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Abstract
The elastic task model was introduced by Buttazzo
et al. in order to represent recurrent real-time work-
loads executing upon uniprocessor platforms that
are somewhat flexible with regards to timing con-
straints. In this work, we propose an extension of
this model and apply it to represent recurrent real-
time workloads that exhibit internal parallelism and
are executed on multiprocessor platforms. In our
proposed extension, the elasticity coefficient – the

quantitative measure of a task’s elasticity that was
introduced in the model proposed by Buttazzo et al.
– is interpreted in the same manner as in the ori-
ginal (sequential) model. Hence, system developers
who are familiar with the elastic task model in
the uniprocessor context may use our more general
model as they had previously done, now for real-
time tasks whose computational demands require
them to utilize more than one processor.
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1 Introduction

Advances in parallel real-time scheduling theory and concurrency platforms over the last couple of
decades have allowed for previously unachievable combinations of high computational demands
and fine-grained time-scales, in high-performance parallel real-time applications such as those
in autonomous vehicles [13] and real-time hybrid simulation systems [9, 11]. However, current
parallel real-time systems usually assign parallel tasks to fixed sets of processors and release them
at statically determined periodic rates [13, 9, 10]. For systems that need to adjust individual
tasks’ computational requirements at run-time (e.g., control algorithms with multiple modes of
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05:2 Elastic Scheduling for Parallel Real-Time Systems

operation), current approaches may need to incorporate excessive pessimism to support such forms
of dynamic and adaptive resource allocation.

The elastic task model was introduced in [4] with the specific aim of providing dynamic
flexibility during run-time. The model is derived from an analogy to the expansion and contraction
of a contiguous collection of springs when a common force is applied to them all, in order to bring
their cumulative length down below a specified bound. The computational demand of a task is
analogous to the length of a spring, and the available computational capacity to the bound on the
cumulative length of the springs (see [4] for details).

In the elastic task model, each recurrent task is characterized by a worst-case execution
time (WCET), lower and upper bounds on the values that the task period parameter may take,
and an ‘elasticity coefficient’ that represents the flexibility of the task (relative to other tasks)
to reduce its run-time computational demand by increasing its effective period. Given a system
comprising a collection of such tasks executing upon a shared processor, the elastic scheduling
algorithm seeks to choose a value for each task’s period parameter within the task’s specified
range, such that the overall system is schedulable.

The elastic task model was originally defined for task systems such as multimedia systems,
control systems, and ad-hoc communication networks implemented on preemptive uniprocessors [1,
8, 5]. However, today’s high-performance real-time applications (e.g. real-time hybrid simulation [9,
11]) must often execute upon multiprocessor platforms so as to be able to exploit internal parallelism
of these tasks across multiple processors to meet high computational demand. Therefore, the
original elastic task model, as well as algorithms that were developed by Buttazzo et al. [4, 5]
along with accompanying schedulability analysis and run-time scheduling techniques, need to
be appropriately extended in order to be useful for these kinds of high-performance real-time
applications. In this paper, we consider multiprocessor scheduling under the federated scheduling
paradigm (in which each task whose computational demand exceeds the capacity of a single
processor is granted exclusive access to multiple processors); we propose a parallel multiprocessor
extension to the elastic task model, and provide appropriate algorithms for federated schedulability
analysis and federated scheduling of systems represented using our proposed model.

The central idea of elastic scheduling, originally defined by Buttazzo et al. [4], is that if the
overall computational demand of a system exceeds the capacity of the implementation platform to
accommodate it all, then individual tasks’ computational demands are reduced and the available
platform capacity is allocated in a flexible manner to accommodate these reduced demands. Upon
multiprocessor platforms, there are several different interpretations possible, as to what an elastic
manner of distributing the processors may mean. Our proposed extension aligns with earlier work
in the sense that we are interpreting the elasticity coefficient parameters according to the semantics
assigned to them in the uniprocessor context. We believe that this is a critical issue: the elasticity
parameters characterize the relative flexibility –the ‘hard-real-time’ness– of the tasks, and should
bear common interpretation regardless of whether implemented on uni- or multi-processors. We,
therefore, believe that the preservation of this interpretation is one of the major benefits of our
extended model.

The remainder of this paper is organized in the following manner. We briefly provide some
needed background and related work concerning the elastic task model and federated scheduling
in Section 2; and describe the parallel workload model we are proposing for the representation
of parallel elastic tasks. In Section 3 we present a relatively simple and efficient algorithm for
scheduling such tasks upon multiprocessor platforms, which preserves the semantics that were
intended for elastic tasks in the uniprocessor context. We also point out how this simple approach
may result in an unnecessary degree of platform resource under-utilization. In Section 4 we
propose an alternative approach that is able to make more efficient use of the platform to provide
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a superior scheduling solution, at the cost of not being as faithful to the semantics of elasticity
as originally defined for the uniprocessor case. We conclude in Section 5 with a brief summary,
and place this work within a larger context of ongoing research efforts towards achieving dynamic
flexibility in multiprocessor scheduling of parallelizable workloads.

2 Background, Related Work, and Task Model

In this paper, we extend the definition and applicability of real-time elastic scheduling to parallel
real-time systems. We start out in this section by providing some background on both the elastic
task model and the federated paradigm of parallel real-time scheduling on multiprocessor platforms.
Doing so enables us to define our proposed elastic model for the federated scheduling of systems
of parallel real-time tasks.

2.1 The Elastic Task Model
The elastic task model was first proposed by Buttazzo et al. in [4]. Tasks in this model may
dynamically adapt their periods in response to system behavior, in order to keep system-wide util-
ization below a user-specified desired value Ud (which may be at or below a scheduling algorithm’s
threshold, e.g., 1.0 for preemptive uniprocessor EDF scheduling). The task model is a general-
ization of the implicit-deadline sporadic task model [15]: each task τi = (Ci, T (min)

i , T
(max)
i , Ei)

is characterized by a worst-case execution requirement Ci, a minimum (and preferred) period
T

(min)
i , a maximum period T (max)

i , and an elastic coefficient Ei that quantitatively characterizes
how amenable a task is to a change in its period (similar to a measure of a spring’s resistance to
changes in length). A higher elastic coefficient implies a more elastic task, which is more willing
to adapt its period. Any task τi that should not vary its period (and therefore its utilization) at
all can set T (min)

i = T
(max)
i , and τi will act like an ordinary (i.e., not elastic) implicit-deadline

sporadic task with WCET Ci and period T
(min)
i . An actual period must be assigned to each

task; a task’s assigned period is denoted as Ti and must fall within the range [T (min)
i , T

(max)
i ].

Furthermore, a task τi is considered to have an implicit deadline where the relative deadline Di of
τi is equal to its actual period, i.e., Di=Ti.

Recall that the utilization Ui of an (ordinary – not elastic) implicit-deadline task τi = (Ci, Ti)
is defined to be the ratio of its WCET to its period (Ui = Ci/Ti), and that the utilization U(Γ) of
an implicit-deadline sporadic task system Γ = {τ1, τ2, . . . , τn} is the sum of the utilizations of all
the tasks in the system (U(Γ) =

∑
τi∈τ Ui). Buttazzo et al. have derived an iterative algorithm

in [4] for task compression which (if possible) finds a way to assign each task τi in a system Γ of
elastic tasks a period Ti in a manner that is compliant with the semantics of spring compression,
such that

∑
i (Ci/Ti) ≤ Ud and T (min)

i ≤ Ti ≤ T
(max)
i for all tasks τi. (As stated above, Ud is a

user-defined threshold, perhaps according to the scheduling algorithm that is used, e.g., Ud = 1 is
suitable for preemptive EDF scheduling.)

Since the introduction of the elastic task model, the uniprocessor version has been expanded
to include constrained deadlines [8], resource sharing [5] and unknown computational load [6]. We
leave their parallel extensions as future work.

2.2 Federated Scheduling and Parallel Real-Time Task Model
Federated scheduling is a parallel real-time scheduling paradigm that was proposed by Li et al. [14]
for scheduling collections of recurrent parallel tasks upon multiprocessor platforms, when one or
more individual tasks may have a computational requirement that exceeds the capacity of a single
processor to entirely accommodate it. Under federated scheduling, such tasks (i.e., those with
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05:4 Elastic Scheduling for Parallel Real-Time Systems

computational requirement exceeding the capacity of a single processor) are granted exclusive
access to a subset of processors; the remaining tasks execute upon a shared pool of processors.

In parallel real-time task systems, the computational requirement of a task τi (the generalization
of the WCET parameter for sequential tasks) is represented by the following two parameters:
1. The work parameter Ci denotes the cumulative worst-case execution time of all the parallel

branches that are executed across all processors. Note that for deterministic parallelizable
code (e.g., as represented in the sporadic DAG tasks model [2]; see [3, Chapter 21] for a
textbook description) this is equal to the worst-case execution time of the code on a single
processor (ignoring communication overhead from synchronizing processors).

2. The span parameter Li denotes the maximum cumulative worst-case execution time of any
sequence of precedence-constrained pieces of code. It represents a lower bound on the duration
of time the code would take to execute, regardless of the number of processors available.
The span of a program is also called the critical-path length of the program, and a sequence of
precedence-constrained pieces of code with cumulative worst-case execution time equal to the
span is a critical path through the program.

Algorithms are known for computing the work and span of a task represented as a DAG, in time
linear in the DAG representation. The relevance of these two parameters arises from well-known
results in scheduling theory concerning the multiprocessor scheduling of precedence-constrained
jobs (i.e., DAGs) to minimize makespan. This problem has long been known to be NP-hard in
the strong sense [16]; i.e., computationally highly intractable. However, Graham’s list scheduling
algorithm [12], which constructs a work-conserving schedule by executing at each instant in time
an available job, if any are present, upon any available processor, performs fairly well in practice.

An upper bound on the makespan of a schedule generated by list scheduling is easily stated.
Given the work and span of the DAG being scheduled, it has been proved in [12] that the makespan
of the schedule for a given DAG upon m processors is guaranteed to be no larger than

work− span
m

+ span (1)

Thus, a good upper bound on the makespan of the list-scheduling generated schedule for a DAG
may be stated in terms of only its work and span parameters. Equivalently, if the DAG represents a
real-time piece of code characterized by a relative deadline parameter D, (work−span

m + span) ≤ D
is a sufficient test for determining whether the code will complete by its deadline upon an
m-processor platform.

A parallel task τi is considered to be a high-utilization task if its utilization Ui = Ci

Ti
> 1 and a

low-utilization task otherwise. Each high-utilization task τi receives mi dedicated processors on
which to run; for implicit-deadlines tasks, we need the resulting makespan to be less than or equal
to Di = Ti; i.e.

Ci − Li
mi

+ Li ≤ Ti

⇔ Ci − Li
mi

≤ Ti − Li

⇔ mi ≥
Ci − Li
Ti − Li

Under federated scheduling, since the number of processors assigned to each high-utilization
task is an integer, we therefore have

mi =
⌈
Ci − Li
Ti − Li

⌉
. (2)



J. Orr et al. 05:5

Under the original federated scheduling model in [14], low-utilization tasks are treated as
sequential and are scheduled using existing mechanisms such as global or partitioned EDF
scheduling.

In this paper, we will consider the federated scheduling of task systems with elastic sporadic
parallel tasks. Recall that each elastic task has a range of acceptable periods within the rage
[T (min)
i , T

(max)
i ]. Let U (max)

i = Ci/T
(min)
i and U

(min)
i = Ci/T

(max)
i denote the maximum (i.e.,

desired) and the minimum acceptable utilization for τi. Note that it is possible for some tasks
to be either high-utilization or low-utilization depending on the selected period. We refer to
these as tasks with hybrid-utilization. (Formally hybrid-utilization tasks are tasks such that
T (min) ≤ Ci ≤ T (max).) Scheduling of exclusively low-utilization elastic tasks is easily done via
minor extensions to prior results [4, 5, 7, 8]. We therefore do not consider them for the remainder
of this paper. Instead, henceforth we consider only the scheduling of exclusively high-utilization
tasks. That is, we will consider a system Γ = {τ1, τ2, . . . , τn} of n elastic parallel high-utilization
tasks that is to be scheduled under federated scheduling upon m processors. We consider this
to be a necessary and non-trivial step towards the scheduling of hybrid-utilization tasks, the
treatment of which we leave for future work.

In the remainder of this paper we will often represent a task τi = (Ci, Li, U (max)
i , U

(min)
i , Ei)

by its work and span parameters, its maximum and minimum utilizations,1 and its elasticity
coefficient. We will seek to compute mi, the number of processors that are to be devoted to the
exclusive use of task τi, for each τi such that

∑n
i=1 mi ≤ m.

3 A first attempt at elastic scheduling of parallel tasks

It is fairly straightforward to show that the desired elasticity property on the tasks that were
defined in the original (uniprocessor) elastic tasks model [4] is that

∀ i, j,
(U (max)

i − Ui
Ei

)
=
(U (max)

j − Uj
Ej

)
(3)

That is, the elasticity coefficient Ei of task τi is a scaling factor on the amount by which it may
have its actual utilization reduced from the desired value of U (max)

i .
We use λ to denote the desired equilibrium value for all tasks demonstrated in Expression (3);

for all tasks λ =
(
(U (max)

i − Ui)/Ei
)
. Expression (3) suggests that

Ui ← U
(max)
i − λEi

However, we also require Ui ≥ U (min)
i ; hence for a given value of λ we choose

Ui(λ)← max
(
U

(max)
i − λEi, U (min)

i

)
(4)

Equation (4) suggests an algorithm for the federated scheduling of parallel task system
Γ = {τ1, . . . , τn} upon m processors. It is evident from visual inspection of Equation (4) that
the ‘best’ schedule – the one that compresses tasks’ utilizations the least amount necessary in
order to achieve schedulability – is the one for which λ is the smallest. Now for a given value of λ,
Algorithm 1 can determine, in time linear in the number of tasks, whether the task system can be
scheduled upon the m available processors using federated scheduling.

1 Note that representing the task by its maximum and minimum utilizations is equivalent to representing it by
its minimum and maximum periods, since given Ci, one set of parameters can be derived from the other set.

LITES
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Algorithm 1 Elastic-1(Γ,m, λ).

. Γ is the task system and m the number of processors that are available

. λ is the compression factor permitted
m′ ← 0 . Number of processors needed
for (τi ∈ Γ) do

Ui = max
(
U

(max)
i − λEi, U (min)

i

)
. See Eqn 4

Ti = Ci/Ui
mi = d(Ci − Li)/(Ti − Li)e
m′ ← m′ +mi

end for
if (m′ > m) then . Not enough processors.

return unschedulable
else

return 〈m1,m2, . . . ,mn〉 . τi gets mi processors
end if

Note the value of λ can be bounded to the range of [0, φ] where λ = 0 represents all tasks
receiving their maximum utilizations and φ is the maximum value among all tasks of the equation(
U

(max)
i

−U(min)
i

Ei

)
. λ = φ thus represents all tasks receiving their minimum utilization. By bounding

the potential values of λ, we can use binary search within this range and make repeated calls to
Algorithm 1 and thereby determine, to any desired degree of accuracy, the smallest value of λ for
which the system is schedulable.

3.1 Discussion
Semantics-preservation. Algorithm 1 for the federated scheduling of parallel elastic tasks that
we have presented above is semantics preserving in the following sense: the assignment of actual
period values to the tasks (the Ti’s) is done in accordance with Equation (4), which is the same
manner in which periods are assigned in uniprocessor scheduling of elastic tasks. Hence the system
developer who seeks to use our proposed elastic task model to implement flexible parallel tasks
upon multiprocessor platforms need not ‘learn’ new (or additional) semantics for the elasticity
coefficient: this coefficient means exactly the same thing in the parallel multiprocessor case as it
did in the system designer’s previous experiences with sequential uniprocessor tasks (the value of
this parameter for each task is a relative measure of its degrees of tolerance to having its period
increased and its computational demand thereby reduced).

Run-time platform capacity under-utilization. Despite these advantages, however, one can
identify two sources of resource under-utilization by Algorithm 4.

First, observe that the number of processors assigned to a task must be integral, and is hence
equal to the ceiling of an expression. If the expression (Ci − Li)/(Ti − Li), which lies within
the ceiling operator (d·e) when computing the number of processors assigned to task τi, is
not itself an integer, then one could further reduce the actual period (the Ti value) that is
assigned to the task τi and thereby assign τi more computational capacity than is afforded by
Algorithm 1. However, we do not permit this to happen since the resulting assignment may no
longer be semantics-preserving in the sense that different tasks may see a reduction in allocated
capacity that is not consistent with their relative elasticity coefficients. This difference between
d(Ci − Li)/(Ti − Li)e and (Ci − Li)/(Ti − Li) is thus ‘wasted’ capacity.
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Second, consider the case with two identical elastic tasks, and an odd number of processors.
Semantics-preservation dictates that both tasks be treated in the same manner; however, doing
so would correspond to assigning the same number of processors to each task and therefore
leaving one processor unused. More generally, Algorithm 1 may leave up to n− 1 processors
unallocated to n identical tasks.

Thus, the simple semantics-preserving scheme presented in this section may under-utilize platform
resources. In Section 4 we discuss an alternative scheme that makes more efficient use of platform
capacity at the cost of additional complexity in the semantics of elasticity.

4 More resource-efficient scheduling

The notion of semantic preservation with uniprocessor elastic task scheduling presented in Section 3
is simple and intuitive, and very strong: the elasticity coefficient of a task directly indicates the
task’s tolerance to having its period parameter increased. However, as we saw, remaining faithful
to such a strong notion of semantic equivalence comes at the cost of some computing capacity
loss and cannot guarantee full utilization of a platform’s computing capacity. We now consider a
more generalized interpretation of the semantics of uniprocessor elastic tasks. This interpretation
was provided by Chantem et al. [8], who proved that the algorithm of Buttazzo et al. [5] for
scheduling sequential elastic tasks upon preemptive uniprocessors is equivalent to solving the
following constrained optimization problem:

minimize
n∑
i=1

1
Ei

(U (max)
i − Ui)2 (5)

such that:

U
(min)
i ≤ Ui ≤ U (max)

i for all τi, and
n∑
i=1

Ui ≤ Ud

where Ud is the desired system utilization. We believe that this is a somewhat less natural
interpretation of elasticity in task scheduling than the interpretation considered in Section 3: it is
unlikely that a typical system designer is thinking of the elasticity coefficients (the Ei parameters)
that they assign to the individual tasks as coefficients to a quadratic optimization problem.
Nevertheless, we adopt this notion of elastic interpretation in this section; for this interpretation,
we are able to derive a federated scheduling algorithm that makes far more efficient use of platform
computing capacity than was possible under the earlier more intuitive interpretation considered in
Section 3.

Note that sequential elastic task scheduling only considers CPU utilization when attempting to
schedule tasks on a single processor. Specifically, system-wide utilization

∑n
i=1 Ui must stay below

a desired utilization Ud at all times in order to maintain schedulability. As such, task utilizations
are decreased by (when possible) increasing individual task periods in proportion to their fraction
of system-wide elasticity until either (1) an acceptable schedule is found such that

∑n
i=1 Ui ≤ Ud

or (2) each task τi has period Ti = T
(max)
i with

∑n
i=1 Ui > Ud. If a schedule cannot be found the

taskset is declared unschedulable.
In federated scheduling of high-utilization tasks, however, system schedulability is no longer a

function only of cumulative utilization but rather whether n tasks can be successfully scheduled
on m cores. We now give an algorithm for determining processor allocation and schedulability of
a task system that allocates the processors one at a time to the tasks, Algorithm 2. Algorithm 2

LITES
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Algorithm 2 Task_compress_par(Γ,m).
1: for (τi ∈ Γ) do
2: mimin

= d(Ci − Li)/Timax
− Li)e . Minimum number of processors

3: mimax
= d(Ci − Li)/(Timin

− Li)e . Maximum number of processors
4: mi = mimin

5: while mi <= mimax
do . Compute the shortest period for τi

6: . for each possible value of mi

7: T(i,mi) = (Ci − Li)/(mi) + Li . T(i,mi) = shortest with mi processors
8: mi = mi + 1
9: end while

10: mi = mimin
. Assign minimum number of processors

11: Ti = T(i,mi) . Assign corresponding shortest period
12: m = m−mimin

. m keeps count of processors remaining
13: end for
14: if (m < 0) then . There weren’t enough processors
15: return unschedulable
16: else if (m == 0) then
17: return processor allocation with mi values
18: end if
19:
20: The remainder of this pseudocode
21: allocates processors one at a time
22:
23: for (τi ∈ Γ) do
24: Determine δi, the potential
25: decrease to Problem 7 for each task
26: end for
27:
28: Make a max heap of all tasks, with the δi values as the key
29:
30: while m > 0 and heap not empty do . Assign remaining processors
31: τmost = heap.pop() . Task that would most benefit
32: mmost = mmost + 1 . Permanently assign processor
33: m = m− 1
34: Tmost = T(most,mmost)
35: if (m > 0 and mmost < mmostmax

) then . Able to receive more processors?
36: Determine δmost, the potential
37: decrease to Problem 7 for task τmost
38: Reinsert τmost into heap
39: end if
40: end while
41: return the processor allocation with mi values
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starts out by determining, for each task τi, the minimum number of processors mimin needed to
be meet its minimum acceptable computational load (i.e., having Ti ← T

(max)
i ) in Line 2, and

the number mimax needed to meet its desired computational load (i.e., having Ti ← T
(min)
i ) in

Line 3. Since the assigned period Ti satisfies T (min)
i ≤ Ti ≤ T (max)

i , the actual number of CPUs
mi assigned to τi is also bounded by mimin ≤ mi ≤ mimax .

Because of the ceiling function in Equation (2), each range of values for Ti maps to a given mi

for each task. In this work we assume that it is beneficial for each task to run as frequently as
possible. As such, we assign task τi the minimum period Ti available on mi allocated processors.
We denote this period value as T(i,mi), which is derived directly from Equation (2):

T(i,mi) = Ci − Li
mi

+ Li (6)

All possible values of T(i,mi) for mimin
≤ mi ≤ mimax

are computed first and stored in lookup
tables. This is accomplished during the while loop (Lines 5–9) in Algorithm 2.

Next (Lines 10–12), each task is assigned the minimum number of processors it needs, and this
number of processors is subtracted from m; hence at the end of the loop, m denotes the number
of processors remaining for additional assignment (above and beyond the minimum needed per
task). If m < 0 the instance is unschedulable, while if m = 0 there is nothing more to be done –
the system is schedulable with each task receiving its minimum level of service. These conditions
are tested in Lines 14–18 of the pseudocode.

Ifm > 0, however, we will individually assign each of these remainingm processors to whichever
task would benefit ‘the most’ from receiving it. This is determined in the following manner. Similar
to scheduling sequential tasks [8], our goal is to find task utilizations (and therefore periods) that
solve the optimization problem:

minimize
n∑
i=1

1
Ei

(U (max)
i − Ui)2 (7)

such that:

U
(min)
i ≤ Ui ≤ U (max)

i for all τi, and
n∑
i=1

mi ≤ m

In allocating each processor we calculate, for each task τi, a quantity δi which represents the
decrease in 1

Ei
(U (max)

i − Ui)2 if the next processor were to be allocated to task τi – this is done
in Lines 23–26 of Algorithm 2. We then assign the processor to whichever task would see the
biggest decrease. (As a consequence, the objective of the optimization problem 7 would decrease
the most.) To accomplish this efficiently, we

Place the tasks in a max heap indexed on the value of δi (Line 28); and
while there are unallocated processors and the heap is not empty (checked in Line 30)

assign the next processor to the task at the top of the heap (Lines 31–34) and, if this task is
eligible to receive more processors (checked in Line 35), recompute δi for this task (Line 36)
and reinsert into the heap (Line 38).

Run-time complexity. The first for-loop in the algorithm (Lines 1–13 in the pseudocode listing in
Algorithm 2) takes Θ(m∗n) time. The for-loop in Lines 23–26 and the making of the max heap (Line
28) each take Θ(n) time. The running time of the remainder of the algorithm (Lines 30–40) is
dominated by the max-heap operations; the overall running time is therefore Θ(n ∗m+m logn).

LITES
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4.1 Proof of Optimality
In this section we prove in Theorem 3 that Algorithm 2 solves the optimization problem given in
Equation (7) optimally. The optimality of Algorithm 2 then follows from the result of Chantem
et al. [8] showing the equivalence of uniprocessor elastic scheduling of sequential tasks with the
optimization problem given in Equation (5).

The dependency amongst the three results in this section – Lemma 1, Lemma 2, and Theorem 3
– is strictly linear: Lemma 1 is needed to prove Lemma 2, which is needed to prove Theorem 3.

I Lemma 1. The utilization Ui of elastic task τi strictly increases towards maximum utilization
as the number of processors mi assigned to it increases.

Proof. Since Ui = Ci/Ti, (and Ci is constant), Ui increases as Ti decreases. By Equation (6),
Ti = ((Ci − Li)/mi) + Li. Ci and Li are constant for task τi. Therefore, Ti strictly decreases
as mi increases. Therefore, an increase of mi decreases Ti and increases Ui. J

I Lemma 2. In assigning processors one at a time (in the while loop of Lines 30–40 of Algorithm 2),
the consecutive assignment of the (k + 1)’st and (k + 2)’nd to the same task τi with k currently
assigned processors will result in diminishing returns of δi, the decrease in 1

Ei
(U (max)

i − Ui)2 for
τi. (i.e., the benefit of assigning a processor to a task is never as high as the already-incurred
benefit of assigning prior processors.)

Proof. This is readily observed by algebraic simplification.2 Let xk be the value of 1
Ei

(U (max)
i −

Uik )2 where Uik is the task utilization with k processors. Let xk+1 be the value of 1
Ei

(U (max)
i −

Uik+1)2 with new utilization Uik+1 after assigning processor k + 1 to τi, and similarly let xk+2 be
the value of 1

Ei
(U (max)

i −Uik+2)2 with new utilization Uik+2 after subsequently assigning processor
k + 2 to τi. From Lemma 1, we know that Uik < Uik+1 < Uik+2 .

Define the benefit of adding processor k+ 1 to τi as δik+1 = xk − xk+1, and the later benefit of
assigning processor k + 2 as δik+2 = xk+1 − xk+2. To prove diminishing returns, we must show
that δik+1 > δik+2 .

Note that the math is equivalent, so we temporarily ignore the constant scalar 1
Ei

. Thus, both

δik+1 = (U (max)
i − Uik )2 − (U (max)

i − Uik+1)2 (8)

and

δik+2 = (U (max)
i − Uik+1)2 − (U (max)

i − Uik+2)2 (9)

are of the form

(x− z)2 − (x− y)2 (10)

where x > y > z. We can therefore say that z + α = y and y + β = x.
Re-stating Equation (10) in terms of z, α, and β, we obtain:

(z + α+ β − z)2 − (z + α+ β − z − α)2

which simplifies to

α2 + 2αβ. (11)

2 The algebra, while straightforward, is rather tedious and the reader may choose to just skim it at first reading.
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Therefore, to prove δik+1 > δik+2 , it is sufficient to show that

α2
k+1 + 2αk+1βk+1 > α2

k+2 + 2αk+2βk+2 (12)

where αk+1, βk+1, αk+2, and βk+2 are (Uik+1 −Uik ), (U (max)
i −Uik+1), (Uik+2 −Uik+1), (U (max)

i −
Uik+1), respectively. (These values come from the definitions of α and β and the substitutions
of x, y, and z in Equation (10) into their actual values from Equations 8 and 9.) Note that as
αk+1, βk+1, αk+2, and βk+2 are all positive numbers, Equation (12) will be satisfied if we can
individually prove αk+1 > αk+2 and βk+1 > βk+2, which we now proceed to do.

We first prove βk+1 > βk+2, where

βk+1 = (U (max)
i − Uik+1),

and

βk+2 = (U (max)
i − Uik+2).

We know from above that Uik+2 > Uik+1 . Therefore

(U (max)
i − Uik+1) > (U (max)

i − Uik+2)

and βk+1 > βk+2.
We next prove αk+1 > αk+2. Note that

Ui = Ci

Ti = Ci−Li

mi
+ Li

(13)

Consider Equation (13) which shows the complete derivation of a task’s utilization as a function
of the number of processors assigned to it. By definition, if αk+1

?
> αk+2, 3 then

Uik+1 − Uik
?
> Uik+2 − Uik+1 .

Substituting into Equation (13), this becomes

Ci
Ci−Li

k+1 + Li
− Ci

Ci−Li

k + Li

?
>

Ci
Ci−Li

k+2 + Li
− Ci

Ci−Li

k+1 + Li
.

Factoring out a constant Ci and simplifying, we get

k + 1
Ci + kLi

− k

Ci + kLi − Li
?
>

k + 2
Ci + kLi + Li

− k + 1
Ci + kLi

.

Letting X = Ci + kLi (to enhance readability), this becomes

k + 1
X
− k

X − Li
?
>

k + 2
X + Li

− k + 1
X

.

We can combine fractions and simplify this further to

−kLi +X − Li
X(X − Li)

?
>
−kLi +X − Li
X(X + Li)

.

3 We use
?
> to indicate that the inequality is not yet proved.

LITES
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Since −k ∗ Li +X − Li = −kLi + Ci + kLi − Li = Ci − Li > 0 for high-utilization tasks, we
can now factor out −k ∗ Li +X − Li from both sides and are left with asking whether

1
X(X − Li)

?
>

1
X(X + Li)

.

This is unequivocally true. Hence, we prove that αk+1 > αk+2. Therefore, Equation (12) is
satisfied and δik+1 > δik+2 . The Lemma follows. J

I Theorem 3. Algorithm 2 optimally minimizes the optimization problem given in Equation (7).

Proof. For Algorithm 2 to be non-optimal, there must be some point at which our greedy algorithm
and the optimal algorithm diverge. (Algorithm 2 begins optimally with the only valid assignment
of processors to tasks when considering only the minimum amount of processors each task can
have.) Note that each task’s contribution to the sum of Equation (7) is independent of other tasks:
the value of 1

Ei
(U (max)

i − Ui)2 for a given task τi is independent of how many processors have
been assigned to other tasks. Thanks to this property, we need only consider two tasks. Let us
suppose, without loss of generality, that at the point of divergence our greedy algorithm assigns
the processor to τi, while the optimal algorithm would assign the processor to τj .

Because the greedy algorithm assigns the processor to τi, we know that the added bene-
fit (amount decreased from the sum) is greater than if we had given the processor to τj . Hence
the current value of the objective function of optimization problem 7 the greedy algorithm is
necessarily lower than that of the optimal algorithm upon assignment of the number of processors
assigned thus far. By the assumption regarding the non-optimality of our greedy strategy, there
must be some point in the future at which the optimal algorithm makes up the difference since
the optimal solution to a minimization problem must end with the lowest value for the objective
function.

However, we saw in Lemma 2 above that the benefits of assigning a new processor under
the greedy Algorithm 2 diminish. At each iteration, the greedy algorithm chooses to assign the
processor to the task with the greatest available benefit. Because tasks’ benefits are considered
independently and do not change regardless of the allocation of CPUs to other tasks, after the
greedy algorithm assigns the k’th processor to τi, no other task τj will have a higher benefit of
receiving the (k + 1)’st processor than it did when the greedy algorithm elected to give the k’th
processor to τi. Similarly, by Lemma 2 the diminishing returns of assigning multiple processors to
the same task guarantees that the benefit of assigning the (k+ 1)’st task to τi is also less than the
benefit gotten by assigning the k’th processor to τi. Therefore, if the optimal algorithm and the
greedy algorithm diverge and the current value of the objective function of optimization problem 7
for Algorithm 2 is better than the optimal algorithm, it is impossible for the optimal algorithm to
subsequently ‘catch up’ and do better than the greedy algorithm. Hence the current value of the
objective function of optimization problem 7 may never diverge between an optimal algorithm
and our greedy algorithm; the optimality of Algorithm 2 immediately follows. J

This completes the proof of optimality of Algorithm 2 for the federated scheduling of parallel
elastic tasks.

5 Summary & Conclusions

In the two decades since it was first introduced, the elastic task model [4] has proved a useful
abstraction for representing flexibility in the computational demands of recurrent workloads. It
was originally proposed for representing sequential tasks executing upon uniprocessor platforms;
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as high-performance real-time computer applications are increasingly becoming parallelizable (and
need to have their parallelism exploited by being implemented upon multiprocessor platforms in
order to meet timing constraints), there is a need to extend the applicability of the elastic task
model to parallel tasks that execute upon multiprocessor platforms.

In this paper, we have proposed one such extension. The salient features of our model are:
Multiprocessor scheduling under the federated paradigm, in which each task needing more than
one processor is assigned exclusive access to all processors upon which it executes. Federated
scheduling frameworks can generally be implemented in a more efficient manner than global
scheduling (e.g., with less run-time overhead) with only limited loss of schedulability (as
measured by speedup bounds of capacity augmentation bounds).
Representation of a parallel task’s workload using just the cumulative workload (its ‘work’
parameter) and its critical path length (its ‘span’ parameter). Such representation allows for
efficient schedulability analysis in the federated scheduling framework, with a bounded loss
of schedulability as compared to DAG representations (for which schedulability analysis is
strongly NP-hard.
Retention of the elasticity coefficient parameter that was the main innovation introduced in [4]
to capture the flexibility in computational demands.

We have proposed and studied two schemes for assigning processors to tasks in a system of elastic
parallel real-time tasks that are to be scheduled upon a given multiprocessor platform under
federated scheduling. One of these schemes is completely semantics-preserving with respect to
model semantics as introduced in the uniprocessor case [4]; the other allows for some deviation
from uniprocessor semantics and thereby is able to better use the computational capabilities of
the implementation platform.

Possible future extensions of this work include the scheduling of hybrid-utilization tasks, each
of whose potential utilization range is such that it can be treated as either a low-utilization or a
high-utilization task, depending on the system load. This necessarily involves the co-scheduling of
low-utilization and high-utilization tasks. It may also be worth investigating different ways of
scheduling low-utilization tasks on multi-core systems. Buttazzo’s algorithms provide an optimal
way to schedule a task set of low-utilization tasks on a single processor but say nothing about how
to assign low-utilization tasks to multiple processors. Each of these can also be explored with
constrained deadlines and resource sharing.
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