
property of a given system under the local planning semantics without imposing further scheduling
constraints. This approach relies on the verification of a given expression on over-approximations
of the reachable states of the initial semantics. Thus, it may give false-positive results due to (i)
the nature of expression to check (sufficient condition) and (ii) the over-approximation of the
reachable states of the LPS using over-approximations of the reachable states of the standard
semantics (Corollary 17).

In such cases, an alternative is to tackle the problem as a real-time controller synthesis
problem. Real-time controller synthesis is a common method used to extract an execution strategy
from formal specifications satisfying certain properties. Usually, these properties express the
reachability (resp. non-reachability) of a set of winning states (resp. bad states). In case of
planning interactions with bounded horizons, the idea is to restrict the transition relation so that
all the remaining behaviors do not lead to states where a component is urgent and no possible
execution including this component may occur. This can be formalized as a reachability game for
a timed game automaton [12], where the main idea consists in trying to find an execution strategy
guaranteeing that a given set of namely bad states of the system are never reached.

In order to apply this approach, it is required to encode the planning of interactions and
their effects on the system, that is, (i) encode interactions planning as synchronizations between
components, (ii) reserve the components of the planned interactions until their chosen execution
date, i.e, keep track of the planned interactions and their execution dates, and (iii) characterize
the set of bad states. Thereafter, tools such as UPPAAL-Tiga [6] can be used to find an
execution strategy of the planning semantics avoiding the set of bad states, that is, deadlock
states. Expressing the planning problem as a real-time controller synthesis problem is not an easy
task. Hereinafter, we discuss the different issues met during the formalization process and provide
suggestions for solving them.

5.1 Planning Zones
From expression 4, we can see that the clocks values for planning an interaction α are calculated
at a global level, that is, by applying the ↙hmax(α)

hmin
on the conjunction of its participating actions

timing constraints. Notice that for a timing constraint g = g1 ∧ g2, we have:

↙hmin
hmin

g =↙hmin
hmin

(g1 ∧ g2) =⇒ ↙hmin
hmin

g1∧ ↙hmin
hmin

g2 (5)

The above expression bears out the fact that planning states must be encoded on the composition
of the system model and not on individual components. Particularly, expression 5 points out the
fact that encoding the planning on transitions of individual components will induce additional
behavior (↙hmin

hmin
(g1 ∧ g2) =⇒ ↙hmin

hmin
g1∧ ↙hmin

hmin
g2). This represents the first drawback of

this method since building the composition may be tedious especially for big scale systems.
Therefore, a simple solution to avoid computing the composition is to consider models with
interactions having timing constraints on up to one of their participating actions, that is, given
an interaction α = {ai}i∈I ∈ γ, we have gα = true or gα = gai

, with gaj
= true for j ∈ I, j ̸= i.

In fact, considering interactions including up to one action with timing constraints, will allow to
encode the planning on individual components that, additionally to the defined synchronizations
(interactions), will also synchronize their planning actions.

The idea is to split each transition of the initial model into two transitions: (1) a planning
transition, followed by (2) an execution transition after the plan transition being performed.
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ℓ1x ≤ k

ℓ2

a, ga, ra

(a) Part of a timed automaton.

ℓ1
x ≤ k − hmin

ℓa
1xp ≤ hmin ∧ x ≤ k

ℓ2

plana

↙hmin ga

xp := 0

a

xp = hmin
ra

(b) Planning encoding.

Figure 2 Planning as a Timed Automaton.

Time

gα

↙hmax(α)
hmin(α) gα

↙hmin(α) gα

↙hmin(α)+ε gα

↙hmin(α)+2ε gα

An interaction guard gα

and its planning intervals.

Time

gα

↙hmax(α)
hmin(α) gα

↙hmin(α) gα

↙hmin(α)+d gα

↙hmin(α)+2d gα

Discretized planning intervals for gα.

Figure 3 Discretizing Planning Horizons for Interaction.

For an interaction α ∈ γ, the choice of the planning horizon, that is, the duration for which
components participating in α will be blocked for until their execution, will be encoded on the
execution transition of the component whose action ai ∈ α and gα = gai . Otherwise, if gα = true
this choice is made arbitrarily. Consequently, this component will be equipped with a clock xp

that will be used to track the planning dates. Finally, time progress conditions must also be
translated to enforce planning at the latest hmin units of time before their expiry. Figure 2 depicts
an overview of such transformation for δ = hmin horizon:

5.2 Infinite Planning Transitions
Effectively, in order to encode the planning in timed automata, horizons values must be integer.
Moreover, due to the dense time nature of the planning intervals (relative planning date for each
interactionα are in [hmin, hmax(α)]), we end up with an infinity of plan transitions, especially when
not restricted upper bound planning horizons, i.e., hmax = h∞

max. Consequently, the first thing to
do is to restrict for each interaction α ∈ γ the upper bound planning horizon hmax(α).Thereafter,
we propose to discretize the planning horizons in order to obtain finite values in Z>0 (Figure 3).
In what follows, we denote by Disc : γ −→ D the discretized horizon function defining for each
interaction its respective discretized planning horizons D ⊂ Z>0.

▶ Definition 27 (Planning Timed Automaton). Given n timed components Bi = (Li, ℓi
0, Ai, Ti, Xi, Ii)

synchronizing through the interaction set γ such that, for each interaction α ∈ γ, the guard of α

is equal to the guard of one of its included actions. We define the corresponding planning model
as the composition of the n timed automata Bp

i = (Lp
i , ℓ0, Ai ∪ Pi, T p

i , Xi ∪ {xp
i }, Ip

i ), w.r.t the
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interaction set γ ∪ P, where:
Pi = ∪a∈Ai

pa is the set of Planning Actions
P = {pα = {pai

}i∈I |α ∈ γ ∧ α = {ai}i∈I} is the set of Planning Interactions
xp

i is a Tracking Clock for interactions execution in each component
Lp

i = (Li ∪ Lip
) is the set of control locations, where Lip

is the set of locations following
planning actions
T p

i is such that for each (ℓi, ai, gi, ri, ℓ′
i) ∈ Ti, ai ∈ α and for each δ ∈ Disc(α):

if gα ̸= true we have:

Planning transitions:

ℓi

pai
,true,∅

−−−−−−→ ℓai
, if g = true

ℓi

pai
,↙δgi,r(xp

i
)

−−−−−−−−−−→ ℓδ
ai

, otherwise

Execution transitions:

ℓai

a,true,ri−−−−−→ ℓ′
i, if g = true

ℓδ
ai

a,ga∧xp
i

=δ,ri−−−−−−−−→ ℓ′
i, otherwise

where ℓa, ℓδ
ai

∈ Lip
.

if gα = true, we choose one action b ∈ α:

Planning transitions:

ℓi

pai
,true,∅

−−−−−−→ ℓai
, if a ̸= b

ℓi

pai
,true,r(xp

i
)

−−−−−−−−−→ ℓδ
ai

, otherwise

Execution transitions:

ℓai

ai,true,ri−−−−−−→ ℓ′
i, if a ̸= b

ℓδ
ai

ai,gi∧xp
i

=δ,ri−−−−−−−−−→ ℓ′
i, otherwise

Ip
i is the set of Location Invariants , such that ∀ℓp

i ∈ Lp
i , we have:

Ip
i (ℓp

i ) =
{

tpc(ℓi) − hmin, if ℓp
i = ℓi ∈ Li

xp
i ≤ δ ∧ tpc(ℓi), if ℓp

i = ℓδ
ai

∈ Lip such that ℓi ∈ Li ∧ ℓi

pai−−→ ℓδ
ai

,

For a composition γ(B1, · · · , Bn), let LTSp′ = (Qp′ , γ′ ∪ R>0, −→γ′), where γ′ = γ ∪ P, be
the corresponding labeled transition system of its planning model under the standard semantics.

▶ Theorem 28. LTSp′ ⊑R′ LTSg where R′ is the relation defined as follows: For qp = (ℓp, vp) ∈
Qp′ and qg = (ℓg, vg) ∈ Qg, such that (qp, qg) ∈ R′, we have:

ℓp = (ℓp
1, · · · , ℓp

n), ℓg = (ℓg
1, · · · , ℓg

n):

∀i ∈ {1, · · · , n}, ℓg
i =

{
ℓp

i , if ℓp
i ∈ Li,

ℓi, if ℓp
i ∈ Lip

with ℓi
a,g,r−−−→ ℓp

i ∈ T p
i ∧ ℓi ∈ Li,

Notice that for the case where ℓp
i ∈ Lip , ℓi is unique by construction of the planning model.

vg = equ(vp), where equ(vp) is the projection of vp on clocks of vg

Proof of Theorem 28. To prove that LTSp′ ⊑R′ LTSg, we need to prove that:
1. ∀(qp, qg) ∈ R′, σ ∈ γ ∪ R>0 such that qp σ−→γ′ q′p ⇒ ∃q′g.(q′p, q′g) ∈ R′ ∧ qg σ−→γ q′g

2. ∀(qp, qg) ∈ R′, pα ∈ P such that qp pα−−→γ′ q′p ⇒ (q′p, qg) ∈ R′

1. a. Suppose that (qp, qg) ∈ R′, σ = α ∈ γ and qp α−→γ′ q′p with q′p = ((ℓ′p
1, · · · , ℓ′p

n), v′p). We
have: qp α−→γ′ q′p ⇒ gα is true, and for α = {ai}i∈I , by construction of the planning
automaton, we have: ℓg

i

ai,gi,ri−−−−−→ ℓ′g
i such that ℓ′g

i = ℓ′p
i . Moreover, since the same clocks are

reset by the execution of α in both models, we deduce that v′g = equ(v′p). By remarking
that the state of components not participating in α remains the same, we conclude that
∃q′g such that qg α−→γ q′g ∧ (q′p, q′g) ∈ R′.
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(a) Controller Component. (b) Variable Component.

(c) Task Component.

Figure 4 Planning Automata for the Task Manager Example.

b. Suppose that (qp, qg) ∈ R′, σ ∈ R>0 and qp σ−→γ′ q′p. For qp
i = (ℓp

i , vp
i ), we define Ig the set

of indexes such that ℓp
i ∈ Li, and Ip the set of indexes such that ℓp

i ∈ Lpi
.

∀i ∈ Ig.ℓp
i = ℓg

i ∧qp
i

σ−→ q′p
i ⇒ qg

i
σ−→ q′g

i . This implication is a direct result of the planning
model definition since: σ ≤ I(ℓp

i ) ≤ tpc(ℓg
i ) − hmin.

∀i ∈ Ip.ℓg
i = ℓi such that ℓp

i ∈ Lip with ℓi
a,g,r−−−→ ℓp

i ∈ T p
i ∧ ℓi ∈ Li. Thus qp

i
σ−→ q′p

i ⇒
qg

i
σ−→ q′g

i , since I(ℓp
i ) =⇒ tpc(ℓg

i ).
We conclude that ∃q′g such that qg σ−→γ q′g ∧ (q′p, q′g) ∈ R′.

2. Suppose that (qp, qg) ∈ R′ and qp pα−−→γ′ q′p, with pα ∈ P and q′p = ((ℓ′p
1, · · · , ℓ′p

n), v′p). We
have: qp pα−−→γ′ q′p ⇒ for α = {ai}i∈I ℓg

i = ℓp
i ∧ ℓg

i

pai−−→ ℓ′p
i . Moreover, since planning actions

reset only the clocks xp
i for tracking execution time, we can deduce that (q′p, qg) ∈ R′. ◀

Once interactions planning encoded, one last thing to do is to add the set of bad states to
each planning automaton (if needed) and find a strategy to avoid those states. Figure 4 depicts
the corresponding planning automata for example of Figure 1 with respect to Definition 27.
Locations suffixed by p, correspond to locations following planning actions, whereas locations
ending with err define the bad states, that is, states with urgent time progress condition(s) and
no possible execution removing the urgency. In this example, for each interaction α ∈ γ, we chose
D(α) = {1, 2}. Notice that for this example, we consider that all actions are controllable actions
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State: ( Controller.l_1_p_1 Task(0).l_0 Task(1).l_1_p Task(2).l_3_p2
Task(3).l_0 Task(4).l_0 Task(5).l_0 Task(6).l_0 Task(7).l_0 Task(8).l_0
Task(9).l_0 Task(10).l_0 Task(11).l_0 Task(12).l_0 Task(13).l_0 Task(14).l_0
Task(15).l_0 Task(16).l_0 Task(17).l_0 Task(18).l_0 Task(19).l_0 Var.V_pe
) vlist[0]=2 vlist[1]=0 vlist[2]=0 vlist[3]=0 vlist[4]=0 vlist[5]=0
vlist[6]=0 vlist[7]=0 vlist[8]=0 vlist[9]=0 vlist[10]=0 vlist[11]=0
vlist[12]=0 vlist[13]=0 vlist[14]=0 vlist[15]=0 vlist[16]=0 vlist[17]=0
vlist[18]=0 vlist[19]=0 vlen=1 Controller.list[0]=1 Controller.list[1]=0
Controller.list[2]=0 Controller.list[3]=0 Controller.list[4]=0
Controller.list[5]=0 Controller.list[6]=0 Controller.list[7]=0
Controller.list[8]=0 Controller.list[9]=0 Controller.list[10]=0
Controller.list[11]=0 Controller.list[12]=0 Controller.list[13]=0
Controller.list[14]=0 Controller.list[15]=0 Controller.list[16]=0
Controller.list[17]=0 Controller.list[18]=0 Controller.list[19]=0
Controller.len=1
When you are in (Controller.zp==1 && Task(2).yp<=2), take transition
Controller.l_1_p_1-> Controller.l_0 { zp == 1 && 1 == front(), exec_run[1]!,
z := 0, dequeue() } Task(1).l_1_p->Task(1).l_2 { 1, exec_run[id]?, y := 0,
venqueue(id) } When you are in (Task(2).yp==2 && Controller.zp<=1), take
transition Task(2).l_3_p2-> Task(2).l_0 { yp == 2, exec_end[id]!, vdequeue()
} Var.V_pe->Var.V_ee { 2 == vfront(), exec_end[2]?, 1 }

Figure 5 Sample of the Output Strategy from UPPAAL-Tiga.

since it is a closed system in the sense that there is no interaction with the environment.
We performed the verification on the Task Manager examples with 20 tasks. The winning

condition being a safety condition: avoid all “err” locations. This was translated into the following
property:

control: A[ ] forall (i : int[0,N-1]) not (Task(i).l_2_err or Task(i).l_3_err) (6)

The property of interest was successfully verified. Additionally, we were also able to synthesize
all wining actions of all states using the command line of UPPAAL-Tiga. A sample of the
resulting output is provided below Figures 5. Notice that the average execution time1 for verifying
Property 6 is 0.1141 seconds (0.6534 seconds when requesting the generation of a strategy).

5.3 Discussion
In this section, we explained how the problem of planning interactions can be formalized into a
real-time controller synthesis approach. However, this approach has some drawbacks. In order
to encode planning of interactions in components as timed automata, this approach restricts its
scope to discretized horizon values which results in having less control over the planning dates
of interactions, and leads in case of a high number of discretized values, to an explosion in the
number of planning transitions. Unfortunately, we do not have an immediate solution for this
problem. In fact, it is user dependent since one user may just want to have a ASAP execution for
a given interaction, for instance because the components involved in this interaction are often

1 The experiments have been conducted on a HP machine with Ubuntu 16.04, an Intel® Core™i5-4300U processor
of frequency 1.90GHz×4, and 7.7GiB memory.
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requested, and in that case the practice will be to always plan with hmin. In other cases, the
user may want to plan an interaction with flexible amount time. Additionally, this approach
considers only a class of systems where interactions have timing constraints on up to one of their
participating components action. Otherwise, the planning should be encoded on the composition,
which represents a tedious work because of the state space explosion problem. Nevertheless, this
approach differs form the usual scheduler synthesis approach since it is not performed on the
regular semantics of timed automata. Particularly, here we are interested in avoiding bad states
of the planning semantics (states that verify the expression of Theorem 25). Consequently, unless
finding an automatic general method for generating such complex expression in the query language
accepted by such tools, and without ignoring that finding a strategy avoiding those states may be
hard in term of computational complexity, our real-time controller synthesis approach seems more
straightforward and much simpler but it comes with some feasibility restriction.

6 Implementation and Experiments

6.1 Implementation
For our experiments, we used the BIP framework [5] as a modeling language to define systems and
their synchronizations. BIP (Behavior, Interaction, Priority), is a component-based framework
with a rigorous semantics that allows to model systems as a set of atomic components coordinating
their behaviors through multiparty interactions. The BIP framework provides a rich set of tools
that allows to model, verify and execute systems. The BIP toolbox is structured in different
categories (see Figure 6):
1. This category includes translation of various language or modeling paradigm that allows the

automatic generation of BIP models as well as the front-end of the BIP compiler.
2. The middle-end of the BIP compiler consists of several modules that allows model transforma-

tion (from BIP to BIP) and performance optimization (flattening and distributed real-time
filter). Particularly, the distributed real-time filter provides an intermediate model transfor-
mation (Send/Receive transformation [29]) that aims to reduce the gap between high level
models and their actual implementations. Additionally, in association with the RTD-Finder
tool it provides analyses allowing performance evaluation [15] as well as the actual analyses
for the approach presented in Section 4. Note that the identity filter is the default filter that
given a BIP model return the same BIP model.

3. The BIP back-end consists of code generator that generates the actual C++ corresponding
to the actual BIP model yield by the middle-end. The engine based code generator produces
simulation code that incorporates the BIP simulation engine. The Distributed code generator
generates form Send/Receive models C++ code for distributed platform.

4. Verification of safety properties or properties allowing to tune a given system in order to obtain
better performances are achieved using the RTD-Finder [27] and the SBIP tools [26].
The proposed method has been implemented in the distributed real-time middle-end filter of

the BIP compiler. It aiming to generate information that could be used by the back-end during
the code generation phase. The presented approach requires a substantial knowledge of the system
model, since the satisfiability verification of Reach(LTSg)

∼
∧ ϕ, needs a deep analysis of the system,

in order to generate the predicates used in the latter. The implementation takes as input a BIP
model and a horizon file specifying at least the lower bound horizon, that is, hmin. Since we
do not have a concrete execution platform, the choice of hmin was done relatively to the timing
constraints of the verified model, that is, we chose values of hmin that are always smaller than
upper bounds of any timing constraints appearing in the components of a given system. This
choice was motivated by the fact that deploying a system with timing constraints being of the
same order of magnitude than the communication delays of the target platform is unlikely to
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Figure 6 The BIP Toolbox.

happen. First, the front-end of the BIP compiler creates an abstract representation of the latter.
Thereafter, the distributed real-time filter performs a model analysis in order to construct the
predicates needed in ϕ, while keeping interactions upper horizons as free variables. In order to ease
the verification process and remove the back and forth process between the predicates generation
and their verification, we fully integrated the generation of the compositional invariants used by
the RTD-Finder tool in the middle-end. Finally, a Yices [17] file including system invariants and
the predicates approximating action-time-locks, is generated. The Yices solver checks then the
satisfiability of Reach(LTSg)

∼
∧ ϕ. If the result is unsatisfiable, then planning does not miss the

deadlines expressed by components time progress conditions. Otherwise, if the result is satisfiable,
Yices generates a counter-example. Since for each interaction hmin is a fixed value, and due to
the monotony of ϕ on hmax, the generated counter-example is used to find the maximal value of
hmax guaranteeing action-time-lock-freedom, and thus deadlock-freedom of the planning semantics.
This part is however done manually, and based on binary search algorithm.
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Figure 7 Train Gate Controller.

6.2 Benchmarks
For the experiments, we chose three additional benchmarks:

Train Gate Controller

The train gate controller [4] is a system composed of: a controller, a gate and a train. Figure 7
gives an overview of the system and its interactions: The train informs the controller about his
position (w.r.t. to the crossing) through the interactions α1 (approach) and α2 (exit). On the other
hand, the controller lowers (α3) and raises (α4) the gate whenever the train enters, respectively
exits. Notice that actions {enter} of the train, and {up, down} of the gates are considered as
singleton interactions.

Firewire

The IEEE 1394 root contention protocol (firewire) [14] is a standard protocol for interconnecting
multimedia devices. It describes a serial bus used to transport digitized video and audio signals in
a network of multimedia equipments. Among the different protocols used in this system, we put
our interest in the leader election protocol called tree identify protocol. In this model, we consider
two nodes (devices) and their respective channels. In order to elect a leader, each node sends a
request via its respective channel asking its neighbor to be a parent. Once a neighbor receives a
parent request, it either sends an acknowledgment or detects a contention in the case where it
also sent a parent request. This contention is solved by assigning waiting times before the next
send requests. Figure 8 depicts the model for the node component.

Gear Controller

The gear controller system describes the control system responsible for the gear change inside a
vehicle. The used model encompasses formal models of the gear controller and its environment.
The whole system includes five components: an interface, a controller, a clutch, an engine a
gear-box and two global variables. In order to change the gear, the interface sends a signal to the
controller. Consequently, the controller interacts with the engine, the clutch and the gear-box to
achieve the gear change. The engine is responsible of either regulating the torque or synchronizing
the speed. On the other hand, the gear-box sets the gear between some fixed bounds, whereas,
the clutch is used whenever the engine is not able to function properly (under difficult driving
conditions, for instance). The case study was initially designed by UPPAAL [25] and has been
translated to BIP.
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Figure 8 Timed Automaton for a Node.

Table 1 Detailed Results of the Task Manager Experiments.

hmin hmax(α1), hmax(α2) hmax(α3), hmax(α4) hmax(α5), hmax(α6) hmax(α7), hmax(α8)
4 +∞ +∞ 9 +∞
3 +∞ +∞ 8 +∞
2 +∞ +∞ 7 +∞
1 +∞ +∞ 6 +∞

6.3 Results

Table 1 depicts the values hmax for each interaction of the running example, obtained while
fixing hmin. Notice that the symmetry of the system implies the same hmax for interactions
αi, αi+1, i ∈ {1, 3, 5, 7}. By remarking that location ℓ2

3 (resp. ℓ3
3) has a time progress condition

x ≤ 4 (resp. y ≤ 4), and by observing that the clock x is reset on the transition leading to this
location, we can conclude that planning the system with hmin > 4 will lead to an action-time-lock.
Particularly, in Example 11, for hmin = 2 interaction α6 was planned with a horizon δ = 8, and
consequently, leads to a action-time-lock state. Our method detects such cases and thus, finds that
the maximum horizon for this interaction is 7. Likewise, the hmax for interactions α2, α4 and α8
(resp. α1, α3 and α7) is found to be unbounded (+∞).

Table 2 summarizes the experiments obtained on the benchmarks stated above, where n is
the number of components, nbtpc the number of time progress conditions that will be verified
against action-time-lock freedom and max hmin the maximum value of hmin for which the system is
action-time-lock-free in the planning semantics. Additionally, the column hmax indicates whether
a restriction on the upper horizons is required to avoid deadlocks. Finally, texec gives an overview
of the execution time including both the invariants generation and the verification time.

As shown in table 1, the task manager model has a maximal hmin value of 4 TU and requires a
restriction on the upper horizons for interactions α5 and α6. In the same way, we found that the
train gate controller, the firewire and the train gate controller models have respectively maximal
hmin value of 4 TU, 5 TU and 130 TU. However, they do not require any restriction on the upper
horizons values of their interactions.
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Table 2 Experiments Results.

Model n nbtpc max hmin hmax texec(s)
Task Manager 4 4 4 B 0.11

Train Gate Controller 3 6 4 +∞ 0.16
Firewire 4 10 5 +∞ 3.03

Gear Controller 5 19 130 +∞ 4.65

7 Related Work

Timed automata are high-level representations which are useful for modeling, specifying and
analyzing system behavior [4]. They rely on mathematical abstractions such as real-valued clocks,
instantaneous executions and communications, which are no longer valid at implementation level.
Following model-based design approaches, a valid question is how to derive implementations from
timed automata? This problem has already been addressed for centralized execution platforms.
More specifically, Abdellatif et al. [1] shows how to take into account execution times and provides
sufficient conditions for an implementation to be robust with respect to execution times. [3] and
[32] studied the preservation of properties when introducing various sources of delays and digital
(discrete) clocks in the implementations, to represent realistic executions on the hardware platform.
[21, 22] takes a different approach than [3, 32] by trying to actively counteract the effect of delays
in the generated code so as to meet properties.

In the context of distributed platforms, existing implementation frameworks [18, 9, 19, 11]
for real-time applications are restricted to time-deterministic systems, which is a strictly less
expressive than timed automata as explained in [1]. They also consider much simpler coordination
mechanisms than multiparty interactions proposed in this paper. The generation of distributed
implementations from components subject to multiparty (nary) interactions has been extensively
studied in the untimed context [10, 8], and more recently for timed systems under the assumption
of non-decreasing deadlines in [28]. The principle is to transform multiparty interactions into
coordination mechanisms using simpler primitives such as asynchronous point-to-point messages, so
that they can be mapped directly on communication mechanisms offered by distributed platforms.
We contribute to this research field by considering in addition delays between the decision to
execute an interaction and its actual execution. They are due to the transmission delays between
the component responsible for such a decision and the components involved in the interaction,
and may have a huge impact in the satisfaction of timing constraints in real-time systems. Indeed,
such delays may introduce behavioral flaws (e.g. deadlocks) when dealing with arbitrary timing
constraints (i.e. no restriction to the non-decreasing deadlines case), as shown in [16]. Our
contribution consists in (i) the introduction of a semantics based on partial states of the system
components and that includes a complete formalization of the effect of the delays in this context,
and (ii) practical means for enforcing system correctness in their presence. This paper is an
extension of the work presented in [16]. The semantics proposed in [16] allows to choose arbitrary
(i.e. non-negative) delays between decisions and executions, which is not realistic. We improve [16]
by restricting such delays with respect to lower bounds representing worst-case estimates of
communication delays. We also updated accordingly the underlying semantics by restricting the
progress of time as well as the sufficient conditions for system correctness presented in [16]. As
explained in [16], they can be used in some cases to derive simple execution strategies achieving
correctness. When our method is not applicable (i.e. the sufficient conditions cannot be met), an
alternative method could be to use existing frameworks for control synthesis in timed automata.
However, as we explained in this paper the problem addressed here cannot be fully expressed
in these frameworks [6, 2], and had to be simplified by a discretization step. Moreover, when
applicable our method remains faster than this alternative.

LITES
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8 Conclusion and Future Work

We presented a local planning semantics for scheduling real-time systems in a distributed context.
The proposed approach intends to mitigate the effect of communication delays through planning
interactions ahead. A sufficient deadlock-freedom condition has been proved, a compositional
verification method for checking action-time-lock-freedom was provided, and a simple execution
strategy, based on restricting upper bounds horizons planning of interactions, has been presented.
Additionally, a formalization of the planning problem as a real-time controller synthesis approach
has been provided. This work shows how to express the planning semantics as timed game
automata and highlights the encountered issues met during the formalization.

This approach opens a number of directions for future work. In case of action-time-locks of
the planning semantics, a first idea consists to study their origins and derive a refinement method
for models in order to take into account the communication delays. Another interesting direction
is the characterization of the reachable states of the planning semantics. Instead of using an
over-approximation of systems reachable states under the standard semantics, a more accurate
approach could be to define a method for deriving invariants w.r.t the local planning semantics.
Finally, an interesting idea is to investigate how scheduler(s) can benefit from the information
provided by the presented method in order to optimize their scheduling policy.
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