
Improving WCET Evaluation using Linear Relation
Analysis∗

Pascal Raymond
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Pascal.Raymond@univ-grenoble-alpes.fr

Claire Maiza
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Claire.Maiza@univ-grenoble-alpes.fr

Catherine Parent-Vigouroux
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Catherine.Parent-Vigouroux@univ-grenoble-alpes.fr

Erwan Jahier
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Erwan.Jahier@univ-grenoble-alpes.fr

Nicolas Halbwachs
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Nicolas.Halbwachs@univ-grenoble-alpes.fr

Fabienne Carrier
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Fabienne.Carrier@univ-grenoble-alpes.fr

Mihail Asavoae
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Mihail.Asavoae@univ-grenoble-alpes.fr

Rémy Boutonnet
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Rémy.Boutonnet@univ-grenoble-alpes.fr

Abstract
The precision of a worst case execution time
(WCET) evaluation tool on a given program is
highly dependent on how the tool is able to detect
and discard semantically infeasible executions of
the program. In this paper, we propose to use the
classical abstract interpretation-based method of
linear relation analysis to discover and exploit re-
lations between execution paths. For this purpose,

we add auxiliary variables (counters) to the pro-
gram to trace its execution paths. The results are
easily incorporated in the classical workflow of a
WCET evaluator, when the evaluator is based on
the popular implicit path enumeration technique.
We use existing tools – a WCET evaluator and a
linear relation analyzer – to build and experiment
a prototype implementation of this idea.

∗ This work is supported by the French research fundation (ANR) as part of the W-SEPT project (ANR-12-
INSE-0001)

© Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier, Nicolas Halbwachs,
Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 6, Issue 1, Article No. 2, pp. 02:1–02:28
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3876-9125
mailto:Pascal.Raymond@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-5977-6685
mailto:Claire.Maiza@univ-grenoble-alpes.fr
https://orcid.org/0000-0003-0594-8274
mailto:Catherine.Parent-Vigouroux@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-3042-1565
mailto:Erwan.Jahier@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-1426-7967
mailto:Nicolas.Halbwachs@univ-grenoble-alpes.fr
mailto:Fabienne.Carrier@univ-grenoble-alpes.fr
mailto:Mihail.Asavoae@univ-grenoble-alpes.fr
https://orcid.org/0000-0003-4761-5566
mailto:R�my.Boutonnet@univ-grenoble-alpes.fr
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 Improving WCET Evaluation using Linear Relation Analysis

2012 ACM Subject Classification Software and its engineering → Real-time systems software
Keywords and Phrases Worst Case Execution Time estimation, Infeasible Execution Paths, Abstract
Interpretation
Digital Object Identifier 10.4230/LITES-v006-i001-a002
Received 2017-12-12 Accepted 2018-11-19 Published 2019-02-18

1 Introduction

The computation of a precise and safe approximation of the worst case execution time (WCET) of
programs on a given architecture is an important step in the design of hard real-time systems [41].
It is part of the validation of the design, and a prerequisite for tasks scheduling. In this computation,
over-approximation is mainly due to pessimistic abstraction of (1) complex hardware mechanisms
(caches, pipeline) and (2) the program semantics (loop bounds, infeasible executions). Taking into
account the target execution platform is, by far, the most difficult problem. It has been largely
studied in the literature and remarkable tools exist, both in the academia [5, 27, 29] and in the
industry [40].

In this paper, we specifically address the problem of taking into account the program semantics.
The objective is to extract semantic properties that make some executions infeasible, and to exploit
these properties in an existing WCET evaluator. It is generally admitted that such properties are
easier to analyze on high-level code – e.g., C programs – than on binary, even if semantic analysis
of executable code has been explored [3, 4, 36]. WCET evaluation is performed on object code
in order to be able to take into account the execution architecture. This raises the problem of
traceability between the source and the object code.

The most popular approach to evaluate the WCET is called implicit path enumeration technique
(IPET) [28]. A micro-architectural analysis provides an evaluation of the duration of each basic
block of the object-code control-flow graph. The WCET is then expressed as the solution of
an integer linear programming problem (ILP) where the variables are the number of times each
basic block is traversed during an execution. Relations between these variables come from the
control-flow graph (flow equations) and from semantic “flow facts”, including at least loop bounds.
Indeed, each loop in the program should have a constant bound to guarantee that the execution
time is finite; such bounds may be provided by the user, or discovered by program analysis.

Hence, the IPET-based evaluation takes into account semantic properties expressed as linear
constraints on counters. A natural idea is then to combine it with a semantic analysis devoted to
the discovery of invariant linear relations. Polyhedra-based abstract interpretation [2, 8, 17, 20],
also called linear relation analysis (LRA), is such an analysis. It is able to associate with each
control point of a sequential program a system of linear inequalities (whose set of solutions is a
convex polyhedron) satisfied by the numerical variables at this control point in any execution of
the program.

Our proposal consists in applying LRA to a copy of the source program enriched with counter
variables, and translate the obtained relations between counters into constraints to be added to
the ILP. Let us illustrate this proposal with a simple example.

https://doi.org/10.4230/LITES-v006-i001-a002

P. Raymond et al. 02:3

x = 0; i = 0;
while (i < 100) {

if (x < 10) {
...

}
if (c) {

...
x++;

}
i++;

}

(a) initial program

x = 0; i = 0

i < 100?
T

F

x<10?T

c?

F

i++

b0

b1

b2

b4

b6

x++
. . .

. . .

F

T

b3

b5

(b) control flow graph

x = 0; i = 0; α= 0; β= 0; γ= 0;
while (i < 100) {α++;

if (x < 10) {β++;
...

}
if (c) {γ++;

...
x++;

}
i++;

}

(c) instrumented program

Figure 1 Instrumenting an example program with counters.

1.1 An example

Consider the program fragment of Figure 1.a with its control-flow graph (Fig. 1.b). Let us add
counters α, β, γ to the main basic blocks as done in the instrumented program Figure 1.c. These
counters are initialized to 0 and incremented in their corresponding block. An LRA analysis of
this instrumented program automatically discovers that the following relations are satisfied at the
end of the program:

α = i = 100 , γ = x , β + γ ≤ 110 , γ ≥ 0 , β ≥ 0

The inequality α = 100 gives the exact bound of the loop. More interestingly, β + γ ≤ 110 means
that there are at most 10 iterations of the loop where both blocks b3 and b5 are executed.

Assume the object code has the same control structure as the C program, i.e., the basic
blocks of their control flow graphs are in an one-to-one correspondence. The standard WCET
evaluation computes pessimistic execution times (say ti, i = 0..6) of the basic blocks (bi, i = 0..6),
and constructs the following ILP, where ni (resp., ei,j) denotes the number of occurrences of the
basic block bi (resp., the edge from bi to bj) in an execution of the program:

wcet = max
6∑

i=0
ni.ti , with the constraints

n0 = 1 , e0,1 = n0
n1 = e0,1 + e6,1 , e1,2 + 1 = n1
n2 = e1,2 , e2,3 + e2,4 = n2
n3 = e2,3 , e3,4 = n3
n4 = e2,4 + e3,4 , e4,5 + e4,6 = n4
n5 = e4,5 , e5,6 = n5
n6 = e4,6 + e5,6 , e6,1 = n6

If we are able to maintain the correspondence between basic blocks in the source and the object

code, i.e., to associate our counters α, β, γ with the variables of the ILP (n2, n3, n5 respectively),
we can add to the ILP the corresponding constraints: n2 = 100, n3 + n5 ≤ 110, which is likely to
reduce the maximum value of the objective function1.

1 In fact, for this simple example, the results can be computed symbolically: concerning the standard evaluation,
if the number of iterations in the loop (= 100) is given as a flow fact, the result will be t0 + 101t1 + 100(t2 +
t3 + t4 + t5 + t6). Taking the additional constraint into account, we get t0 + 101t1 + 100(t2 + t4 + t6) +
100 max(t3, t5) + 10 min(t3, t5) thus improving the previous result by 90 min(t3, t5).

LITES

02:4 Improving WCET Evaluation using Linear Relation Analysis

1.2 Contents of the paper
In Section 2, we focus on some available tools, and experiment their semantics awareness on some
simple examples. Two recent papers were dedicated to the state of the art related to semantic
analyses for WCET estimation and infeasible path detection [1, 10]. Section 2.3 presents some
more recent publications.

Our proposal consists in combining existing techniques, namely IPET-based WCET analysis
and Linear Relation Analysis, recalled in Section 3, together with the specific tools that we used
in our implementation. In Section 4, we explain how the counters are added and related to ILP
counters thanks to debugging information provided by the compiler. Our implementation of
the method is used to validate the approach on two existing benchmarks. We also investigated
the robustness of the approach in presence of compiler optimizations. These experiments are
summarized in Section 5. We conclude with the discussion of possible future work.

2 Existing tools

We have experimented with some existing tools, to evaluate their ability to discover and exploit
semantic properties. Four tools have been considered, all of which go through similar steps:
1. extracting a control-flow graph from the object code,
2. performing a set of micro-architectural analyses to obtain execution times for each basic blocks,
3. using IPET to compute a safe WCET.

We compare these tools with respect to their capabilities to extract semantic properties to cut
infeasible paths.

2.1 The tools
2.1.1 The Chronos Timing Analyzer
Chronos [27] is an academic tool developed at National University of Singapore. It takes as input
a C program, performs limited data-flow analysis at C source code level to determine loop bounds,
and requests the user to provide this information when it fails. The semantic analysis in Chronos
uses a pattern-based method to detect infeasible paths [39]. The so-called two-phase technique
addresses infeasibility from a conflicting pairs point of view. In the first phase, an analysis detects
some conflicts that capture the fact that two branches can not be taken along the same path. In
the second phase, each conflicting pair relation is encoded into an ILP constraint.

2.1.2 The Swedish Timing Analyzer
SWEET2 [29] is a research toolbox developed at Mälardalen Real-Time Research Center (MRTC).
The main objective of SWEET is flow analysis, which computes flow-facts, i.e., information about
loop bounds and infeasible paths in the program. The main technique to discover flow-facts is
abstract execution [16]. Abstract execution is a form of context-sensitive abstract interpretation,
because it uses a symbolic execution to produce context information for each loop iteration and
function call. Instead of using the fixpoint engine of abstract interpretation, abstract execution
executes the program in the abstract domain, merging the execution paths at certain points in
the program. SWEET does not support LRA. It currently implements only the abstract domain
of intervals.

2 www.mrtc.mdh.se/projects/wcet

www.mrtc.mdh.se/projects/wcet

P. Raymond et al. 02:5

2.1.3 AbsInt - The aiT Tool
Developed by AbsInt3, aiT is the main industrial product for WCET analysis. It consists of a set
of binary executables analyzers, which take the intrinsic cache and pipeline behavior into account.
Concerning semantic analysis, aiT uses a value analysis based on intervals [13] to compute safe
ranges of values for the program variables. aiT uses this information to determine loop bounds
and detect infeasible paths. The approach towards computing loop bounds is not general, but it
handles loop patterns. In order to gain precision, aiT pre-processes each loop by transforming
its body into a function, in order to expose the iteration contexts. The key element in this
transformation is to identify the loop index and to set it as a function parameter. Then, an
interval analysis computes the ranges for all the loop variables. The loop transformation is based
on loop patterns, which depend on the particularities of the architecture (e.g., parameter order)
or on the loop structure (e.g., for-loops, triangular-loops, branch conditions). aiT is able to detect
infeasible paths using the results of the value analysis, like conditions made infeasible because of
the computed intervals.

2.1.4 oRange, the flow fact analyzer of OTAWA
OTAWA [5] is an academic toolbox, developed at IRIT (University of Toulouse), designed as
a generic framework to develop static analyses for WCET computation. Although OTAWA
implements several approaches to WCET computation, the one based on IPET is the most mature.
OTAWA relies on an auxiliary tool, called oRange [9], to compute loop bounds. oRange analyses
C code. As a first phase, oRange detects loop indices and constructs a normal form: a symbolic
expression of the bound independently of the call context. In a second phase, by an abstract
execution, a syntactic tree is built in function of a full or partial call context. It combines loop
bounds and conditional expressions as numeric or symbolic expressions. Finally, the tree is
computed in the full context in order to produce a file in the specific flow-facts format FFX [42].

2.2 Some experiments
In order to evaluate the capabilities of these tools to detect infeasible paths, we have applied each
of them to programs containing various situations of semantic infeasibility. These situations are
given in Figure 2:

Example 1 is a case where simple pattern-based method may fail, since constant propagation
is needed.
Example 2 may be a problem for pattern-based methods for finding iteration numbers, since
the apparent index x is modified.
Example 3 is our introductory example of §1.1.
Example 4 is a fragment of code generated by the SCADE4 compiler, from a design manipulating
arrays. On one hand, the loops are exited from inside, which complicates the evaluation of
iteration numbers. On the other hand, the third loop is unreachable because of some non-trivial
arithmetic conditions.

Table 1 summarizes the results of the tools on these examples. On Example 1, Chronos is
unable to detect dead code5. Example 2 is correctly analyzed only by SWEET, because it unrolls

3 AbsInt GmbH www.absint.com/ait/
4 www.esterel-technologies.com/products/scade-suite
5 We used the available version of Chronos. Some additional work has been done that complement the infeasible

path analysis [6, 37], which is not part of the available version.

LITES

www.absint.com/ait/
www.esterel-technologies.com/products/scade-suite

02:6 Improving WCET Evaluation using Linear Relation Analysis

y = 2 ; x = y ;
if (x>3){// unreachable

...
}

Example 1

x = 0 ;
while (x<10){

...
if (C1) {

x = ...
...

}
x++ ;
// iteration nbr. may be ̸= 10

}

Example 2

see example §1.1
Example 3

max_i = 3 ; s1 = 0;
for (i=0 ; i<10 ; i++) {

s1 = s1 + t[i] ;
// each t[i] assumed to be >5
x = i+1 ;
if (!(i<max_i)) break ;
// intended for 4 iterations

}
int s2 = s1 ;
if (x < 6)

for (i=0 ; i<10 ; i++){
s2 = s2+2 ;
if (!(i<5)) break ;
// intended for 6 iterations

}
int f = 0 ;
if (2*s1 < s2)

// unreachable, since s1>20 and s2=s1+10
for (i=0 ; i<10 ; i++){

f = f+2 ;
if (!(i<4)) break ;

}

Example 4

Figure 2 Various cases of semantic infeasibilities.

Table 1 Results of tools on programs of Figure 2.

Chronos SWEET oRange aiT
Example 1 - ✓ ✓ ✓

Example 2 - ✓ - -
Example 3 - - - -
Example 4

nbr. 1st loop - 4 10 4
nbr. 2nd loop - 5 10 5
dead code - - - ✓

loops. None of the tools is able to find the property of Example 3. On Example 4, Chronos
requires manual annotations for loop bounds; oRange estimates that both loops are iterated 10
times; SWEET and aiT find the exact loop bounds; only aiT detects dead code.

In this paper, we propose a method and a tool-chain that is able to discover the infeasible
paths of these 4 examples, namely, infeasible paths that depend on a semantic analysis and that
may concern distant program points.

2.3 Other approaches
An extended state of the art related to semantic analyses for WCET estimation can be found
in [1] and a general survey of infeasible path detection in [10]. We complement them with some
more recent publications.

Several recent works make use of SMT solvers [23, 37]. The idea is to ask the solver if
the worst-case path obtained by the ILP solver is feasible. Whenever the path is infeasible, a
corresponding constraint is added to the ILP. As in our approach, adding constraints does not
always mean that the WCET is refined (2 paths may have the same WCET). In [18], the whole

P. Raymond et al. 02:7

path analysis is done through SMT solving instead of ILP: infeasible path analysis and worst-case
path analysis are merged in one step. Path execution time is expressed as an SMT problem, and
the question asked is no longer “is this path feasible?”, but “is there a feasible path longer than
K?”, where K is a given constant (which is adjusted, e.g., by binary search). In [32, 35], a similar
approach is taken, by asking this question to a bounded model checker.

3 Used techniques and tools

This section presents the existing techniques and tools used in our prototype: OTAWA implements
the classical IPET-based WCET evaluation, and PAGAI performs Linear Relation Analyis.

3.1 WCET evaluation with OTAWA
The WCET estimation work-flow (Figure 3) involves a compiler, a Linear Program solver, and
two tools from the OTAWA toolbox: oRange and owcet.

Compilation: the source C code is compiled by a third party tool; for this experiment, we use
a cross compiler from the GNU Compiler Collection (arm-elf-gcc 4.4.2), but other compilers
can be used, provided that it produces ELF code (Executable and Linkable Format), with
debugging information in DWARF format.
oRange is a data flow analyzing tool, dedicated to the discovery of loop bounds. Bounds are
stored in the OTAWA flow facts format (FFX).
owcet is the OTAWA command dedicated to the WCET evaluation. The main steps of this
tool, not detailed in Figure 3, are:

the construction of the control-flow graph (CFG) of the object code; during the construction,
and thanks to debugging information, basic blocks (BB) are associated (if possible) to lines
in the source program; thanks to this correspondence, the loop bounds computed by oRange
are translated into control flow constraints in the CFG. The annotated CFG can be dumped
in a file, allowing other tools to exploit it.
the micro-architectural analysis, which associates a local WCET estimation with each BB
of the CFG.
the construction of the Integer Linear Programming (ILP) system; as in the introduction
example (§1.1) the resulting system gathers (1) structural constraints (CFG structure), (2)
loop bounds constraints (from oRange flow facts) (3) the objective function to be maximized
(sum of BB counters weighted by their local WCET).

ILP solver: the ILP system is then solved by a third-party tool; OTAWA integrates and uses
LP_SOLVE6 (any other equivalent tool can be used).

3.2 Linear Relation Analysis with PAGAI
3.2.1 Principles of LRA
Linear Relation Analysis [8] is a classical program analysis, based on abstract interpretation [7]. It
is able to discover, at each control point of a sequential program, a conjunction of linear relations
(equalities and inequalities) invariantly satisfied by the numerical variables at this point. Classical
algorithms are used to propagate linear systems over the statements of the program. Several
causes may result in information loss:

6 web.mit.edu/lpsolve/doc

LITES

web.mit.edu/lpsolve/doc

02:8 Improving WCET Evaluation using Linear Relation Analysis

LP solver

Compiler
(arm-gcc)

Flow facts
(loop bounds) bin

ILP system

WCET est.

C

OTAWA
(owcet)

OTAWA
(oRange)

CFG dump
(with line/BB mapping)

Figure 3 Otawa WCET estimation work-flow.

the analysis safely ignores non-linear expressions in assignments and tests;
the analysis performs a convex hull at control path junctions, instead of propagating the
disjunction of incoming information. It means that the propagated value is the most precise
conjunction of linear relations implied by both incoming systems;
to avoid infinite propagation along loops, the classical widening-narrowing method is applied
to guess a safe approximation of the limit. Note that, unlike in symbolic execution [23] or
SMT methods [18], loops are not unrolled.

3.2.2 Applying LRA to our example
We do not detail further the techniques applied in LRA, and refer the reader to the bibliography.
We just show the main steps of the analysis of our example of Figure 1. Let us consider the control
point at the entry of the while loop. The first step of the analysis straightforwardly computes the
first iterate:

x = i = α = β = γ = 0

Its propagation through the loop body provides, with a convex hull at the end of the conditional:

i = α = β = 1 , x = γ , 0 ≤ γ ≤ 1

Now a convex hull with the first iterate gives the second iterate at the entry of the loop:

i = α = β , 0 ≤ α ≤ 1 , x = γ , 0 ≤ γ ≤ α

Instead of continuing the iterations, a first widening/narrowing step is performed (using “lookahead
widening” [14]), which provides:

i = α = β , x = γ , 0 ≤ γ ≤ α ≤ 100 , γ ≤ 10

Now, the “else” branch of the test x<10 becomes feasible, and a second widening/narrowing step
is performed, providing:

i = α , x = γ , β + γ ≤ α + 10 , β ≤ α , γ ≤ α ≤ 100

P. Raymond et al. 02:9

which is found invariant after one more propagation. Propagated to the end of the program, it
becomes:

i = α = 100 , x = γ ≤ 100 , β + γ ≤ 110

3.2.3 LRA and loop bounds
It may happen, like in the previous example, that LRA discovers a bound to a loop counter, thus
providing an essential information for WCET evaluation. However, finding loop bounds is not our
main goal in this work, as the method is intrinsically unable to discover non linear relations, which
drastically limits its capability to find loop bounds. As a matter of fact, in presence of nested loops,
the number of executions of the body of the innermost loop is not linear in the constants of the
program. For instance, in the program fragment “ for(i=0;i<n;i++){for(j=i;j<n;j++){...}}”
the number of executions of the body of the innermost loop is n(n + 1)/2, which cannot be found
by LRA.

The LRA method must then be used together with some other method able to bound nested
loops. We can use existing tools such as oRange that comes with OTAWA, or more basically
user-given bounds, given as pragmas in the code.

There exist also approaches based on polyhedra manipulation to find loop bounds, such as
the one proposed in [38, 30]: it consists in building a polyhedral upper approximation P of the
iteration domain, i.e., the set of possible valuations of loop counters (in the previous example,
P = {(i, j) | 0 ≤ i ≤ j ≤ n − 1}). Under realistic assumptions concerning the determinism
of the program, the number of executions of the innermost loop is bounded by the number of
integer points in P , and algorithms are available to compute this number. Notice that LRA can
be combined with this approach, since it can discover linear invariants reducing the iteration
domain, thus improving the precision of the result. Notice also that LRA can deal with parameters
(symbolic bounds, like n in our example), an issue specifically addressed by [38].

3.2.4 The PAGAI prototype analyzer
Several tools performing LRA are available ([2, 12, 19, 20] to cite a few). Here, we use the PAGAI
prototype analyzer, which implements the basic LRA together with recent improvements like
“lookahead widening” [14] and SMT-based “path focusing” [19]. PAGAI analyses LLVM code [24]
produced from a C program (thanks to Clang7), and is able to return discovered properties at
the C level. PAGAI may be used with other abstract domains than general linear systems – like
octagons [33] – thanks to the common interface APRON [21].

4 Adding and tracing counters

4.1 The proposed workflow
Figure 4 shows the proposed workflow for the experiment. It involves two existing components:
timing analysis with OTAWA (left) and program analysis with PAGAI (right). Two new tools
have been developed to complete the workflow: a front-end (top, Instrumentation), which produces
the input for the analyzers (OTAWA and PAGAI), and a back-end (ILP translation & merge),
which gathers the results into a more constrained ILP system, and obtains a possibly enhanced
WCET estimation.

7 http://clang.llvm.org/

LITES

http://clang.llvm.org/

02:10 Improving WCET Evaluation using Linear Relation Analysis

LP solver

LP solver

instrumentation

C
(original)

counter/line
mapping

(§Fig.3)
OTAWA work-flow

line/BB
mapping

ILP system 2

ref. C
+counters

Linear Relation Analyis
(PAGAI)

counter
constraints

ILP constraints
translation & merge

ILP system 1

ref. C

WCET est. 1

WCET est. 2

Figure 4 Instrumentation and analysis workflow.

These tools are detailed in this section. We illustrate the successive steps of the method by
detailing the processing of an example program, called lcdnum.c, extracted from TacleBench
programs suite [15]. The main program is given in Figure 5. It calls a function num_to_lcd, the
execution time of which is taken into account by OTAWA.

4.2 Instrumented program version

The goal of the front-end (“instrumentation”, Figure 4, top) is to produce, from the original C
code, a reference C program. Some semantics preserving transformations of the source code are
necessary or advisable, in order to use properly the analyzers, and trace the information between
them.

Some transformations are purely lexical, and do not change the program structure: because
the standard ELF/DWARF traceability mechanism is line-based, line breaks are introduced to
isolate each atomic statements on its own line.
Some transformations that modify the control structure are necessary because of the limitation
of the analyzers. For instance, a single-return statement per function is mandatory for exploiting
the results of PAGAI: this unique control point is the place where counter invariants actually
express properties on the whole execution of the function. Other transformations are required
because of the limitation of both OTAWA and PAGAI: the control structure (CFG) must
be statically known, which forbids dynamic computation of program pointers. In particular,
“switch/case” statements must be rewritten into a static control structure based on “if” and
“goto” statements.
Another transformation is desirable in our case: the current version of PAGAI does not handle
inter-procedural analysis. In order to exploit the plain capacity of this tool to find invariants,
a light-weight solution is to inline function calls at the source level. This transformation is

P. Raymond et al. 02:11

indeed hardly admissible in real-life, but it must be seen here as a “trick” to reach our goal
(study the ability of LRA to detect infeasible executions).

The front-end produces the reference C code in two flavors.
The reference C code with counters (Figure 4, right) is instrumented with auxiliary counters,
in the same manner as in the introductory example (§ 1.1). The present version introduces a
counter for each sequential block in the program control flow. However, some strategy could
be used to reduce the number of counters by targeting blocks that are more likely to have an
influence [43].
The reference C code without counters (Figure 4, left) is the same code, where all lines
related the counters (declaration, initialization and incrementation) have been commented
out. This method ensures a semantic equivalence between the programs analyzed by OTAWA
and PAGAI: since they only differ on the side-effect-free local variables, these programs are
naturally input/output equivalent. Moreover, at least at the source level, the two programs
are also structurally equivalent: a block in the reference C code is executed if and only if the
corresponding block (marked with a counter c) is executed in the reference C program with
counters. This property becomes false in general at the binary level, since the C compiler may
modify the control structure: this well-know problem of traceability is discussed later.
An auxiliary file is generated, that contains the mapping between each counter and its
corresponding source line in the reference C code.

▶ Example 1. Applied to our example program (Figure 5), our instrumentation front-end calls
the C preprocessor, eliminates the multiple returns and switches (only within num_to_lcd, not
shown), and produces the reference C programs. The first one (without counters) is shown on
Figure 6; the second (not shown) is exactly the same with uncommented lines involving counters.
An auxiliary file (not shown) simply lists the pairs “counter/line” (e.g., (cptr_main_1,144),
(cptr_main_2, 147)).

The first version is provided to OTAWA. Loop bounds computation by oRange is optional,
which allows us to check if PAGAI is able to find them on its own. OTAWA calls the gcc
compiler (here with -O0 optimization level), builds the CFG of the object code, performs the
micro-architectural analysis, and builds the ILP problem.

PAGAI is applied to the second version of the program, and returns the following invariants:

-10+cptr_main_2 = 0
-10+cptr_main_4 = 0
5-cptr_main_3 >= 0

The first equation finds the exact loop bound (which may also be found by oRange). The
second equation is structural (from the shape of the source CFG, cptr_main_2 and cptr_main_4
are equal). The third property is new, and expresses, in particular, that the function num_to_lcd
is called at most 5 times.

4.3 Tracing back the counters
The back-end (“ILP constraints translation & merge”, Figure 4, bottom) gathers the information
coming form OTAWA and PAGAI:

Thanks to the counter/C-line mapping provided by the front-end, and the C-line/binary-
BB mapping provided by OTAWA (through the ELF/DWARF information), a counter/BB
mapping is built. Note that this mapping is partial, and deliberately pessimistic: depending
on the compilation process, it may happen that a counter is associated either to zero or to

LITES

02:12 Improving WCET Evaluation using Linear Relation Analysis

unsigned char num_to_lcd(unsigned char a) ;

volatile unsigned char IN = 120;
volatile unsigned char OUT;
int main(void) {

int i;
unsigned char a;
for(i=0; i< 10; i++) {

a = IN;
if(i<5) {

a = a &0x0F;
OUT = num_to_lcd(a);

}
}
return 0;

}

Figure 5 The initial lcdnum.c program.

133 int main(void) {
134 int i ;
135 unsigned char a ;
136 unsigned char tmp ;
137 int __retres4 ;
138 //int cptr_main_1 = 0;
139 //int cptr_main_2 = 0;
140 //int cptr_main_3 = 0;
141 //int cptr_main_4 = 0;
142 //int cptr_main_5 = 0;
143 //cptr_main_1 ++; #line 144
144 i = 0;
145 while (i < 10) {
146 //cptr_main_2 ++; #line 147
147 a = (unsigned char)IN;
148 if (i < 5) {
149 //cptr_main_3 ++; #line 150
150 a = (unsigned char)((int)a & 15);
151 tmp = num_to_lcd(a);
152 OUT = (unsigned char volatile)tmp;
153 }
154 //cptr_main_4 ++; #line 155
155 i ++;
156 }
157 //cptr_main_5 ++; #158
158 __retres4 = 0;
159 return (__retres4);
160 }

Figure 6 The reference lcdnum.c program.

Table 2 Mapping between counters and blocks.

line number(s) block(s) reliable counter
136,144 1 yes cptr_main_1
145 1;2 no
147;148 4 yes cptr_main_2
150;151;152 5 yes cptr_main_3
155 6 yes cptr_main_4
158;159;160 3 yes cptr_main_5

P. Raymond et al. 02:13

several binary basic blocks. In this case, the counter is simply ignored: only counters that are
associated to one single BB are retained.

▶ Example 1 (cont.). Table 2 shows the mapping between counters and blocks that is built
by our back-end.

The linear constraints on the retained counters are then translated literally into linear con-
straints on BB, and added to the basic ILP system provided by OTAWA.

▶ Example 1 (cont.). The translation of the constraints discovered by PAGAI is the following:
x4_main = 10;
x6_main = 10;
x5_main <= 5;

At last, both systems are solved and the corresponding estimations can be compared.

▶ Example 1 (cont.). After a second call to LP_SOLVE, the final result is printed:
Estimation WITHOUT PAGAI: 1540
Estimation WITH PAGAI: 945

4.4 Traceability and optimization
In our framework, traceability is the ability to relate execution paths in the binary code (bin.
CFG) to execution paths in the source code (source CFG).

Some optimizations performed by the compiler may strongly modify the control structure and
thus alter traceability: loop unrolling, block replication, out-of-order execution. This is why most
of the related works assume no compiler optimization to guarantee a perfect matching between
the two CFGs.

However forbidding optimization is not satisfactory in real-time domains, where execution
times have to be predictable, but also short. For a standard compiler like gcc, the observed
speed-up between no optimization (-O0 option) and a standard level of optimization (-O1) is
around two.

The most satisfactory solution would be a compiler that provides a precise traceability even
in case of CFG optimization. Some work has been done to design and/or adapt the compilation
process for this purpose, for instance [26, 31, 22].

Unfortunately, off-the-shelf standard compilers such as gcc hardly provide a precise and reliable
information in case of CFG optimization. The idea is then to use the compiler options in order to
forbid (as far as possible) CFG transformations, but still allow other optimizations, in particular
those that concern data management.

The gcc compiler proposes numerous options to control optimizations, but there hardly exists
a comprehensive and exhaustive description of their effects and inter-dependencies. For this
experiment, we have empirically defined a customized level (called CO in the sequel). We started
from the standard -O1 level, and removed about 20 individual optimizations using the -fno
directive (see appendix B). We cannot guarantee that this customized level will preserve the CFG
for all programs, but the method is safe: as explained in Section 4.3, a counter (and then a source
code line) that is not associated to exactly one basic block of the binary code is simply ignored.
As a consequence, the only risk is to lose information that would have made the WCET estimation
tighter. Note that this statement suppose that the gcc debugging information is reliable, which is
indeed unprovable, but empirically reasonable.

LITES

02:14 Improving WCET Evaluation using Linear Relation Analysis

▶ Example 2. When applying the CO method to our running example, we get 100% traceability.
As a consequence, the interesting counter property (5-cptr_main_3 >= 0) can still be translated
into a BB constraint (x11_main <= 5;) leading to the final result:
Estimation WITHOUT PAGAI: 641
Estimation WITH PAGAI: 421

On this example, we observe that code optimization leads to an initial WCET estimation 2.4x
smaller (641 vs 1540). The traceability is preserved and the improvement due to the counter
analysis is of the same order (34.3% vs 38.6%).

5 Experiments

5.1 Benchmarks
We tested our approach on programs from the TacleBench [11], a set of C programs widely used in
the WCET community. 8 A first check has been made to retain only purely sequential programs
that compile “out of the box”: 53 applications of the 58 in the TacleBench9

For each program, we try to estimate the WCET of all functions appearing in the code,
including the top-level one (main). For each function, inner function calls are recursively inlined at
the C level (see Section 4.2). Recursive functions are rejected during this step, and not considered
for WCET analysis.

Our goal is to study the influence of our counter-based method (Fig. 4) on a classical estima-
tion (Fig. 3). A prerequisite is therefore that a reference estimation exists; hence the programs
for which the basic WCET estimation fails are not selected. The OTAWA estimation may fails
because of unsupported programming features (pointer arithmetics), or because the analysis does
not terminates before a chosen timeout (2 hours).

After this initial selection, 589 functions (out of 639) from the 53 programs of the TacleBench
suite are retained.

5.2 Experimental setup
The proposed framework as presented on Fig. 4 has numerous parameters (C code instrumenta-
tion, linear analysis tuning, compiler optimization etc.) leading to a combinatorial numbers of
possibilities. For this systematic experiment, we focus only on two kinds of parameters: those
that influence the precision of linear analysis, and those that influence the traceability. The other
parameters are fixed once and for all as follows:
OTAWA hardware model: our goal is not to bench or “stress” OTAWA in terms of hardware.

We only want it to give an initial IPET system in which we will insert flow facts discovered
via LRA. In order to maximize the number of test benches for which OTAWA gives an initial
ILP in reasonable time, we consider a very simple, cache-free, ARM-based architecture.

Misc. CFG transformations: some CFG transformations are necessary, due to limitations of
OTAWA (switch statements not supported) and /or PAGAI (multiple return statements). This
transformations are performed using the CIL library [34].

Inlining: because the current version of PAGAI has limited support for inter-procedural analysis,
function calls are systematically inlined. This transformation is also implemented using the
CIL library. This method improves the precision of the analysis, but makes the analysis much
more costly in time and memory.

8 The material necessary for reproducing the experiment is freely available at https://gricad-gitlab.univ-
grenoble-alpes.fr/verimag/reproducible-research/LRA4w7.

9 The 5 missing applications are OS and/or architecture dependent.

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7

P. Raymond et al. 02:15

Terminates

86.4%

Fails

13.6%

Facts found

58.9%

New facts

45.5%

WCET enhanced

12.9%

(a) polyhedra domain

Terminates

88.1%

Fails

11.9%

Facts found

62.5%

New facts

46.7%

WCET enhanced

13.9%

(b) octagon domain

Figure 7 LRA analysis statistics on 589 functions, for the two relational abstract domains.

Loop bounds: as explained in 3.2.3, our method is intrinsically unable to bound nested loops,
so a complementary method is necessary to find loop bounds. For this purpose, we can use
oRange, but it appears that the CFG transformations performed using CIL strongly alters its
performance10. In order to maximize the size of the benchmark we thus systematically exploit,
when available, the user pragmas given in source code. Nevertheless, we made a complementary
experiment, without using pragmas nor oRange, in order to identify the cases where LRA is
sufficient to bound the execution time.

5.3 Lessons learnt

This section presents the lessons learnt form the experiment, by focusing on several points:
the ability of the linear analysis to discover “flow facts”, and hopefully to enhance the WCET
estimation; the influence of the abstract domain on the analysis; the ability of linear analysis to
discover loop bounds, and finally the influence of compiler optimizations on traceablity.

5.3.1 Linear analysis and flow facts discovery

When traceability allows it, the constraints discovered by linear analysis are directly translated
into flow facts giving information on the (im)possible execution paths. These flow facts may be
useless if they are redundant with the structural constraints, otherwise they are new facts, giving
non trivial information on the execution paths. However, even new facts can be useless if they do
not concern the worst case execution path. A utility has been developed to check whether the
facts discovered by LRA analysis are new or not. Each fact is checked by adding its negation to
the set of structural constraints: the fact is redundant if and only if the system becomes infeasible.

Figure 7 gives statistic on the behavior of the LRA method, for the two relational domains
(octagon and polyhedra). Let us focus on the polyhedra case first (a). The PAGAI tool terminates
for 509 cases out of 589 (86.4%); for the missing cases (13.6%), it runs out of resources in memory
or time. Flow facts are found in 347 cases, and at least one fact is new for 268 ones; finally, new
facts lead to a WCET improvement for 76 cases. Statistics are similar for the octagon domain,
except that it terminates more often: this explains why the WCET is enhanced more often with
octagons, even if this domain is less precise.

10 The CIL tool normalizes the code by using only unbounded while and break statements, that are badly handled
by oRange. However oRange performs well for the original programs, made of human-written for loops.

LITES

02:16 Improving WCET Evaluation using Linear Relation Analysis

Figure 8 WCET improvement and analysis time depending on abstract domains (b=box, o=octagons,
p=polyhedra).

Table 3 Some WCET improvement results (full table page 24).

Initial Box Octagons Polyhedra
Ref WCET ∆ Impt Time ∆ Impt Time ∆ Impt Time
cr.2 227K 111K 48.7 <1s 111K 48.7 4s 111K 48.7 1s

md.13 2648 0 0.0 <1s 1920 72.5 <1s 1920 72.5 <1s
gs.9 6934 0 0.0 1s 738 10.6 4m 4428 63.8 29m
an.0 466M 0 0.0 4s 4M 0.8 7m 115M 24.6 1m
mp.9 52M 27M 51.1 56m - - - - - -
md.14 51K 0 0.0 2m 5K 10.4 21m - - -
md.5 13M 0 0.0 2m - - - 3M 21.0 35m

A possible conclusion is that LRA, when it works, is actually good at finding non redundant
semantic facts (more than half of the time, when it terminates), but that those facts do not
necessarily lead to a WCET improvement (about 15% of the termination cases).

5.3.2 Abstract domains

The main goal of the experiment is to observe the influence of the linear analysis on the WCET
estimation. The linear analysis performed by PAGAI is parameterized by the choice of an abstract
domain to represent the possible values of the counters. Two domains proposed by PAGAI are
relational, and thus are likely to express relations between our counters and the original variables
in the programs:

The polyhedra domain is the most precise since it can handle any linear relation, and its
algorithmic cost is exponential in the worst case.
The octagon domain handles intervals and bounded pairwise sums or differences. It is less
precise, but has a polynomial cost in the worst case: O(n3) in time, and O(n2) in space.

P. Raymond et al. 02:17

To be exhaustive, we also consider the domain box, which handles only intervals. Since this
domain is non-relational, it is intrinsically unable to relate our additional counters to the program
variables. The flow facts that can be discovered with the box domain are thus limited (basically,
counters stuck down to zero, which correspond to dead code).

The WCET estimation is improved by at least one domain for 90 functions. The gain ranges
from negligible (0.1%) to interesting (around 10%) or even huge (more than 50%). We limit here
the comments to the cases where the enhancement is greater 0.8%. The detailed results for these
60 cases are given in appendix (table 6, page 24), and a selection of typical cases is given in table 3.

The experiment gives some interesting information:
The interest of the box domain is very limited: it is an indirect way of performing constant
propagation and dead code “pruning”. Most of the time it gives no improvement (42 out of 60,
e.g., md.13, gs.9). However, since it is the cheapest domain, it may give results when other
domains fail (6 times, e.g., mp.9).
When both octagons and polyhedra terminate, they often give the same result (34 out of 60
cases, e.g., cr.2, md.13). However there are some cases (12 out of 60, e.g., gs.9), where the
expressiveness of polyhedra is actually useful (constraint involving 3 or more variables, and
pairwise relations with non unit coefficients).
In compliance with the theoretical complexity, octagons may terminates while polyhedra fails
(7 cases, e.g., md.14). Nevertheless, there is also one case where octagons fail while polyhedra
works (md.5). This is due to the fact that the cost of octagons is almost always cubic in the
number of variables, while the exponential cost of polyhedra is rarely reached in practice.

5.3.3 Loop bounds

LRA is intrinsically limited to the discovery of single loop bounds (cf. 3.2.3). We made a
complementary experiment to check if and when LRA actually finds such loops. For this experiment,
we only consider the short-list of programs from Table 6 where PAGAI terminates when using a
relational domain (octagon or polyhedra); as a matter of fact, using the box domain is irrelevant
since it can’t find any loop bound other than 0.

For these 54 programs, we have:
computed the loop level, which is maximal depth of nested loops appearing in the program (0:
no loop at all, 1: only single loops, 2 or more: nested loops);
launched our tool without using oRange nor user-pragmas. The LRA analysis is performed
twice: with the octagon and the polyhedra domain, and we keep only the best result.

Table 7 (page 25) lists the results; the column “pagai” simply indicates if the analysis give a
bounded WCET, since the WCET value is, in this case, the same as the one in Table 6.

There are 10 test cases that are loop-free, and thus with no bounds to found. There are 25
programs with only single loops (level=1); these are the cases where PAGAI is supposed to find
bounds, and it actually does it for most of the cases (19 out of 25). In fact, PAGAI finds the
bounds for all loops that are semantically guarded by a counter condition, that is, for loops or
equivalent. The cases where PAGAI does not find bounds are those where the loop is guarded by
a points-to condition (e.g., while (*p++)).

We expected PAGAI not to bound any program with a loop level greater than 1, which is the
case except for one program (ex.2). In fact this example is a “false counter-example”: the loop
depth is syntactically 2, but the inner-loop appears in a branch which is never executed. The loop
depth is then semantically 1.

LITES

02:18 Improving WCET Evaluation using Linear Relation Analysis

Table 4 Impact of compiler optimizations on WCET and LRA

O0 CO
Initial Best Best Opt. Initial Best Best Traceability

Ref WCET WCET Impt speedup WCET WCET Impt

md.13 2648 728 72.5 3.3x 791 215 72.8 100% of 2
an.0 466M 351M 24.6 3.0x 157M 116M 25.9 100% of 44
cr.2 227K 116K 48.7 2.3x 97K 50K 48.7 41% of 24

md.5 13M 10M 21.0 3.4x 4M 3M 15.0 80% of 40
ex.2 278K 224K 19.2 1.3x 218K 218K 0.0 46% of 13

5.3.4 Optimization level and traceability

The main focus of this work is the influence of linear analysis on the precision of the WCET
estimation. Nevertheless, since analysis is performed at the C level, the problem of the traceability
between the C and the binary code must be considered. Forbidding any optimization is not
an option in real-time domain. We argue that a well-chosen set of optimizations can lead to a
reasonable compromise between traceability and program speed-up.

For all functions that give some enhancement on the non-optimized code, we run the experiments
using the custom optimization (CO) level defined in 4.4. Since the counter analysis is completely
independent to the compilation method, the linear relations found are the same, and the ability
to enhance the WCET estimation is only due to traceability.

The detailed results of this experiment are given in appendix (table 8, page 26), and a selection
of typical cases is given in table 4. The table gathers the results obtained with the non-optimized
binary code O0, and the optimized one CO. For each optimization level, the table gives:

the Initial WCET, in CPU cycles, computed by OTAWA,

the Best WCET, enhanced thanks to the properties discovered with PAGAI, with some abstract
domain,

the corresponding Improvement percentage.
The table also shows the Optimization speed-up, which is the ratio between the initial O0 and the
initial CO estimation, i.e., it measures the gain obtained just because of the compilation, before
applying the counter method. Finally, for CO compilation, the table gives an information on the
Traceability: the percentage of counters introduced for LRA at C level, that are actually associated
to some basic block, at binary level. Traceability in the O0 mode is not shown in the table as it is
always 100%.

The interesting information given by the experiment are:

Even if the CO level is very limited (subset of O1 level, and a fortiori of O2), it generates a
fairly optimized code: the speed-up is mostly between 2x and 4x.

In most of the cases (53 out of 60) traceability is 100%, and one can observe an enhancement due
to LRA similar to the one obtained with O0 code. Indeed, this improvement is obtained on the
CO initial WCET, which is already much smaller than the one obtained for the non-optimized
code (e.g., md.13, an.0).

In some cases, traceability is partly lost, but remain sufficient to enhance the estimation (4
cases, e.g., cr.2, md.5).

Finally, for 3 cases, partial traceability leads to no enhancement (e.g., ex.2).

P. Raymond et al. 02:19

6 Conclusion and future work

Linear Relation Analysis is a powerful technique to discover invariant linear relations between
numerical variables of a program. On the other hand, the classical evaluation of WCET using
Implicit Path Enumeration Technique is based on expressing the WCET as the solution of an
Integer Linear Program, the variables of which are counters associated with the basic blocks of the
program. So, the idea of adding these counters as auxiliary variables in the program, and using
the results of LRA as semantic flow-facts to be added to the ILP, is rather natural. Our goal, in
this paper, was to conduct a light-weight experiment – by combining existing tools – to evaluate
the benefits of the approach. Secondarily, such an experiment raised the question of traceability,
since semantic flow-facts are discovered on the source program, while the WCET is evaluated on
the executable code. The conclusion of this experiment on public benchmarks is manyfold:

LRA finds new semantic facts in many examples (46%), but many of these new facts do
not influence the evaluated WCET. However, the WCET is improved on a significant subset
(almost 14%) of the examples, and the improvement is often interesting.
the traceability problems can be safely dealt with, using the debugging information provided
by the compiler; this is the case even in the presence of strong compiling optimizations, as
long as these optimizations do not modify too much the control structure of the program.

This work could be continued in several directions.
It would be interesting to limit the number of counters, as the cost of LRA can be exponential
in the number of variables. Of course, counters which are structurally related by flow equations
can be saved, but their cost is low in polyhedra computations (they are linked to each other by
equations). An appealing idea would be to introduce counters on the branches of a conditional,
only when these branches appear to have strongly different execution times, a measure that is
roughly available after the micro-architectural analysis [43].
Existing LRA analyzers (like PAGAI) are generally not inter-procedural, which forced us to
inline the procedures in our experiments. An inter-procedural version of LRA must be studied
to solve this problem. The relational nature of LRA is surely an advantage, since a procedure
can be associated a summary as an input-output relation. Summaries of called procedures can
then be used in the caller, in a bottom-up fashion.
Traceability is still a concern, which would benefit from a better cooperation of the compiler [25].

References
1 Mihail Asavoae, Claire Maiza, and Pascal Ray-

mond. Program Semantics in Model-Based WCET
Analysis: A State of the Art Perspective. In 13th
International Workshop on Worst-Case Execution
Time Analysis, WCET 2013, July 9, 2013, Paris,
France, volume 30 of OASICS, pages 32–41. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

2 Roberto Bagnara, Elisa Ricci, Enea Zaffanella,
and Patricia M. Hill. Possibly Not Closed Con-
vex Polyhedra and the Parma Polyhedra Library.
In M. V. Hermenegildo and G. Puebla, editors,
9th International Symposium on Static Analysis,
SAS’02, Madrid, Spain, September 2002. LNCS
2477. doi:10.1007/3-540-45789-5_17.

3 Gogul Balakrishnan and Thomas W. Reps. DI-
VINE: DIscovering variables IN executables. In
Verification, Model Checking, and Abstract Inter-
pretation, VMCAI 2007, pages 1–28, Nice, France,
January 2007.

4 Gogul Balakrishnan, Thomas W. Reps, David Mel-
ski, and Tim Teitelbaum. WYSINWYX: what you
see is not what you execute. In Verified Software:
Theories, Tools, Experiments, VSTTE 2005, pages
202–213, Zurich, Switzerland, October 2005.

5 Clément Ballabriga, Hugues Cassé, Christine
Rochange, and Pascal Sainrat. OTAWA: An open
toolbox for adaptive WCET analysis. In SEUS,
2010.

6 Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh.
Precise Cache Timing Analysis via Symbolic Exe-
cution. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS),
pages 1–12, 2016.

7 Patrick Cousot and Radia Cousot. Abstract inter-
pretation: a unified lattice model for static analysis
of programs by construction or approximation of
fixpoints. In 4th ACM Symposium on Principles of
Programming Languages, POPL’77, Los Angeles,
January 1977.

LITES

https://doi.org/10.1007/3-540-45789-5_17

02:20 Improving WCET Evaluation using Linear Relation Analysis

8 Patrick Cousot and Nicolas Halbwachs. Automatic
discovery of linear restraints among variables of
a program. In 5th ACM Symposium on Princi-
ples of Programming Languages, POPL’78, Tucson
(Arizona), January 1978.

9 Marianne de Michiel, Armelle Bonenfant, Hugues
Cassé, and Pascal Sainrat. Static loop bound anal-
ysis of C programs based on flow analysis and
abstract interpretation. In IEEE Int’l Conf. on
Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2008.

10 Sun Ding, Hee Beng Kuan Tan, and Kaiping Liu.
A Survey of Infeasible Path Detection. In Pro-
ceedings of the 7th International Conference on
Evaluation of Novel Approaches to Software Engi-
neering (ENASE 2012), Wroclaw, Poland, 29-30
June, 2012., pages 43–52, 2012.

11 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx,
Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo
Sorensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In 16th
International Workshop on Worst-Case Execution
Time Analysis, WCET 2016, July 5, 2016,
Toulouse, France, pages 2:1–2:10, 2016.

12 Paul Feautrier and Laure Gonnord. Accelerated In-
variant Generation for C Programs with Aspic and
C2fsm. In Tools for Automatic Program AnalysiS
(TAPAS), Perpignan, France, September 2010.

13 Christian Ferdinand, Florian Martin, Christoph
Cullmann, Marc Schlickling, Ingmar Stein, Stephan
Thesing, and Reinhold Heckmann. New Develop-
ments in WCET Analysis. In Program Analysis
and Compilation, pages 12–52, 2006.

14 Denis Gopan and Thomas Reps. Lookahead widen-
ing. In CAV’06, Seattle, 2006.

15 Jan Gustafsson, Adam Betts, Andreas Ermedahl,
and Björn Lisper. The Mälardalen WCET Bench-
marks: Past, Present And Future. In Proc. of
WCET, pages 136–146, 2010.

16 Jan Gustafsson, Andreas Ermedahl, Christer Sand-
berg, and Björn Lisper. Automatic Derivation of
Loop Bounds and Infeasible Paths for WCET Anal-
ysis Using Abstract Execution. In RTSS, 2006.

17 Nicolas Halbwachs, Yann-Eric Proy, and Patrick
Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods in System
Design, 11(2):157–185, August 1997.

18 Julien Henry, Mihail Asavoae, David Monniaux,
and Claire Maiza. How to compute worst-case
execution time by optimization modulo theory
and a clever encoding of program semantics. In
SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems 2014,
LCTES ’14, pages 43–52, June 2014.

19 Julien Henry, David Monniaux, and Matthieu Moy.
PAGAI: A Path Sensitive Static Analyser. Electr.
Notes Theor. Comput. Sci., 289:15–25, 2012.

20 François Irigoin, Pierre Jouvelot, and Rémy Trio-
let. Semantical Interprocedural parallelization: An
overview of the PIPS Project. In ACM Int. Conf.
on Supercomputing, ICS’91, Köln, 1991.

21 Bertrand Jeannet and Antoine Miné. Apron: A
Library of Numerical Abstract Domains for Static

Analysis. In Computer Aided Verification (CAV
2009), Grenoble, France, pages 661–667, June 2009.

22 Raimund Kirner, Peter Puschner, and Adrian
Prantl. Transforming flow information during code
optimization for timing analysis. Journal on Real-
Time Systems, 45(1-2), 2010.

23 Jens Knoop, Laura Kovács, and Jakob Zwirchmayr.
WCET squeezing: on-demand feasibility refinement
for proven precise WCET-bounds. In Proceedings
of the 21st International Conference on Real-Time
Networks and Systems, pages 161–170. ACM, 2013.

24 Chris Lattner and Vikram Adve. LLVM: a compi-
lation framework fopr lifelong program analysis &
transformation. In CGO’04, pages 75–86, Washing-
ton, DC, August 2004. IEEE Computer Society.

25 Hanbing Li, Isabelle Puaut, and Erven Rohou.
Traceability of Flow Information: Reconciling Com-
piler Optimizations and WCET Estimation. In
22nd International Conference on Real-Time Net-
works and Systems, RTNS’14, Versailles, France,
October 8-10, 2014, 2014.

26 Hanbing Li, Isabelle Puaut, and Erven Rohou.
Tracing Flow Information for Tighter WCET Es-
timation: Application to Vectorization. In 21st
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
page 10, Hong-Kong, China, August 2015. URL:
https://hal.inria.fr/hal-01177902.

27 Xianfeng Li, Liang Yun, Tulika Mitra, and Ab-
hik Roychoudhury. Chronos: A timing analyzer
for embedded software. Sci. Comput. Program.,
69(1-3):56–67, 2007.

28 Yau-Tsun Steven Li and Sharad Malik. Performance
analysis of embedded software using implicit path
enumeration. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 16(12),
1997.

29 Björn Lisper. SWEET – a tool for WCET flow
analysis. In 6th International Symposium On Lever-
aging Applications of Formal Methods, Verification
and Validation (ISOLA), October 2014.

30 Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and
Peter Marwedel. A Fast and Precise Static Loop
Analysis Based on Abstract Interpretation, Pro-
gram Slicing and Polytope Models. In Proceed-
ings of the CGO 2009, The Seventh International
Symposium on Code Generation and Optimization,
pages 136–146, Seattle, Washington, USA, March
2009.

31 Paul Lokuciejewski and Peter Marwedel. Worst-
Case Execution Time Aware Compilation Tech-
niques for Real-Time Systems. Springer, 2011.
doi:10.1007/978-90-481-9929-7.

32 Ravindra Metta, Martin Becker, Prasad Bokil,
Samarjit Chakraborty, and R. Venkatesh. TIC: a
scalable model checking based approach to WCET
estimation. In Proceedings of the 17th ACM SIG-
PLAN/SIGBED Conference on Languages, Com-
pilers, Tools, and Theory for Embedded Systems,
LCTES 2016, Santa Barbara, CA, USA, June 13 -
14, 2016, pages 72–81, 2016. doi:10.1145/2907950.
2907961.

33 Antoine Miné. The Octagon Abstract Domain. In
Proceedings of the Eighth Working Conference on

https://hal.inria.fr/hal-01177902
https://doi.org/10.1007/978-90-481-9929-7
https://doi.org/10.1145/2907950.2907961
https://doi.org/10.1145/2907950.2907961

P. Raymond et al. 02:21

Reverse Engineering, WCRE’01, Stuttgart, Ger-
many, October 2-5, 2001, page 310, 2001. doi:
10.1109/WCRE.2001.957836.

34 George C. Necula, Scott McPeak, Shree P. Rahul,
and Westley Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C
Programs. In R. Nigel Horspool, editor, Compiler
Construction, pages 213–228, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

35 Pascal Raymond, Claire Maiza, Catherine Parent-
Vigouroux, Fabienne Carrier, and Mihail Asavoae.
Timing analysis enhancement for synchronous pro-
gram. Real-Time Systems, pages 1–29, 2015.

36 Jordy Ruiz and Hugues Cassé. Using SMT Solv-
ing for the Lookup of Infeasible Paths in Binary
Programs (regular paper). In Workshop on Worst-
Case Execution Time Analysis, Lund, Sweden,
07/07/2015, pages 95–104. OASICs, Dagstuhl Pub-
lishing, July 2015.

37 Thomas Sewell, Felix Kam, and Gernot Heiser.
Complete, High-Assurance Determination of Loop
Bounds and Infeasible Paths for WCET Analysis.
In 2016 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), Vienna,
Austria, April 11-14, 2016, pages 185–195, 2016.
doi:10.1109/RTAS.2016.7461326.

38 Björn Lisper Stefan Bygde, Andreas Ermedahl. An
Efficient Algorithm for Parametric WCET Calcula-
tion. Journal of Systems Architecture, 57(6):614–
624, May 2011.

39 Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury,
and Ting Chen. Efficient detection and exploitation

of infeasible paths for software timing analysis. In
DAC, pages 358–363, 2006.

40 Stephan Thesing, Jean Souyris, Reinhold Heck-
mann, Famantanantsoa Randimbivololona, Marc
Langenbach, Reinhard Wilhelm, and Christian Fer-
dinand. An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software.
In DSN, pages 625–632, 2003.

41 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst. (TECS),
7(3), 2008.

42 Jakob Zwirchmayr, Armelle Bonenfant, Marianne
de Michiel, Hugues Cassé, Laura Kovács, and Jens
Knoop. FFX: A portable WCET annotation lan-
guage (regular paper). In International Conference
on Real-Time and Network Systems (RTNS), Pont-
à-Mousson, 08/11/2012-09/11/2012, pages 91–100,
November 2012.

43 Jakob Zwirchmayr, Pascal Sotin, Armelle Bonen-
fant, Denis Claraz, and Philippe Cuenot. Identify-
ing Relevant Parameters to Improve WCET Anal-
ysis (regular paper). In Workshop on Worst-Case
Execution Time Analysis, Madrid, 08/07/2014,
pages 91–100. OASICs, Dagstuhl Publishing, July
2014.

LITES

https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/RTAS.2016.7461326

02:22 Improving WCET Evaluation using Linear Relation Analysis

A Experiment Results

The material necessary for reproducing the experiment presented here is freely available at https:
//gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7.

Experiment was performed on 589 individual C functions extracted from the TACLeBench [11].
An improvement of the WCET estimation is observed for 90 functions (15% of the cases). This
section details the results for the 60 cases where the improvement is greater than 0.8%.

Table 5 contains label definitions to ease and shorten the reference to the bench functions:
the label (column 1), the source folder in the TACLeBench (column 2), and the function name
(column 3).

Table 6 contains the experiment results using the gcc -O0 compilation level. The first column
holds the function label, and the second one holds the initial WCET estimation computed by
OTAWA. The remaining columns hold information related to the improvement obtained (or not)
with Linear relation analysis, using 3 different abstract domains: boxes (intervals), octagons
and polyhedra. For each domain, the table gives the improvement in number of cycles (∆) and
percentage (Impt), and the time necessary to perform the LRA with PAGAI11. Numbers in bold
highlight the best improvements among various methods (box, octagons, polyhedra). Empty cells
(’-’) mean that the corresponding case triggered the 2 hours timeout set for the experiment.

Table 7 gives information on the ability of PAGAI to discover loop bounds ; to obtain this
table, the experiments are re-played without the help of any external method (neither oRange
nor the user-given pragmas). For each program, the table gives its loop level (maximal depth of
nested loops) and indicates wheter PAGAI finds a bounded WCET or not.

Finally, table 8 aims at observing the impact of compiler optimization on WCET estimation in
general, and our method in particular. We consider two optimization levels: the standard -O0 (no
optimization at all), and the ad hoc customized -O1 level (designed to limit CFG transformation
and maximize traceability). Since the LRA analysis is performed at the C level, the flow facts
discovered are the same whatever is the optimization level. A lack of improvement in the case of
optimized code is then necessarily due to an “imperfect” traceability.

The first group of columns recalls the results optained with -O0; it only gives the best result,
obtained for some abstract domain (refer to Table 6 for details). The second group gives information
on the optimized code:

the initial WCET estimation given by OTAWA, together with the corresponding speed-up
factor which indicates how “faster” is the optimized code compared to the non-optimized one;
the best WCET estimation (together with the improvement percentage) optained using PAGAI;
the traceability ratio indicates how many counters introduced by our method are actually
associated to some basic block in the binary code. With a traceability of 100%, we expect
to observe an improvement percentage of the same order than the one obtained on the non-
optimized code. Note that the traceability with the non-optimized code is not given since it is
always 100%.

11 Results obtained on an Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7

P. Raymond et al. 02:23

Table 5 TacleBench functions Reference Labels.

Ref Directory Function Names
ad.6 sequential/adpcm_dec adpcm_dec_logsch
ad.7 sequential/adpcm_dec adpcm_dec_logscl
ad.14 sequential/adpcm_dec adpcm_dec_uppol2
ae.7 sequential/adpcm_enc adpcm_enc_logsch
ae.8 sequential/adpcm_enc adpcm_enc_logscl
ae.10 sequential/adpcm_enc adpcm_enc_quantl
ae.16 sequential/adpcm_enc adpcm_enc_uppol2
am.12 sequential/ammunition ammunition_bit_string_set
am.17 sequential/ammunition ammunition_divide_unsigned_integer
am.18 sequential/ammunition ammunition_divide_unsigned_integer_without_overflow
am.47 sequential/ammunition ammunition_multiply_integer
am.49 sequential/ammunition ammunition_multiply_unsigned_integer
am.50 sequential/ammunition ammunition_multiply_unsigned_integer_without_overflow
am.68 sequential/ammunition ammunition_unsigned_integer_remainder
an.0 sequential/anagram anagram_AddWords
an.2 sequential/anagram anagram_BuildWord
an.8 sequential/anagram anagram_init
an.14 sequential/anagram anagram_ReadDict
an.15 sequential/anagram anagram_Reset
an.16 sequential/anagram anagram_return
bs.0 kernel/bsort bsort_BubbleSort
bs.3 kernel/bsort bsort_main
bs.4 kernel/bsort bsort_return
bs.5 kernel/bsort main
cr.2 crc main
du.2 test/duff duff_init
du.5 test/duff main
ex.2 expint main
gd.4 sequential/gsm_dec gsm_dec_Coefficients_0_12
gd.5 sequential/gsm_dec gsm_dec_Coefficients_13_26
gd.6 sequential/gsm_dec gsm_dec_Coefficients_27_39
gd.11 sequential/gsm_dec gsm_dec_Decoding_of_the_coded_Log_Area_Ratios
gd.16 sequential/gsm_dec gsm_dec_Postprocessing
ge.11 sequential/gsm_encode Gsm_Preprocess
ge.13 sequential/gsm_encode Gsm_Short_Term_Analysis_Filter
gs.2 sequential/g723_enc g723_enc_fmult
gs.8 sequential/g723_enc g723_enc_predictor_pole
gs.9 sequential/g723_enc g723_enc_predictor_zero
gs.10 sequential/g723_enc g723_enc_quan
gs.11 sequential/g723_enc g723_enc_quantize
gs.16 sequential/g723_enc g723_enc_update
hd.1 sequential/h264_dec h264_dec_init
lc.0 lcdnum main
li.3 app/lift lift_controller
li.7 app/lift lift_ctrl_set_vals

md.3 kernel/md5 md5_final
md.5 kernel/md5 md5_InitRandomStruct
md.13 kernel/md5 md5_R_RandomInit
md.14 kernel/md5 md5_R_RandomUpdate
md.15 kernel/md5 md5_transform
md.16 kernel/md5 md5_update
mp.9 sequential/mpeg2 mpeg2_frame_estimate
mp.11 sequential/mpeg2 mpeg2_fullsearch
sh.2 kernel/sha sha_final
sm.0 sequential/statemate main
sm.1 sequential/statemate statemate_FH_DU
sm.2 sequential/statemate statemate_generic_BLOCK_ERKENNUNG_CTRL
sm.3 sequential/statemate statemate_generic_EINKLEMMSCHUTZ_CTRL
sm.4 sequential/statemate statemate_generic_FH_TUERMODUL_CTRL
sm.8 sequential/statemate statemate_main

LITES

02:24 Improving WCET Evaluation using Linear Relation Analysis

Table 6 How LRA can improve the estimated WCET of TacleBench.

Initial Box Octagons Polyhedra
Ref WCET ∆ Impt Time ∆ Impt Time ∆ Impt Time

md.13 2648 0 0.0 <1s 1920 72.5 <1s 1920 72.5 <1s
an.15 173K 0 0.0 <1s 121K 69.9 1s 121K 69.9 <1s
gs.2 1105 0 0.0 <1s 738 66.7 9s 738 66.7 4s
hd.1 2092K 0 0.0 <1s 1371K 65.5 <1s 1371K 65.5 <1s
gs.8 2268 0 0.0 <1s 1476 65.0 1m 1476 65.0 1m
gs.9 6934 0 0.0 1s 738 10.6 4m 4428 63.8 29m
du.2 19K 0 0.0 <1s 12K 60.1 <1s 12K 60.1 <1s
du.5 22K 0 0.0 <1s 12K 53.8 <1s 12K 53.8 <1s
mp.9 52M 27M 51.1 56m - - - - - -
mp.11 10M 5M 51.1 2m - - - - - -
cr.2 227K 111K 48.7 <1s 111K 48.7 4s 111K 48.7 1s
lc.0 1540 0 0.0 <1s 595 38.6 <1s 595 38.6 <1s

md.15 8600 0 0.0 <1s 2304 26.7 <1s 2304 26.7 <1s
an.2 235K 0 0.0 <1s 58K 24.8 16s 58K 24.8 2s
an.0 466M 0 0.0 4s 4M 0.8 7m 115M 24.6 1m
md.5 13M 0 0.0 2m - - - 3M 21.0 35m
ex.2 278K 1K 0.1 4s 28K 9.9 23s 53K 19.2 6s
sm.3 87 16 18.3 <1s 16 18.3 <1s 16 18.3 <1s
md.3 34K 0 0.0 18s 6K 17.2 6m 6K 18.2 31m
md.16 13K 0 0.0 7s 2K 17.7 19s 2K 17.7 10s
sm.0 268K 46K 17.1 16s - - - - - -
gs.10 942 0 0.0 <1s 126 13.3 1s 126 13.3 <1s
am.47 3649 0 0.0 13m 76 2.0 14m 485 13.2 14m
gs.11 2020 0 0.0 1s 252 12.4 17s 252 12.4 4s
md.14 51K 0 0.0 2m 5K 10.4 21m - - -
sm.4 595 62 10.4 3s 62 10.4 2m 62 10.4 72m
li.7 1088 0 0.0 <1s 102 9.3 2s 102 9.3 <1s

gs.16 3760 0 0.0 7s 254 6.7 63m - - -
ad.6 66 0 0.0 <1s 4 6.0 <1s 4 6.0 <1s
ae.7 66 0 0.0 <1s 4 6.0 <1s 4 6.0 <1s
ad.7 67 0 0.0 <1s 4 5.9 <1s 4 5.9 <1s
ae.8 67 0 0.0 <1s 4 5.9 <1s 4 5.9 <1s
sm.1 266K 14K 5.1 21s - - - - - -
sm.8 266K 14K 5.1 26s - - - - - -
an.16 530 0 0.0 <1s 25 4.7 <1s 25 4.7 <1s
am.50 2251 0 0.0 15m 76 3.3 15m 95 4.2 15m
am.49 2281 0 0.0 9m 76 3.3 14m 95 4.1 12m
sm.2 248 10 4.0 <1s 10 4.0 1s 10 4.0 1s
bs.4 5580 0 0.0 <1s 196 3.5 <1s 196 3.5 <1s

am.12 468 0 0.0 12m 16 3.4 12m 16 3.4 12m
ad.14 120 0 0.0 <1s 4 3.3 <1s 4 3.3 <1s
ae.16 120 0 0.0 <1s 4 3.3 <1s 4 3.3 <1s
li.3 3405 0 0.0 11s 102 2.9 47m - - -

ae.10 1473 0 0.0 <1s 33 2.2 <1s 33 2.2 <1s
ge.11 47K 0.16K 0.3 1s 1K 2.0 1m 1K 2.0 16s
am.68 12K 0 0.0 10m 0.15K 1.3 73m - - -
gd.16 23K 0.32K 1.3 <1s 0.32K 1.3 2s 0.32K 1.3 <1s
gd.4 1333 16 1.2 1s 16 1.2 6s 16 1.2 1s
gd.6 1333 16 1.2 <1s 16 1.2 3s 16 1.2 <1s
sh.2 25K 0.31K 1.2 6s 0.31K 1.2 3m 0.31K 1.2 1m
an.8 3079K 0 0.0 <1s 0 0.0 7s 34K 1.1 1s
an.14 3079K 0 0.0 <1s 0 0.0 5s 34K 1.1 1s
gd.11 1420 16 1.1 1s 16 1.1 35m - - -
ge.13 727K 8K 1.0 1m - - - - - -
bs.0 1045K 0 0.0 <1s 0 0.0 2s 10K 0.9 <1s
bs.3 1045K 0 0.0 <1s 0 0.0 1s 10K 0.9 <1s
bs.5 1053K 0 0.0 <1s 0.20K 0.0 7s 10K 0.9 1s
gd.5 837 8 0.9 <1s 8 0.9 1s 8 0.9 <1s

am.17 8930 0 0.0 9m 76 0.8 20m - - -
am.18 8901 0 0.0 11m 76 0.8 20m - - -

P. Raymond et al. 02:25

Table 7 Loop bounds discovery, using PAGAI without the help of oRange nor the user-given bounds.
This experiment is performed for the 54 cases from Table 6 where PAGAI terminates with either octagons
or polyhedra ; the box domain is unable to find loop bounds and is not considered here. Within this
test set, 10 programs contain no loop and are thus trivially bounded (adVI, adVII, adXIV, aeVII, aeVIII,
aeXVI, gdXI, smII, smIII, smIV). For the remaining programs, first column gives the depth of nested
loops and column two indicates if PAGAI gives a bounded (i.e., finite) WCET estimation. The WCET
value is not given: it corresponds to the best PAGAI estimation in Table 6. The “paradoxal” result for
ex.2 (loop depth 2 and bounded) is due to the fact that PAGAI “bounds” the inner-loop to 0 (i.e., the
loop appears in a infeasible branch).

loop depth PAGAI
ae.10 1 bounds
bs.4 1 bounds
gd.4 1 bounds
gd.5 1 bounds
gd.6 1 bounds
gd.16 1 bounds
ge.11 1 bounds
gs.2 1 bounds
gs.8 1 bounds
gs.16 1 bounds
lc.0 1 bounds
li.7 1 bounds

md.15 1 bounds
du.2 1 bounds
du.5 1 bounds
hd.1 1 bounds

md.13 1 bounds
an.15 1 bounds
an.16 1 bounds
am.12 1 ⊤
an.2 1 ⊤
gs.10 1 ⊤
gs.11 1 ⊤
li.3 1 ⊤
sh.2 1 ⊤

loop depth PAGAI
ex.2 2 bounds

am.47 2 ⊤
am.49 2 ⊤
am.50 2 ⊤
an.8 2 ⊤
an.14 2 ⊤
bs.0 2 ⊤
bs.3 2 ⊤
bs.3 2 ⊤
cr.2 2 ⊤
gs.9 2 ⊤
md.3 2 ⊤
md.14 2 ⊤
md.16 2 ⊤
am.17 3 ⊤
am.18 3 ⊤
am.68 3 ⊤
an.0 3 ⊤
md.5 4 ⊤

LITES

02:26 Improving WCET Evaluation using Linear Relation Analysis

Table 8 Observing the impact of compilation levels on LRA.

O0 CO
Initial Best Best Opt. Initial Best Best Traceability

Ref WCET WCET Impt speedup WCET WCET Impt

md.13 2648 728 72.5 3.3x 791 215 72.8 100% of 2
an.15 173K 52K 69.9 3.0x 58K 17K 69.9 100% of 6
gs.2 1105 367 66.7 2.3x 479 171 64.3 100% of 14
hd.1 2092K 721K 65.5 2.1x 1019K 350K 65.6 100% of 4
gs.8 2268 792 65.0 2.4x 963 347 63.9 100% of 28
gs.9 6934 2506 63.8 2.4x 2910 1062 63.5 100% of 28
du.2 19K 8K 60.1 2.3x 8K 3K 64.0 100% of 2
du.5 22K 10K 53.8 2.4x 9K 4K 59.3 100% of 3
mp.9 52M 25M 51.1 4.6x 11M 11M 0.0 79% of 890
mp.11 10M 5M 51.1 4.6x 2M 2M 0.0 79% of 178
cr.2 227K 116K 48.7 2.3x 97K 50K 48.7 41% of 24
lc.0 1540 945 38.6 2.4x 641 421 34.3 100% of 4

md.15 8600 6296 26.7 2.8x 3064 2200 28.1 100% of 2
an.2 235K 176K 24.8 2.9x 80K 59K 25.9 100% of 21
an.0 466M 351M 24.6 3.0x 157M 116M 25.9 100% of 44
md.5 13M 10M 21.0 3.4x 4M 3M 15.0 80% of 40
ex.2 278K 224K 19.2 1.3x 218K 218K 0.0 46% of 13
sm.3 87 71 18.3 1.1x 78 59 24.3 100% of 5
md.3 34K 28K 18.2 2.7x 13K 10K 17.1 100% of 23
md.16 13K 11K 17.7 2.6x 5K 4K 17.2 100% of 10
sm.0 268K 222K 17.1 1.1x 237K 193K 18.8 100% of 108
gs.10 942 816 13.3 2.5x 381 325 14.6 100% of 4
am.47 3649 3164 13.2 2.6x 1417 1282 9.5 100% of 26
gs.11 2020 1768 12.4 2.4x 830 718 13.4 100% of 11
md.14 51K 46K 10.4 2.7x 19K 17K 10.8 97% of 37
sm.4 595 533 10.4 1.1x 547 493 9.8 100% of 42
li.7 1088 986 9.3 2.1x 516 468 9.3 100% of 9

gs.16 3760 3506 6.7 2.3x 1653 1539 6.8 100% of 69
ad.6 66 62 6.0 3.0x 22 20 9.0 100% of 3
ae.7 66 62 6.0 3.0x 22 20 9.0 100% of 3
ad.7 67 63 5.9 2.9x 23 21 8.6 100% of 3
ae.8 67 63 5.9 2.9x 23 21 8.6 100% of 3
sm.1 266K 252K 5.1 1.1x 237K 224K 5.1 100% of 97
sm.8 266K 252K 5.1 1.1x 237K 224K 5.1 100% of 96
an.16 530 505 4.7 1.7x 316 299 5.3 100% of 3
am.50 2251 2156 4.2 2.6x 860 823 4.3 100% of 8
am.49 2281 2186 4.1 2.6x 865 839 3.0 100% of 9
sm.2 248 238 4.0 1.1x 230 220 4.3 100% of 11
bs.4 5580 5384 3.5 1.9x 2883 2687 6.7 100% of 5

am.12 468 452 3.4 2.6x 181 177 2.2 100% of 13
ad.14 120 116 3.3 2.6x 46 44 4.3 100% of 8
ae.16 120 116 3.3 2.6x 46 44 4.3 100% of 8
li.3 3405 3303 2.9 1.6x 2093 2045 2.2 100% of 57

ae.10 1473 1440 2.2 2.1x 706 690 2.2 100% of 6
ge.11 47K 46K 2.0 2.5x 19K 18K 5.0 100% of 24
am.68 12K 12K 1.3 1.2x 9K 9K 0.5 100% of 52
gd.16 23K 23K 1.3 2.3x 10K 10K 3.1 100% of 12
gd.4 1333 1317 1.2 2.4x 553 537 2.8 100% of 12
gd.6 1333 1317 1.2 2.4x 553 537 2.8 100% of 12
sh.2 25K 24K 1.2 2.2x 11K 11K 0.9 76% of 39
an.8 3079K 3045K 1.1 2.3x 1333K 1310K 1.7 100% of 14
an.14 3079K 3045K 1.1 2.3x 1333K 1310K 1.7 100% of 15
gd.11 1420 1404 1.1 2.4x 601 585 2.6 100% of 121
ge.13 727K 719K 1.0 1.9x 377K 369K 2.0 100% of 289
bs.0 1045K 1035K 0.9 2.7x 389K 385K 0.9 100% of 6
bs.3 1045K 1035K 0.9 2.7x 389K 385K 0.9 100% of 5
bs.5 1053K 1043K 0.9 2.7x 393K 389K 1.0 100% of 10
gd.5 837 829 0.9 2.5x 337 329 2.3 100% of 7

am.17 8930 8854 0.8 1.1x 8431 8405 0.3 100% of 36
am.18 8901 8825 0.8 1.1x 8426 8400 0.3 100% of 36

P. Raymond et al. 02:27

B Compiler optimization level

Options controlling optimizations are numerous and may vary a lot depending on the targeted
processor and the compiler version. Options listed here are for the compiler used for our experiment
(arm-elf-gcc (GCC) 4.4.2), with no guarantee that they apply directly to other compilers.
Ensuring the coherence of a set of optimizations is technically hard, this is why we start with
a predefined level of optimization (-O1) and remove optimizations that may modify the control
structure (using the corresponding -fno flag). To select the options, we just rely on the user
manual: we remove any optimization that mention a possible influence on the control structure or
that may affect the precision of the debugging information (i.e. the association instruction/source
line).

Loop transformations may drastically change the structure of the program, and are thus
forbidden.

-fno-loop-block \
-fno-loop-interchange \
-fno-loop-strip-mine \
-fno-move-loop-invariants \
-fno-reschedule-modulo-scheduled-loops \
-fno-unroll-loops \
-fno-unroll-all-loops \
-fno-unsafe-loop-optimizations \

Miscelaneous CFG transformations concern dead code elimination, inlining, branch
removal, block reordering etc.

-fno-dce \
-fno-dse \
-fno-guess-branch-probability \
-fno-inline-small-functions \
-fno-crossjumping \
-fno-if-conversion \
-fno-if-conversion2 \
-fno-jump-tables \
-fno-reorder-blocks \
-fno-reorder-blocks-and-partition \
-fno-unswitch-loops \

SSA tree optimizations and misc. global optimizations have an indirect influence in
the control structure, by removing, regrouping or re-ordering instructions. They also affect the
precision of the debugging information (dwarf) which is the only information we have to relate
the binary and the source code.

-fno-tree-builtin-call-dce \
-fno-tree-ccp \
-fno-tree-ch \
-fno-tree-copyrename \
-fno-tree-dce \
-fno-tree-dominator-opts \
-fno-tree-dse \
-fno-tree-fre \

LITES

02:28 Improving WCET Evaluation using Linear Relation Analysis

-fno-tree-loop-distribution \
-fno-tree-loop-im \
-fno-tree-loop-ivcanon \
-fno-tree-loop-linear \
-fno-tree-loop-optimize \
-fno-tree-sra \
-fno-tree-ter \
-fno-auto-inc-dec \
-fno-cprop-registers \
-fno-defer-pop \
-fno-ipa-pure-const \
-fno-ipa-reference \
-fno-merge-constants\
-fno-split-wide-types \
-fno-unit-at-a-time \

	Introduction
	An example
	Contents of the paper

	Existing tools
	The tools
	The Chronos Timing Analyzer
	The Swedish Timing Analyzer
	AbsInt - The aiT Tool
	oRange, the flow fact analyzer of OTAWA

	Some experiments
	Other approaches

	Used techniques and tools
	WCET evaluation with OTAWA
	Linear Relation Analysis with PAGAI
	Principles of LRA
	Applying LRA to our example
	LRA and loop bounds
	The PAGAI prototype analyzer

	Adding and tracing counters
	The proposed workflow
	Instrumented program version
	Tracing back the counters
	Traceability and optimization

	Experiments
	Benchmarks
	Experimental setup
	Lessons learnt
	Linear analysis and flow facts discovery
	Abstract domains
	Loop bounds
	Optimization level and traceability

	Conclusion and future work
	Experiment Results
	Compiler optimization level

